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3-D Macroscale Electromagnetic Particle
Simulation Method for Large Space-Scale,
Low Frequency Plasma Phenomena

Motohiko Tanaka

Summary

A new generation, electromagnetic particle simulation method is described
which is quite suitable for studies of large time-and-space (MHD) scales, kinetic
plasma phenomena in multi-dimensions. The “closely-coupled field-particle
(CCFP) equations” are derived to realize large-scales simulations with aid of
backward time-decentering and guiding center approximation to the electron
perpendicular motion. Here an algorithm of the proto-type code which is imple-
mented for simulating homogeneous plasmas is presented together with several
physics applications.

4.1 Introduction

As is well-known, there is a giant gap in space and time between the microscopic
(kinetic) and macroscopic (magnetohydrodynamic, MHD) regimes of the plasma
phenomena. Neither the traditional particle nor MHD fluid codes were capable
of simulating plasma waves and instabilities which occur between these two
regimes.

Nevertheless, many important and interesting phenomena in space and fu-
sion plasmas belong to this intermediate regime. For example, understanding
of anomalous transport in the magnetically confined plasmas is of vital impor-
tance for the success of the magnetic fusion project but its mechanism is not
well understood. In space plasmas, there are varieties of phenomena that belong
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to this “macroscale and kinetic” regime. Typical of them are the magnetosonic
shocks, magnetic reconnection and kinetic Alfven wave which shows substantial
wave-particle interactions due to its longitudinal electric field.

Extensive efforts have been made in the 1980’s, especially in the United
States and Japan, to develop the simulation tools which enable us studies of
the large space-scale, and low frequency plasma phenomena where kinetic effects
are non-negligible or important. After the decade of R&D, it turned out that
quite promising and useful among them are the “moment implicit” method, the
“macroscale electromagnetic” method and the “gyrokinetic” particle method.
The first method derives fluid-like moment equations to predict the future elec-
tromagnetic field using the lowest two velocity moments. This code known as
“the VENUS code” [Brackbill and Forslund, 1982] was developed in Los Alamos
National Laboratory in early 80’s. This method was successfully applied to
simulate laser irradiation and various beam-plasma processes [Forslund and
Brackbill, 1982].

The macroscale electromagnetic particle simulation method [Tanaka, 1988]
(HIDENEK) which was developed by the author has many favorable common
features with the VENUS code and its upgrade (CELEST), for doing large
time-and-space scale simulations; both of the codes adopt the backward time-
decentering. The difference is that the macroscale particle code and CELEST use
the particle nature directly that is contained in the Newton-Maxwell equations.
The large time-and-space characteristics are realized by virtue of the backward
time-decentering and the full-implicitness of the “closely-coupled field-particle
(CCFP) equations”, which are the equations to determine the future electro-
magnetic field. Thus in a technical sense, the macroscale particle simulation is
the “closely-coupled implicit method.”

An intermediate, “semi-implicit” version of the macroscale particle code
was completed by 1986. This version of the code was applicable to studies of
inhomogeneous plasmas even with the magnetic null points. Varieties of plasma
phenomena were studied using this code, such as excitation of the kinetic Alfven
wave /plasma heating [Tanaka, 1989] (Sec. 4) and current-beam injection /kink
instability [Tanaka, 1986].

Although these studies were virtually the first attempts that have ever been
made by the kinetic simulation method of general purposes, the time step was
limited to wyAt < 1 due to a simple-minded use of the predictor-correcter
method; the future current density was predicted explicitly. Later in 1987, the
full-implicit version of the macroscale particle code which deals with homoge-
neous plasmas was developed. The validity of this code was extensively studied
and verified both in analytical and numerical ways [Tanaka, 1988]. An advanced
version of the code that can be applied to multi-dimensional, inhomogeneous
plasmas will be described in a separate literature [Tanaka, 1992].

It is noted in passing that the macroscale particle method is technically
different from the magnetostatic (Darwin) code which neglects the displacement
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Table 4.1: Characteristics of Macroscale Particle Simulation Code.

e Large time and space-scales:
wpe At > 1, WAt > 1, and Az/(c/wye) > 1.
e Fully electromagnetic.
e Multi-dimensions in any geometry (Cartesian, cylinder, torus).
e Inhomogeneous density profile and arbitrary magnetic field structure.
e Fully kinetic:
ions: 3-D motion
electrons: parallel direction — 1-D motion with (=pnV | B) force.
perpendicular direction — guiding-center approximation
( E x B, VB and curvature drifts )
Resonance effects (Landau, cyclotron resonances)
Orbit effects : finite Larmor radius effects
— diamagnetic current included.
banana orbit...
Longitudinal particle transport

current OE/0t. The latter appears to be quite simple but actually requires
complete separation of the transverse component of the current density from
the longitudinal one for numerical stability. This is almost impractical to do in
the real (configuration) space.

The concept of the gyrokinetic method [Lee, 1987] which was motivated in
the Princeton Plasma Physics Laboratory is different from the previous two
methods in the point that it is based on the smallness e-ordering concerning
the wavelength, frequency and amplitude of the electromagnetic field. Many
insignificant terms are truncated in the original kinetic equations following the
ordering. Therefore, this code should be correct and efficient as far as the
smallness ordering assumptions are satisfied. However, when the assumptions
become marginally satisfied, many correction terms need be taken into account
which may degrade the advantage of the code.

Let us concentrate our attention to the simulations of low frequency phe-
nomena. For this purpose, all the electron time scales, Wpe, Wee, May be bet-
ter eliminated. The characteristic features of the top-of-the-line version of the
macroscale particle code - HIDENEK, are summarized in Table 4.1. The impor-
tant feature here is that low frequency, electromagnetic (electrostatic, of course)
waves and structures with wAt < 1 are properly reproduced (w: characteristic
frequency). The Landau and cyclotron resonance effects are retained in the
code. Since full particle dynamics is taken into account for the ions and for the
parallel part of the electron motion on top of the perpendicular drifts, various
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orbit effects of particles listed in Table 4.1 are well reproduced by the macroscale
particle simulation. Moreover, the code is numerically stable both in the linear
and nonlinear stages of simulations by virtue of simple backward-decentering.
These characteristic features make the macroscale particle simulation method
quite suitable for studies of nonlinear dynamics of large time-and-space scale,
kinetic plasma phenomena.

In the next section, an algorithm of the proto-type macroscale particle sim-
ulation code is to be described. Several physics applications to the large-scale,
kinetic problems will be shown in Sec. 3 and 4. The advanced version of the
code with its applications will be found in the separate publication [Tanaka,
1992].

4.2 General Algorithm

4.2.1 Field and particle equations

The foregoing characteristic features of the macroscale particle code can be real-
ized by introducing a slightly backward time-decentering both into the Maxwell
equations and the equations of motion of particles [Tanaka, 1988]. The Maxwell
equations with time level suffices are given by

n+1/2
4
1 (a_E> — vxBrte - gy (4.1)
c \ Ot c
B n+1/2
! (%) = -V xE"™, (4.2)
c
V-E" = 4ot (4.3)
Vv.-B" = 0. (4.4)
The equations of motion for the ions are written
dvr_t+1/2 e; V7_1+1/2 s
Jdt = - [EMt(x;) + - x B"(x;)], (4.5)
d tz+1/2
det = V2 (4.6)

By contrast, the equations of motion for the electrons are split into the parallel
and perpendicular parts as

dvn+1/2 (_
Il _ €> n+o
L~ Eppre), (47)
dx" 2 n e
Jdt = (VHj_l/Q + VJ__]"— )7
ExB

n+o

Vi = e( B2 )" (%5) (4.8)
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where b = (B/B) is the unit vector along the magnetic field line, and the
direction of the parallel velocity of the electrons is defined as

n+1/2 20
”]+/ _ + / b Jr1/2( ) (49)

In the present proto-type algorithm Wthh is applicable to the homogeneous
plasmas, only the E x B drift is incorporated in the perpendicular motion of
the electrons. (Refer to Ref.13 for the advanced one.) The parameters o and
are the implicitness parameters that are slightly larger than %

The decentering shift of the time level in the curl terms of Eqgs.(4.1), (4.2)
causes damping of light waves with high frequencies. The damping of high
frequency plasma waves is caused by the decentering shift of the field’s time
level in the equations of motion. It has been proved both analytically and
numerically that decentering shift of the E x B term in Eq.(4.8) is virtually a
necessary condition for the numerical stability [Tanaka, 1988] of the code.

It should be noted that the guiding-center approximation is adopted just for
the “perpendicular” part of the electron motion for the purpose of eliminating
the electron time scale w... By contrast, the ion and electron parallel motions are
traced exactly as the particle species. These treatments facilitate the present
code to study kinetic transport in magnetically confined fusion plasmas for
which the relation we. ~ wpe > w; generally holds.

Just as a reminder. When we need to treat the plasmas with the magnetic-
nulls, the electrons can be treated as the fully-kinetic species like the ions. The
algorithm for this situation becomes much simpler than the present one with
the guiding-center formula. It is also optional to introduce the guiding-center
approximation to the ions; it may enable us simulations with a yet larger time
scale with w,;At > 1 at an expense of some physics on ions.

4.2.2 Equations in the finite difference form

The techniques that make the implicit algorithm feasible are presented here.
The equations of motion for the ions in the finite difference form are written
Vn+1/2

Vn+1 L At [En+a( n+’y) + Bn+a( n+'y)] (4A10)
m; c
(The particle index is suppressed hereafter.) If Eq.(4.10) is solved in terms of

v"*1 using the interpolation v*™1/2 = 1(v" 4+ v"*1)  then we have
n+1 n € n+ao vn n+ao
v = v+At—{(E +—xB )
m; C
_’_gi (En+a + V_n X Bn+a) X Bn+a
2 myc c
Ate;B n+a (At e;B
ctaz 1
+<2mic) M+ 2m1)]’

X" = x" 4 At vT2, (4.11)
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Similarly, the equations for the electrons in the finite difference form are written

n+1 (—6) a(gn
ot = o + At - Ejre(xm), (4.12)
X = x4 AT v (R (4.13)
The field value is evaluated at the “predicted” position X"*7 = x"+~yAt vz
(0)
where VEL(;;U % is calculated by using just the known field values at ¢t = t".

The Maxwell equations in the finite-difference form are written

E"l — E" = cAtV x B"™® — 4xAt 7, (4.14)
B! — B" = —cAtV x E"t (4.15)

In order to avoid the Courant condition which severely restricts the size of
the time step At against the given space grid interval, we have to derive an
implicit equation. Elimination of B"*! from Eqs.(4.14)(4.15) by using the linear
interpolation of the field quantity to the non-integer time level:

E" = oE" + (1 - «a)E", (4.16)
yields the equation that governs the future electric field

[1+ (acAt)?’V x Vx | B = [1—a(l —a)(cAt)*V x Vx | E
+ cAtV x B* — 4rnAt j7H.
(4.17)
In the above equation, the major electromagnetic terms are those excluding
the vacuum term (1.). However, for the electrostatic component, the major
contribution arises from the longitudinal current and the unity term in the
square bracket.

4.2.3 Coupled field-particle equations

Since the implicitness parameters must be chosen as «a,vy > 1 the current
b 27

density in Eq.(4.17) is unknown and needs to be predicted. This is the key of
all the implicit algorithm which, for the macroscale particle simulation, is done
by expressing the current density in terms of the electromagnetic field:

PG = X S 1) (415)
j
€; v
=S e VI 4y A {(E”*a + L x B"*")
j=i i ¢

+ gi <En+a + ﬁ X Bn+a> X Bn+a
2 m;c c
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At 61'B 2 n+a At EiB 2 —n+y

+> (—e) {o]; + At (;e)Eﬁ”o‘ + VIR S(x — %, ).
Jj=e ¢

Substitution of this expression into Eq.(4.17) with Eqs.(4.11)-(4.13) and
(4.15) forms a closed set of the Courant-condition-free, implicit equations which
are named “closely-coupled field-particle (CCFP) equations” .

The third and fourth equations of Maxwell equations, Eqs.(4.3)(4.4) are the
conditions to determine the initial field and need not be used mathematically
for t > 0. However, in reality, use of the space grids inevitably causes an
assigniment error to the longitudinal part of the current density. Therefore, a
correction to the electric field is required [Langdon and Lasinski, 1979]. This is
done by deriving the correction equation for the scalar potential part:

E = E— Véop, (4.19)

where E is the true electric field, and E is the electric field before the correction
(the solution of Eq.(4.17)). The Gauss equation (4.3) then yields an equation
for 6 as

— V% = 4mp"t! — V.E"M (4.20)

Since the charge density at t = ¢"*! is unknown a priori in the implicit al-

gorithm, the expansion [Langdon, 1979] is used to expand the charge density

around the predicted position x?l;“lz

P = 5, 68k - x0T

4.21
= ¥, ¢S(x— x("l)“) - V-3, e;6x,;S(x — xz‘lg“l). (4.21)
This expansion implies conservation of charge density. Here, éx; = x}’“ —X'(”l;rl

with x7*! being the true position, and xZ}Ll the position calculated using E"t!

and B"*'. Thus, éx; depends only on 0 and Eqgs.(4.20)(4.21) constitute the
equations to determine the correction scalar potential field.

4.2.4 Miscellaneous

In the macroscale particle simulation, all the physical quantites are normal-
ized by the four basic units which are suitable for treating the electromagnetic
phenomena; the length: ¢/w,., time: w>! mass: me, charge: e as

pe
x - . m; . e,
T = s t=wpet , my=—2 & =" (4.22)
¢/ Wpe me e
Other quantities are normalized as combinations of these basic units;
.V w o eE - eB
V=— 0= , E= , B= (4.23)

c Whpe MeCpe MeCWpe
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Quantities with (") are used in the simulation. With this normalization, the
constant in the field equations is transformed as (47) — (1/ng) (no: the average
particle number density per unit-length) and the light speed (c) disappears
everywhere.

It should be noted that Eq.(4.18) and (4.21) include the summations over
the product of the particles and fields which represent a coupling of the neigh-
boring plasma elements through the electromagnetic field. These calculations
are generally too expensive otherwise the following approximation is introduced
to the coupling terms:

7<]E"+”(x )S(x — x;)
= E"(x;)S(x — x;) + a3 ¢;(E"™ — E")S(x — x;) (4.24)
= Z, P;E"( X;)S(x = x;) + ap(x) (B — E")(x)

The summations through the particle list can be thus separated from the iter-
ation cycle of the CCFP equations. Since the major contribution is contained
in the “accurate” first term on the righthandside of (4.24), this approximation
is quite acceptable. This point has been verified numerically [Tanaka, 1988|
and some of which will be reproduced in Sec. 4. Analytic and numerical proofs
of the macroscale particle simulation in general are fully described in Tanaka
[1988].

There are several remarks. First, exactly identical expressions must be used
in the particle movers and the corresponding CCFP equations. Violation to this
rule always causes a rapid blowup of the code. Next, the time step At should
be chosen as: weAt < 0.4 for the ion orbit tracking and kjv At < 1. More
severe restriction may be that the particles should not travel for more than a
few grids during At for accuracy reasons.

4.3 Alfven-Ion-Cyclotron Instability

The first example of physics applications of the present code is a one-dimensional
simulation of the Alfven-ion-cyclotron (AIC) instability. The AIC waves are
driven unstable by the ion temperature anisotropy.

The AIC instability was investigated by many authors analytically [Davidson
and Ogden, 1975] and numerically [Tanaka et al., 1983; Tanaka, 1985; Omura,
1985]. The dispersion relation of the AIC waves is given by

L wQ(AU) (&) + %H)Z(&) (4.25)
Z 1- 1 i i = 07
Gl = ) 11+ 62(8)

where & = (w % wWee)/kVe, & = (w £ wei)/kvy with wee,we; being the electron
and ion cyclotron frequencies and v,, v; the thermal speeds of the electrons and
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ions, respectively. The perpendicular temperature of the ions, T;,, is defined
by

o) 0 1
T, = 27T/ dvy / dv v, (—émlvi) filvp,vy). (4.26)
—0o0 0

Here f;(v, vy ) is the velocity distribution function of the ions. When the per-
pendicular temperature is greater than the parallel one, i.e., (T /T}); > 1,
then the AIC waves become unstable. The typical frequency is w ~ w.;, the
growth rate v ~ (8;1/2)"?*w,; and the wavenumber ck/wy; ~ 1. The afore-
mentioed dispersion relation reveals that any ion distribution function with the
same temperature anisotropy is equivalent for the AIC instability. The spec-
trum width of the unstable wavenumber and the maximum growth rate are the
increasing functions of the (7' /T}); ratio and the ion beta value [Davidson and
Ogden, 1975].

In the previous simulations, hybrid particle codes were used which treated
the electrons as the massless species [Tanaka, 1985; Omura et al., 1985]. In the
present macroscale simulation, the electrons are treated as the particle species
along the magnetic field line, whereas only the E x B drift term is included in
the perpendicular direction.

Before starting the simulation, the initial velocities are given to the ions
and electrons so that each of the species follows the Maxwell distribution. The
temperature anisotropy of (7' /7}); = 5 — 20 is given to the ions. The other
parameters chosen are the sytem size L, = 120c¢/wp., the temperature ratio
T;1/Te = 1, the parallel beta value ;) = 8 x 1072, and the electron cyclotron
frequency wee/wpe = 0.7 which corresponds to we;/wy; = 0.1 for m;/me = 50
case. (Note that the electron cyclotron frequency does not appear in the simu-
lation algorithm.) The number of the cells in the z-direction is 128, the number
of particles for each species is 12,800 and the time step is wp At = 20. (A larger
time step wpeAt & 10? is possible for m;/m. = 1836.)

The time histories of the perturbed magnetic and electric field energies are
shown for (T, /T}); = 20 case in Figure 4.1(a) and (b), respectively. The in-
stability grows exponentially from the initial noise level and saturates around
wet ~ 40. For the electric field, the initial noise level is dominated by the elec-
trostatic field and the instability appears to emerge abruptly above the noise
level at w.;t ~ 30. The growth rate is measured to be v/w.; ~ 0.44 for the mode
three with ck/w,; ~ 1.1 which is in agreement with the linear theory of the AIC
instability.

The time history of the ion temperature anisotropy, (7'. /T );, is shown in
Figure 4.1(c). When the intensity of the perturbed magnetic field reaches a
certain level, i.e., < 6B% > /8mnT; ~ 0.2, the temperature anisotropy begins
to decrease. This process occurs relatively in a short time scale, 13w_'. The
final value of the anisotropy, (7' /7)); = 2 is found to be almost independent
of the initial temperature anisotropies; the measured final anisotropies are 2.0,
1.8 and 2.3 for the initial anisotropies of 5, 10 and 20, respectively.
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Figure 4.1: Time history of the perturbed magnetic (top) and electric (middle)
field energies (in logarithmic scales) and the temperature anisotropy (T, /Ty)i
(bottom, in linear scale) for (T /T})ip = 20 case.
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Figure 4.2: The three components of the electric field at w.t = 42.

The three components of the electric field at w.t = 42 are plotted in Fig-
ure 4.2. We can see a bit deformed sinusoidal wave of the mode number three.
The electromagnetic components associated with the AIC instability, £, and
E,, are already larger than the electrostatic component £, at this stage. The
mode number of the most unstable wave, four in the middle of the linear stage,
has decreased to three at the beginning of the nonlinear stage of Figure 4.2.

A series of ion scatter plots in the (v,,v,) space, (z,v,) space and (z,)
space are shown in Figure 4.3(a)-(c), respectively. Here, ¢ = tan™!(v,/v,) is
the phase angle of the perpendicular velocity. The ions undergo a remarkable
pitch angle scattering during w,;t ~ 30 — 40. This is most clearly found as the
change in the (v,, v, ) space distribution from the needle-like distribution into a
more isotropic round-shaped one at later times. This has been observed as the
decrease in the temperature anisotropy in Figure 4.1(c).

More interesting observation is that the ions and electrons are highly modu-
lated both in the velocity and configuration spaces. The ion modulation in the
phase space (z,) at the end of the linear stage w.;t ~ 42 (Figure 4.3(c)) is in-
phase with the magnetic perturbation and by 90 degrees out-of-phase with the
electric field. This modulation of the velocity phase angle in accordance with
the magnetic perturbation was also reported by the hybrid simulation [Tanaka
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Figure 4.3: Ion scatter plots in the (v,,v,), (2,v,) and (z,%) spaces for wt =
0,42 and 56 (from top to bottom). The phase angle of the magnetic perturbation
is shown at the bottom row.

et al., 1983]. However, the density modulation in the configuration space, which
is shown in Figure 4.4 at w.;t ~ 56 (right), develops only after the velocity mod-
ulation. This phenomenon has newly been noticed in the present macroscale
particle simulation.

The overall results of the AIC instability have agreed well between the
macroscale and hybrid simulations. The efficiency of the computation is twice
better for the hybrid simulation in one-dimensional case. However, the hy-
brid simulation sometimes ends up with a blowup of the code in the middle of
the nonlinear stage of the instability. The macroscale particle simulation can
usually continue beyond this point and, what is more, it includes the electron
dynamics.

4.4 Kinetic Alfven Waves

A two-dimensional application of the macroscale particle simulation is shown
here. For this purpose, the kinetic Alfven wave (KAW) of a finite amplitude
is initially loaded in a two-dimensional, bi-periodic magnetized plasma. Its
propagation characterisitcs and the nonlinear stage are investigated [Tanaka,
1988].

The KAW posseses both the magnetohydrodynamic and kinetic natures due
to its small perpendicular wavelength that is comparable to the ion gyroradius.
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Figure 4.4: The spatial profiles of the ion, electron densities and the intensity of
the magnetic field |B?| at w.it = 42 and 56 (from top to bottom, respectively).

This wave is accompanied by the longitudinal electric field and the density
perturbation. The simulation system size is L, = 50c/wpe and L, = 400¢/wpe
with 32 x 64 cells. For this simulation, wy,At = 20 is used to properly trace the
ion cyclotron motion (wyAt = 0.4 with wee/wpe = 1 and m;/m, = 50).

The electromagnetic field of the kinetic Alfven wave is shown for t/74 = 2.6
in Figure 4.5 where 74 = 27m/kjva. The major components of the electro-
magnetic field are E, and B,. These components always keep the same phase
with each other as the wave propagates obliquely to the ambient magnetic field
(ki /ky = 8). The longitudinal electric field, E., is small but finite. In fact, the
measurement of < |E,|? > gives a finite value, causing Landau resonance with
the plasma particles.

Propagation of the kinetic Alfven wave is shown in Figure 4.6 where the
wave keeps the initial sinusoidal wave form fairly well as it propagates obliquely
in the (z, z) space. A close look at this figure reveals that the amplitude of this
wave decreases in time. The phase speed and the damping rate of this wave,
w/k,va ~ 1.08 — 1.6 x 107% agree very well with the linear theoretical value,
w/k,vs ~ 1.10— 1.4 x 107% of the kinetic Alfven wave. Heating of the electrons
along the ambient magnetic field is observed as a result of the wave damping
(Fig 4.7). Flattening of the distribution function occurs in the velocity space at
the resonance velocity vj = w/ky. This is another clue to the Landau damping
of the kinetic Alfven wave.

Excitation of the kinetic Alfven wave by externally applied rf (current per-
turbation) at the edge of the plasma was studied by using 2-D macroscale par-
ticle code of the semi-implicit version [Tanaka et al., 1989]. In the simulation,
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Figure 4.5: The electric field (E,, E.) (top) and the magnetic field B, (bottom)

of the kinetic Alfven wave at ¢

Figure 4.6: Propagation diagram of the kinetic Alfven wave where the magnetic

perturbation B, is shown as the function of (z,t) (a cross section at x = const.).
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Figure 4.7: Heating of the electrons along the ambient magnetic field by the
kinetic Alfven wave.

centrally peaked inhomogeneous density profile and the sheared magnetic field
were given initially. Low frequency MHD perturbation which is evanescent in
the plasma was excited for ¢ > 0; this wave was observed to suffer from the
Alfven resonance to generate the kinetic Alfven wave. Heating of the plasma
was quantitatively investigated by changing the plasma beta value. The essence
of the results is that in the low beta plasma, only the electrons absorb the wave
energy through Landau resonance with the kinetic Alfven wave. When the
plasma beta becomes comparable to unity, which occurs in the plasma sheet of
the magnetosphere, the ions are heated to the same amount as the electrons.
For the details of the results, refer to Tanaka et al. [1989).

4.5 Conclusion

In this chapter, the new generation particle simulation method, 7.e., “the macro-
scale particle simulation” has been described. This new simulation method
enables us large time-and-space scale, kinetic plasma simulations in multi-
dimensions. Two applications have been shown in Sec. 3 and 4 for the Alfven-
ion-cyclotron instability and the kinetic Alfven wave. These two waves are the
kinetic waves with MHD-scales.

As mentioned in Sec. 1, the macroscale particle simulation method - HI-
DENEK, belongs to the implicit particle methods and is technically classified
as the “closely-coupled implicit method”. The most advanced version of the
code has now been implemented for studies of three-dimensional, inhomoge-
neous plasmas. Its detailed algorithm and 3-D application to the external kink
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instability are found in Tanaka [1993] The author believes that this class of par-
ticle simulation methods will open up the new age of the computer simulation

in space and fusion plasma physics.
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Appendix: Flow of MACROS Code

A series of subroutines that constitute one time cycle of the macroscale par-
ticle simulation is shown here. The top part of the flow chart shows the initial
loading of the particles and electromagnetic fields. The names in parentheses
on the right are the subroutines for each procedure. The bottom part shows
one cycle of the simulation.

unitial loading of particles and ﬁeldi‘ (INIT)

‘Ealculate constants, index tables (incl. FFT table).—’
[E%nerate particles in (z,vy, 2, v, Uy, V) spac?)
@cumulatej ‘«m@ (FULMOV; IPC= —1)
[@xlculate initial electromagnetic ﬁem (EMFLDO)

Conversion of electron velocity:
(V2 vy, v2) = (w01, v))

(INITVE)

” START of Time Cycle—ﬂ
LAC(:umulate moments used in CCFP Eq. | (FULMOV; IPC=1)
LSolve the field E"*! B"*! with CCFP Eq. ] (EMFILD)

LAccumulate moments used in p Eﬂ (FULMV2)

Eolve o and correct E"“—l (ESCORR)

| Advance particles to x" 7T and v"*1 | (FULMOV; IPC=0)
\ilasma diagno@ (DIAGNS)

Llf t <tp and (ctime) < (ctime),., Goto START—I

[END |
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