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One interesting and important property of nonlinear dynamical systems is that they can exhibit
universality—behavior that is quantitatively identical for a broad class of systems. The first and
most famous example of universality in a dynamical system was identified by Feigenbaum@M. J.
Feigenbaum, J. Stat. Phys.19, 25–52~1978!, 21, 669–706~1979!# in the period-doubling route to
chaos. This note presents a new derivation of Feigenbaum’s renormalization group equation, used
to understand this universality. The argument, designed for incorporation into an undergraduate
dynamical systems course, is simpler than those in standard textbooks. ©1999 American Association of

Physics Teachers.
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I. INTRODUCTION

The subject of dynamical systems is attractive to teac
undergraduates because students with only a moderate
ground in physics and mathematics can explore and un
stand many interesting phenomena.1 One important unifying
concept in the subject, also important in many other area
physics such as statistical mechanics and particle physic
that of universality, whereby a whole class of different s
tems have certain properties which arequantitatively
identical.2 Renormalization group equations can be used
understand why universality arises. This note outlines a d
vation of the normalization group equation for the perio
doubling route to chaos which is substantially simpler th
standard treatments.3–5 The derivation of the renormalizatio
group equation requires only elementary mathematics a
suitable for incorporation into an undergraduate course
dynamical systems.

Section II contains review material that is cover
elsewhere1,3–5 and is included here to make the discuss
reasonably self-contained. Readers familiar with this m
rial may skip to Sec. III.

II. BACKGROUND

A dynamical system is a rule that, given a set of variab
describing a configuration at some time, gives the value
these variables at a later time.~One example of such rules
Newton’s laws, which enable the determination of the
locities and positions of a set of particles, given their ini
values and the force law.! Here the focus is on dynamic
systems that are one-dimensional maps, defined by equa
of the form:

xj 115 f l~xj !. ~1!

The subscript onf denotes that it depends on a control p
rameterl. Given an initial valuex0 of the variablex, one
uses Eq. ~1! to generate the sequence of valu
$x1 ,x2 ,x3 ,...%. It is natural to interpret the indexj as dis-
crete time. We will be studying the properties of these
quences at long times, after initial transients have deca
and examine how the behavior changes asl is varied.

Our specific example is the logistic map, which h
f l(x)5lx(12x), so that the map is defined by

xj 115lxj~12xj !. ~2!
52 Am. J. Phys.67 ~1!, January 1999
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The logistic map~as well as many other dynamical system!
has an infinite sequence of period doublings as the con
parameterl is increased. We first review what period do
bling is, and then discuss its universal properties.

For l,3, at long times the sequence generated by
logistic map settles down to a single valuex* . Since the
value of x repeats each timej is incremented@ f l(x* )
5x* #, the orbit has period one. When 3,l,11A6
'3.449, at long timesx alternates between two valuesx1

and x2 @ f l( f l(x1))[ f l
2(x1)5x1 ; f l

2(x2)5x2#; the period
of the orbit has doubled and is now two. Atl511A6 the
period of the orbit doubles again, to four. As one continu
to increasel, the period of the observed orbit doubles ov
and over. An infinite number of period doublings occur al
is increased up to the valuel5l`53.569 934 669...; atl
5l` the orbit has infinite period, and forl just abovel` the
motion is chaotic~aperiodic, and very sensitive to small pe
turbations!.

Feigenbaum6 observed that the range inl over which an
orbit of length 2n is observed,Dln , shrinks geometrically
with n whenn is large:

Dln21

Dln
5d, ~3!

with d54.6692... . Moreover, he examined several differ
map functions and found for all of them that the range
control parameter as a function ofn obeys Eq.~3! with the
samevalue ofd.

Feigenbaum also showed that the values ofx on the orbits
have universal properties.6 Consider the orbits of length 2n

in the period-doubling sequence which include the valux
5 1

2 ~at which the function reaches its maximum value!. Let
ln be the parameter value where such an orbit of length 2n is
observed. Given a cycle of length 2n starting atx05 1

2, then
the value of x exactly halfway through the cycle,x2n21

[ f ln

2n21
(x5 1

2) ~which is closer to1
2 than any other point on

the orbit!, also converges geometrically withn. Specifically,

1
22 f ln

2n21
~x5 1

2!

1
22 f ln11

2n
~x5 1

2!
'2a, ~4!
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wherea52.502 907 875... . Once again, many different m
functions display this scaling with exactly the same value
a.

Feigenbaum7 demonstrated that the fact that the two exp
nentsa andd are universal over a large class of systems8,9 is
intimately related to the existence of a universal funct
g(z) which satisfies

g~z!52ag~g~z/a!!. ~5!

The universality of the exponents follows because whene
g has a quadratic maximum@g(z)5a02a2z21¯#, this
equation determinesa andd uniquely.

Feigenbaum derived Eq.~5! by defining an infinite se-
quence of functions, withg(x) defined as a limit of this
sequence. In his method, the functiong is obtained as the
limit of an infinite number of functional compositions. Th
method, which is that presented in most standard texts,3–5 is
complicated by the need to introduce an infinite set of a
iliary functions.

III. DERIVATION

Our derivation of Eq.~5! uses just the properties of th
time series generated by iterating the map atl5l` :

xj 115l`xj~12xj !, ~6!

with x05 1
2.

Figure 1 shows two different graphs of the same seque
of $xj% ’s generated by the logistic map withl>l` , starting
at x05 1

2. Note that the axes on the two graphs are differe
Compared to Fig. 1~a!, the ~horizontal! j axis of Fig. 1~b! is
compressed by a factor of 2, and the~vertical! x axis is
inverted and magnified by a factor of roughly 2.5.

Figure 1~b! looks a lot like Fig. 1~a!. In fact, if thej axis of
the time series plot is compressed by a factor of 2, and if
xj axis of the plot is inverted aboutx5 1

2 and then blown up
by the factora;2.502 907 875..., then all the points on t
rescaled plot can be superimposed directly onto those in
original graph.10 In other words, if one labels the poin
which appear in Fig. 1~a! by an indexk ~i.e., ignoring those

Fig. 1. Two plots of the time series ofx values for the logistic map (xj 11

5lxj (12xj )) with the parameter valuel5l`53.569 945 669..., starting

with xj 505
1
2. Note that the axes have different scales in the lower pa

than in the upper panel: the horizontal axis is compressed by a factor
and the vertical axis is inverted and expanded by a factor of 2.5.
53 Am. J. Phys., Vol. 67, No. 1, January 1999
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iterates which are too far fromx5 1
2 to appear on the graph!,

so that the plot is of a sequence$xk50 ,xk51 ,xk52 ,...%, then
everyxk in the sequence satisfies:

2a~x2k2 1
2!5xk2 1

2. ~7!

This equation embodies the empirical observation that
time series looks the same when it is rescaled appropria

The renormalization group equation is obtained by look
for a function g that generates a time series that has
self-similarity property embodied in Eq.~7!. We definezk

5xk2 1
2 and rewrite Eq.~7! as

2az2k5zk . ~8!

Equation ~8! holds for all k. In particular, it holds if we
replacek with k11:

2az2~k11!5zk11 . ~9!

We are looking for a mapping functiong that generates this
sequence viazk115g(zk). Thus,z2k125g(g(z2k)), and we
can rewrite Eq.~9! as

2ag~g~z2k!!5g~zk!. ~10!

Using Eq.~8!, we have

2ag~g~2zk /a!!5g~zk!. ~11!

Thus the functiong must satisfy

2ag~g~2z/a!!5g~z!. ~58!

Note that the value ofa is never specified in the derivatio
of the renormalization group equation~58!. Solving Eq.~58!
under quite general conditions determinesa andd ; this fact
underlies universality.

IV. SOLVING THE RENORMALIZATION GROUP
EQUATION

Reference 3 presents, at a level appropriate for und
graduates, methods for solving the renormalization gro
~RG! equation~58! and obtainingg, a, andd. The standard
method for obtainingg anda7,11 is to expandg in a Taylor
series about its maximum atz50 and equate coefficient
~the assumption that a Taylor series expansion exists
where the restriction is made to functions with quadra
maxima!. The standard method of obtainingd7,11,3 involves
solving a functional eigenvalue equation, a method not
cessible to most undergraduates. Hilborn3 presents a treat
ment that retains the spirit of the standard treatment,
which does not assume previous knowledge of linear a
bra. Nonetheless, calculatingd is substantially more ad
vanced than the rest of the presentation.12

V. REMARKS

This note presents a derivation of Feigenbaum’s renorm
ization group equation for the period-doubling route to cha
that is considerably simpler than that in standard texts. T
spirit of the derivation presented here is identical to that u
to derive renormalization group equations for second-or
phase transitions.13 In fact, the method presented here f
period-doubling in 12d maps is directly analogous to th
decimation renormalization group for the one-dimensio
Ising model.14

The similarity of our derivation and standard applicatio
of RG methods in statistical mechanics clarifies the conn

l
2,
53S. N. Coppersmith
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tion between the renormalization group as applied to
namical systems and to statistical mechanics. Since one
not need to have a background in statistical mechanic
study the universal behavior of iterated maps, even stud
with no knowledge of statistical mechanics can learn the f
damentals of universality and renormalization.

a!Electronic mail: s-coppersmith@uchicago.edu
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FUNDING RESEARCH

The problem facing science is not... that the reductionist imperative is putting the rest of
science at risk. Few if any of us who are interested in the search for the laws of nature doubt the
validity of the other motives for research.~I suspect that eventually I will come to feel that
research on cancer or heart disease is more important than anything else.! The problem is that
some people, including some scientists, deny that the search for the final laws of nature has its
own special sort of value, a value thatalso should be taken into account in deciding how to fund
research.

Steven Weinberg, ‘‘Reductionism Redux,’’ The New York Review of Books, 5 October 1995, pp. 39–42.

ETHICAL SCRUTINY

The notion that science should be called to account for itself ethically has become common-
place in the biological sciences; during the last two decades we have seen a proliferation of
bioethics centers. If biological science should be subject to ethical scrutiny, why not physics?

Margaret Wertheim,Pythagoras’ Trousers—God, Physics, and the Gender Wars~Random House, New York, 1995!, p.
251.
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