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One interesting and important property of nonlinear dynamical systems is that they can exhibit
universality—behavior that is quantitatively identical for a broad class of systems. The first and
most famous example of universality in a dynamical system was identified by Feigefaum
Feigenbaum, J. Stat. Phy&9, 25-52(1978), 21, 669-706(1979] in the period-doubling route to
chaos. This note presents a new derivation of Feigenbaum’s renormalization group equation, used
to understand this universality. The argument, designed for incorporation into an undergraduate
dynamical systems course, is simpler than those in standard textbook®99@merican Association of

Physics Teachers.

[. INTRODUCTION The logistic mapas well as many other dynamical systems

has an infinite sequence of period doublings as the control

The subject of dynamical systems is attractive to teach tarameten is increased. We first review what period dou-
undergraduates because students with only a moderate ba ing is, and then discuss its universal properties.

ground in physics and mathematics can explore and under- g, A<3, at long times the sequence generated by the

stand many interesting phenomen@ne important unifying logistic map settles down to a single valug. Since the
concept in the subject, also important in many other areas o

- ST .
physics such as statistical mechanics and particle physics, Y?Ilie of x repeats each timg is incremented[f,(x*)

that of universality, whereby a whole class of different sys-—X* 1, the orbit has period one. When<3 <1+ 6
tems have certain properties which amuantitatively —~3.449, at long timex alternates between two values
identical? Renormalization group equations can be used t@and x, [f,(fy(x1))=f2(x1)=xX1; f2(x2)=x,]; the period
understand why universality arises. This note outlines a deriof the orbit has doubled and is now two. At=1+ /6 the
vation of the normalization group equation for the period-period of the orbit doubles again, to four. As one continues
doubling route to chaos which is substantially simpler thano increaser, the period of the observed orbit doubles over
standard treatmenf§.5 The derivation of the renormalization and over. An infinite number of period doub"ngs occumnas
group equation requires only elementary mathematics and i jncreased up to the value=\,.=3.569 934 669...; ak
suitable for incorporation into an undergraduate course on \.. the orbit has infinite period, and farjust abovex., the

dynam!cal systems.. . . . motion is chaotidaperiodic, and very sensitive to small per-
Section Il contains review material that is CoverEdturbations.

3-5 P ; ;
elsewhetr)ﬂla "’Il][‘d |st|r_1cll(1jde|g hgre t‘; m"."ll.‘e th_?hdtlﬁ.cussuin Feigenbaurhobserved that the range kover which an
reasonably Sell-contain€d. keaders famiiar wi IS Mateh it of length 2' is observedAX\,,, shrinks geometrically

rial may skip to Sec. lIl. with n whenn is large:

Il. BACKGROUND Ahy_g

: : : : 3, ()
A dynamical system is a rule that, given a set of variables AN,

describing a configuration at some time, gives the values of
these variables at a later timg@ne example of such rules is with §=4.6692... . Moreover, he examined several different
Newton’s laws, which enable the determination of the ve-map functions and found for all of them that the range of
locities and positions of a set of particles, given their initial control parameter as a function nfobeys Eq.(3) with the
values and the force layvHere the focus is on dynamical samevalue of .
systems that are one-dimensional maps, defined by equationsFeigenbaum also showed that the valuex oh the orbits
of the form: have universal properti€sConsider the orbits of length™2

X 1=F,(%). (1) in the period-doubling sequence which include the value

! o _ =1 (at which the function reaches its maximum valueet

The subscript orf denotes that it depends on a control pa-), ‘he the parameter value where such an orbit of lengtis 2
rameter\. Given an initial valuex, of the variablex, one  jpcaned. Given a cycle of length 2tarting atx,=21, then

uses Eg. (1) to generate the sequence of values
- . S : the value ofx exactly halfway through the cycle,n-
{X1,X2,X3,...}. It is natural to interpret the indexas dis- y y g yCl&on—a

n-1 . . .
crete time. We will be studying the properties of these se—Effn (x=3) (which is closer to; than any other point on
guences at long times, after initial transients have decayedhe orbiy, also converges geometrically with Specifically,
and examine how the behavior changes\as varied.

Our specific example is the logistic map, which has %—ffn_l(x— )

fL(X)=Ax(1—Xx), so that the map is defined by — = ~—q, (4)

1_ 2" 1
XjJrl:)\Xj(l_Xj)' (2) 2 f)‘rPrl(x 2)
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06 100 200 iterates which are too far from= 3 to appear on the graph

1 so that the plot is of a sequenfg._g,Xx=1,Xk=2,--.}, then
everyx, in the sequence satisfies:
o5k .t e Tt et e
. . . . . . _a(sz_ %):Xk_ % (7)
This equation embodies the empirical observation that this
04 ' time series looks the same when it is rescaled appropriately.
b 046 l The renormalization group equation is obtained by looking
for a function g that generates a time series that has the
. . . . . . self-similarity property embodied in Eq7). We definez,
050 |- . . . . . *— 1 .
. . . . . . =X,— 3 and rewrite Eq(7) as
| — k=2 (8)
0.54
0 200 400 Equation (8) holds for all k. In particular, it holds if we
J replacek with k+1:
Fig. 1. Two plots of the time series af values for the logistic mapx(, ; —aZyk+1)= Zk+1- 9

=\X;(1—x;)) with the parameter valuk =X\, =3.569 945 669..., starting We are Iooking for a mapping functiqmthat generates this
with X;_q= % Note that the axes have different scales in the lower panel

than in the upper panel: the horizontal axis is compressed by a factor of S€qUeNce vidy1=9(z). Thus,z4>=9(9(z2)), and we
and the vertical axis is inverted and expanded by a factor of 2.5. can rewrite Eq(9) as
—ag(9(z21)) =9(zy). (10)

wherea=2.502 907 875... . Once again, many different mapUSIng Eq.(8), we have
functions display this scaling with exactly the same value of —a9(g(—z/@))=9(z,). 11
. . .
Feigenbaurhdemonstrated that the fact that the two expo-Thus the functiory must satisfy

nentse and & are universal over a large class of systéfis —ag(g(—2Z/a))=9(2). (5"
intimately related to the existence of a universal function

g(2) which satisfies Note that the value ok is never specified in the derivation

of the renormalization group equati¢f’). Solving Eq.(5")
9(z)=—ag(g(z/a)). (5) under quite general conditions determireand J; this fact

. . underlies universality.
The universality of the exponents follows because whenever y

i i —a—a.724-.- i
g has a quadratic maximurg(z)=ap,=a,z"+:-], this \\, 50 \iNG THE RENORMALIZATION GROUP
equation determinea and & uniquely. EOQUATION
Feigenbaum derived Ed5) by defining an infinite se- Q

quence of functions, wittg(x) defined as a limit of this  Reference 3 presents, at a level appropriate for under-
sequence. In his method, the functignis obtained as the graduates, methods for solving the renormalization group
limit of an infinite number of functional compositions. This (RG) equation(5’) and obtainingg, «, and 5. The standard
method, which is that presented in most standard t6Xtis, ~ method for obtainingy and &’ is to expandg in a Taylor
complicated by the need to introduce an infinite set of auxseries about its maximum at=0 and equate coefficients
iliary functions. (the assumption that a Taylor series expansion exists is
where the restriction is made to functions with quadratic
maxima. The standard method of obtainimg ! involves
solving a functional eigenvalue equation, a method not ac-
cessible to most undergraduates. Hildopmesents a treat-
ment that retains the spirit of the standard treatment, and
which does not assume previous knowledge of linear alge-
Xj+1= NeXj(1=X;), (6) bra. Nonetheless, calculating is substantially more ad-
vanced than the rest of the presentatfitn.

[ll. DERIVATION

Our derivation of Eq.5) uses just the properties of the
time series generated by iterating the map. at\.. :

with xo=3.
Figure 1 shows two different graphs of the same sequence
of {x;}'s generated by the logistic map with=\.., starting V. REMARKS

atx,=3. Note that the axes on the two graphs are different: This note presents a derivation of Feigenbaum’s renormal-
Compared to Fig. (), the (horizonta) j axis of Fig. Ib) is ization group equation for the period-doubling route to chaos
compressed by a factor of 2, and theertica) x axis is that is considerably simpler than that in standard texts. The
inverted and magpnified by a factor of roughly 2.5. spirit of the derivation presented here is identical to that used
Figure Xb) looks a lot like Fig. 1a). In fact, if thej axis of ~ to derive renormalization group equations for second-order
the time series plot is compressed by a factor of 2, and if th@hase transition$ In fact, the method presented here for
x; axis of the plot is inverted about= 3 and then blown up period-doubling in +d maps is directly analogous to the
by the factora~2.502 907 875..., then all the points on the decimation renormalization group for the one-dimensional
rescaled plot can be superimposed directly onto those in thising modef**
original graph'® In other words, if one labels the points  The similarity of our derivation and standard applications
which appear in Fig. () by an indexk (i.e., ignoring those of RG methods in statistical mechanics clarifies the connec-
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tion between the renormalization group as applied to dy-°"The exponentst and & are the same for all sequences} generated by
namical systems and to statistical mechanics. Since one doethe rulex;.;=f(x;), so long asf(z) has a quadratic maximum about
not need to have a background in statistical mechanics towhich it can be expanded in a Taylor series. Moreover, the expoments
study the universal behavior of iterated maps, even studentsnd 6 are the same for an even broader class of dynamical systems, in-
with no knowledge of statistical mechanics can learn the fun- cluding experimental systems such as some Rayleigh—Benard convection

damentals of universality and renormalization. cells. _ . _
%See, e.g., A. Libchaber, C. Laroche, and S. Fauve, “Period doubling cas-
AE|ectronic mail: s-coppersmith@uchicago.edu cade in mercury, a quantitative measurement,” J. Phys. U&ftL211—

IAn extensive and very useful list of resources available for teaching 216(1982; M. Giglio, S. Musazzi, and U. Perini, “Transition to chaotic
courses in nonlinear dynamics is Robert C. Hilborn and Nicholas B. Tu- behavior via a reproducible sequence of period-doubling bifurcations,”
fillaro, “Resource Letter ND-1: Nonlinear dynamics,” Am. J. Phgs, Phys. Rev. Lett47, 243—-246(1981).

822-834(1997). 19t is a recommended exercise that students verify this claim for them-
2Universality is an important concept in other areas of physics, including
particle physics and statistical mechanics. See, e.g., Michael E. PAskin,
Introduction to Quantum Field TheorfAddison—Wesley, Reading, MA,
1995; Nigel Goldenfeld,Lectures on Phase Transitions and the Renor- _accurately. _ o _

malization Group Frontiers in Physics Vol. SMddison_Wegey’ Read- llM. J. Felgenbaum, “Universal behavior in nonlinear Systems,” Los Ala-
ing, MA, 1992; Shang-Keng MaModern Theory of Critical Phenomepa mos Sciencd, 4-27(1980, reprinted in P. Cvitanovic, edUniversality

selves. Strictly speaking, scale invariance holds only in the b(mat% but
empirically one finds that the two graphs in Fig. 1 superimpose quite

Frontiers in Physics Vol. 46Addison—Wesley, Reading, MA, 19Y.6 in Chaos(Hilger, New York, 1989, 2nd ed.
°R. C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Sci- *4n the undergraduate nonlinear dynamics course taught at the University of
entists and Engineer®©xford U.P., New York, 1994 Chicago, the determination af is a homework problem, whereas deter-

“E. Oftt, Chaos in Dynamical Systen@€ambridge U.P., New York, 1993

5S. H. Strogatz,Nonlinear Dynamics and Chaos: With Applications in 13 ) . . . . » oo
Physics, Biology, Chemistry, and Engineeritigidison—Wesley, Read- K. G. Wilson, “Problems in physics with many scales of length,” Sci.
ing, MA, 1994. 14Am. 241, 158—-179(August, 1979.

SM. J. Feigenbaum, “Quantitative universality for a class of nonlinear - Nelson and M. Fisher, “Soluble renormalization groups and scaling
transformations,” J. Stat. Phy&9, 25-52(1978. fields for low-dimensional Ising systems,” Ann. PhykLY.) 91, 226—-274
M. J. Feigenbaum, “The universal metric properties of nonlinear transfor- (1979; Humphrey J. Maris and Leo P. Kadanoff, “Teaching the renor-
mations,” J. Stat. Phy21, 669—706(1979. malization group,” Am. J. Phys46, 652—657(1978.

mining & is a longer-term student project.

FUNDING RESEARCH

The problem facing science is not... that the reductionist imperative is putting the rest of
science at risk. Few if any of us who are interested in the search for the laws of nature doubt the
validity of the other motives for researchl. suspect that eventually | will come to feel that
research on cancer or heart disease is more important than anythingTélseproblem is that
some people, including some scientists, deny that the search for the final laws of nature has its
own special sort of value, a value thaso should be taken into account in deciding how to fund
research.

Steven Weinberg, “Reductionism Redux,” The New York Review of Books, 5 October 1995, pp. 39-42.

ETHICAL SCRUTINY

The notion that science should be called to account for itself ethically has become common-
place in the biological sciences; during the last two decades we have seen a proliferation of
bioethics centers. If biological science should be subject to ethical scrutiny, why not physigs?

Margaret WertheimPythagoras’ Trousers—God, Physics, and the Gender WRamdom House, New York, 1985p.
251.
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