Chapter 5

HYBRID CODES
Methods and Applications

D. Winske and N. Omidi

Summary

In this chapter we discuss “hybrid” algorithms used in the study of low fre-
quency electromagnetic phenomena, where one or more ion species are treated
kinetically via standard PIC methods used in particle codes and the electrons
are treated as a single charge neutralizing massless fluid. Other types of hybrid
models are possible, as discussed in Winske [1985] and Quest [1989], but hy-
brid codes with particle ions and massless fluid electrons have become the most
common for simulating space plasma physics phenomena in the last decade, as
we shall show later.

This chapter is divided into four sections. The first three subsections are
devoted to the basics of hybrid codes and simple applications and is aimed
at the uninitiated user. We begin in Section 5.1 with some examples of where
hybrid codes have been found to be most useful and lay out the basic underlying
assumptions and equations of the model. Then we discuss in Section 4.2 the
details of a simple one-dimensional hybrid algorithm. The code itself (as well as
a simple operator’s guide) is included on the diskette enclosed with this book or
is available via e-mail from the authors. In Section 4.3 we go on to describe the
physics and numerics of some simple applications of electromagnetic ion beam
instabilities in a periodic system as well as to briefly discuss the extension of the
code to nonperiodic problems. These examples serve as the test problems for
the version of the code included on the diskette. The last part of the chapter
(Section 4.4) is devoted to more advanced topics; the discussion is brief and
aimed at readers with some prior experience with hybrid codes. The topics
to be discussed include alternative methods to solve the electromagnetic field
equations in the massless electron fluid approximation and extensions of the
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algorithm to two and three spatial dimensions. Some recent state of the art
two and three dimensional hybrid simulations of space plasma phenomena are
also briefly described. This part concludes with some short comments on future
trends in the development and uses of hybrid codes.

5.1 Basics

5.1.1 Introduction

When one looks at spacecraft data, e.g., time series of magnetic field compo-
nents, plasma velocity moments, wave intensities at various frequencies, etc.,
from anywhere in the heliosphere or the magnetosphere, one is usually over-
whelmed by their complexity. It is evident that a wide variety of physical
phenomena are taking place on a vast range of time and distance scales. It falls
on the shoulders of the space scientist to separate out the various effects and
their relevant temporal and/or spatial scales. In part this is done by filtering
the data, either by “eye-balling” it or using more sophisticated techniques in
order to emphasize certain characteristics. One also develops theoretical models
to explain the presence of these prominent features. The role of simulations is
to help develop or verify the models by including limited physics and/or solving
a reduced set of equations to test the underlying assumptions. Simulations are
also important for extending the models, by including in a self consistent man-
ner time dependence, nonlinear and nonlocal effects, and other aspects of the
problem not readily amenable to analytic theory. Also, simulations by them-
selves can identify key elements that are needed to construct an appropriate
theoretical explanation. Rather than continuing to deal in abstractions, we
turn to some specific examples from space physics.

One well studied example of this kind of complexity is the region upstream
of the Earth’s bow shock, known as the foreshock. A special issue of Journal of
Geophysical Research (Vol. 86, June, 1981) devoted primarily to observations
in this region illustrates the broad range of complex phenomena. [The reader
may wish to glance at some of the figures in representative articles by Hoppe et
al. (1981), Paschmann et al. (1981), Anderson et al. (1981), etc. in this issue.]

The foreshock is characterized by particles that are leaked or reflected from
the shock which stream back into the solar wind. The geometry of the shock
causes one part of the foreshock to be dominated by backstreaming electrons
(“electron foreshock”), while another, larger part of the foreshock is dominated
by backstreaming ions (“ion foreshock”). As one might expect, the phenomena
observed in the two foreshocks are quite distinct. Of interest to us here is the
ion foreshock, which the wave data clearly show, is dominated in some region by
well defined low frequency (ULF) waves with characteristic period of one-half to
one minute. In some parts of the ion foreshock the waves are fairly regular and
rather low amplitude (fluctuating magnetic field § B < B= mean value), while
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in other parts of the foreshock the waves are larger (6B ~ B) and less regular
in appearance [Hoppe et al., 1981]. The corresponding characteristics of the
backstreaming ions are also different: beam-like where the waves are small and
regular, and more scattered (“diffuse”) where the waves are large and irregular
[Paschmann et al., 1981]. Although the rest frame frequencies of the waves are
much smaller than the ion gyroperiod (w < €2;) and the wavelengths (typically
~ 1 Rg) are much larger than the ion thermal gyroradius (p; ~ 100km), fluid
theory cannot be applied to these waves, because kinetic effects due to the
backstreaming ions modify the dispersive properties of the waves.

As we discuss in somewhat greater detail later, theory has shown that these
waves can be generated by an electromagnetic ion beam instability, involving the
relative field aligned drift of the backstreaming ions with the solar wind [Barnes,
1970; Gary et al., 1981]. The wave generation process involves a cyclotron res-
onance of the beam ions with an electromagnetic wave. This mechanism has
been shown to be most consistent with the observations. In the instability the
electrons play no significant role, and observations show no interesting electron
effects (e.g., acceleration, heating, or high frequency waves) in the ion foreshock.
It thus suggests that the relevant phenomena can be studied numerically using
a model in which the electrons are treated passively, as a charge neutralizing
massless electron fluid, but ion kinetic effects are necessary, i.e., a hybrid de-
scription. As we show later, indeed the hybrid simulations [Winske and Leroy,
1984a] reproduce the essential features of the (linear) theory and demonstrate
that nonlinear processes are needed to explain many of the foreshock observa-
tions.

A second example of spacecraft observations that indicate the usefulness of
a hybrid model algorithm is the Earth’s bow shock, or collisionless shocks in
general. Again, the observations display great complexity on many time and
spatial scales [see the recent AGU monographs on collisionless shocks (Stone
and Tsurutani, 1985; Tsurutani and Stone, 1985)]. Closer examination of the
data indicates that ion scales determine the overall shock structure [e.g., Scud-
der et al., 1986], suggesting that ion dissipation plays a dominant role at the
shock, while electrons are of secondary importance. Hybrid simulations demon-
strate and observations verify that the dissipation arises from the reflection of
a fraction of the incident ions, which then couple to the downstream ions by
means of electromagnetic instabilities. The reflection process has been dramati-
cally illustrated in one dimensional hybrid simulations of a perpendicular shock
[Leroy et al., 1981]. More recently the simulations have been instrumental in
understanding the complex nature of the quasi-parallel shock [Burgess, 1989).
We will briefly return to the application of hybrid codes to shocks later in this
chapter [also see Winske and Leroy (1984b) and Winske (1985)].

A third example involves the heating of minority ions to suprathermal en-
ergies in the equatorial magnetosphere by ion cyclotron waves. Linear theory
suggests that the waves are generated by an instability involving a weak temper-
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ature anisotropy (7', /T > 1) in a small population of hot protons, consistent
with the observations at geosynchronous orbit [e.g., Mauk et al., 1981; Gendrin
et al., 1984]. To study the nonlinear evolution of the waves and the heating
mechanism, simulations are necessary. Linear theory shows that the electrons
play no significant role in the properties of the waves, again suggesting a hybrid
description to be most appropriate. Hybrid simulations have been carried out
[Omura et al., 1985] that nicely display the growth of the instability and the de-
velopment of the ion cyclotron waves. More importantly, the calculations show
that the heating of the minority ions is a two step process. Initially, the ions
heat primarily in the perpendicular direction until the parallel velocity becomes
on the order of the resonance velocity, at which time strong heating occurs. This
type of electromagnetic ion cyclotron beam anisotropy instability has also been
studied in the solar wind [Gary et al., 1976] and in the magnetosheath [Tanaka,
1985]. Also see Gary and Schriver [1987] for other examples and theoretical
background.

Thus, these three examples (many others could also be cited) show that there
is good observational evidence for considering a hybrid model with kinetic ions
and massless fluid electrons for studying magnetospheric plasmas.

5.1.2 Equations

In modeling plasma phenomena one needs to decide how to describe the electric
and magnetic fields as well as the plasma species (electrons and ions). In the
hybrid model these are: (1) electromagnetic fields in the Darwin limit, (2) mass-
less fluid electrons, and (3) kinetic ions. Specifically, the following assumptions
and equations are used.

(1) Maxwell’s equations in the low frequency approximation, which implies
the displacement current is neglected in Ampere’s law

supplemented by Faraday’s law
_ . 10B
E=——— 5.2
VX c Ot (5:2)
and
V-B =20 (5.3)

(2) Fluid equations for the electrons including finite electron temperature
(T.) in the limit of zero electron mass. The electron momentum equation is
thus

)=V -Pe+enR-J (5.4)
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with electron pressure tensor
Pe = nJT.1 (5.5)

(Tensors are denoted by bold face.) We have assumed isotropic pressure for
simplicity here, but this is not required. The last term in (5.4) represents the
effect of the collisional drag between the electrons and ions, where R is the
resistivity (tensor) that describes short wavelength, high frequency anomalous
wave-particle scattering due to m. # 0, w > ; instabilities not explicitly in-
cluded in the hybrid model. Hereafter, for simplicity we will take the resistivity
to be a scalar, i.e., R = nl.

An equation of state is needed to supplement (5.5), as discussed later. Quasi-
neutrality is also assumed, which implies

Ne = Ny (56)

as we discuss later. Equation (5.6) replaces Poisson’s equation that would usu-
ally be included with Eqgs. (5.1-5.3). As we show later, the longitudinal part of
the electric field that is usually obtained from Poisson’s equation is calculated
using one component of (5.4) along with (5.6).

(3) Kinetic treatment of the ions so that for individual particles (subscript

p) ;
x
?lt_p = Uzp (57)
dw, - T,xB -
mp% =e(F U X ) —enJ (5.8)

The last term in (5.8) balances the corresponding term in the electron momen-
tum equation (5.4).

Given the equations of the model, their numerical implementation is the
next task to be discussed.

5.2 Simple One-Dimensional Hybrid Code

We next discuss the contents of a simple one-dimensional hybrid code. Details
of the various parts of the algorithm are found in several places [Morse and
Nielson, 1971; Sgro and Nielson, 1976; Winske and Leroy, 1984b; Winske, 1985;
Forslund, 1985]. Some of the discussions are repeated here in order to have a
reasonably complete, self contained presentation. As with full particle codes,
there are a number of different ways to treat the particles, difference the field
equations, etc. Thus, the method we present is but one workable solution that
offers the reader a perhaps different perspective to the problem of simulating
kinetic plasma phenomena.

The basic ingredients of the hybrid code are: (A) units and spatial grid, (B)
ion dynamics, (C) treatment of the electrons, (D) solution of the electromagnetic
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fields, (E) initialization, and (F) diagnostics. We discuss each of these points
in turn.

5.2.1 Units and spatial grid

As discussed in Section 5.1, hybrid codes are most useful in treating electromag-
netic phenomena on ion time and spatial scales, i.e., characteristic times > Q!
and distances > c/w; or p;. We thus consider a system of length X M AX c¢/w;,
with single dimension coordinate x, i.e., 0 < z < XMAX. Although there is
only one spatial coordinate, all velocity and field components are retained in
the calculation. In this system we have one or more ion species, each charac-
terized by an initial density n;(x), mass m;, charge e; and velocity distribution
F;(v). As we are interested in magnetized phenomena, there is also a back-
ground magnetic field éo(x) From these quantities we can define (in various
ways depending on the problem) an ion gyrofrequency (£2;) and an ion plasma
frequency (w;). Then using the speed of light (c) as the unit of velocity, we can
define a spatial scale in terms of ¢/w;, and a time scale in terms of w; . In part
this choice of normalization is historical (based on the normalization used in
electromagnetic particle codes). One could instead normalize the velocity to the
Alfven (v4) speed and the time to the inverse ion gyrofrequency. In the simple
class of problems we discuss later, the plasma consists of two ion species that
are homogeneous in space with density n; and ny (with n, = n; + ny), charge
eo(=charge of the proton), and masses m;/m, = my/m, = 1 (m, =mass of the
proton). In this case we then define

w? = 4dmeln,/m, (5.9)

and
Q; = e,B,/myc (5.10)

In these units the electromagnetic fields are expressed as eOE /mocw;,
60§/7rLocwi; with this choice there are no constants (4w,c, etc.) in Maxwell’s
equations. In the low frequency (Darwin) approximation, w;/Q; = c/va is
arbitrary; in a practical sense it can be determined by choosing the system
density and magnetic field in real units (cm=3 nT, etc.). The direction of the
background magnetic field is also arbitrary, i.e., it does not have to be aligned
along x. Usually we take Bin the z — 2 plane, making an angle 6 with respect
to the x axis.

The spatial domain is subdivided into NX computational cells of equal
length, Az = HX = XMAX/NX. The system length is based on physical
considerations, e.g., longer than the anticipated wavelengths of instabilities,
widths of boundary layers, etc. The cell size is then chosen to resolve these
characteristic phenomena, i.e., enough cells to well describe the wavelengths of
unstable modes, discontinuities, etc. The typical rule of thumb is that HX >
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Figure 5.1: Spatial grid for the 1-D code.

0.1c/w; and HX can be as large as several ¢/w; for long wavelength phenomena.
The lower limit results from the assumption of massless electrons and hence the
elimination of c/w, scales (w? = 4wn,e2/m.). As a practical guide, XMAX
and HX are chosen together so that NX is a reasonable number (typically
10% — 10%) that yields a modest total number of simulation particles (usually
one uses 20-100 particles/cell), as will become evident when the applications
are discussed.

The spatial grid is made up of NX + 2 = NX2 mesh points (Figure 5.1).
Mesh points 2,3,...NX + 1(= NX1) define the centers of the NX cells in the
physical domain. In addition, there is a “ghost cell” at each end of the system,
described by mesh point 1 and N X2 respectively. As will be shown shortly,
the ghost cells are important for assigning the particles’ contributions to the
density and current and in imposing boundary conditions on the fields. All
source terms (densities and currents) and electromagnetic field components are
specified at the mesh points, i.e., the cell centers.

In a similar manner the particles and fields are stepped forward in time
with a constant time step DT= w;At. In typical leap-frog fashion, the par-
ticle positions and the fields are known at the beginning of each time step,
with the velocities of the particles specified at the half time step. Again, the
time step should be small enough to resolve phenomena of interest. Because
most problems involve low frequency effects (characteristic frequency w < €2;),
the time step is limited by the condition that ion gyromotion is well resolved
(At < 0.2) as well as keeping particle increments to some fraction of one
computational cell per time step (typically, Vi..At < Az/2). Here Viq. rep-
resents the maximum speed of the ions (e.g., drift or thermal speed), or if ion
energetization occurs, by the speed of the energetic ions.

5.2.2 Jon dynamics

The ions are treated by standard particle-in-cell methods [Forslund, 1985]. Par-
ticles have a square shape, an extent H X, and simple linear interpolation is used
to compute the forces acting on the particles as well as how the density and
currents are accumulated on the grid. To advance an ion in time [Egs. (5.7-
5.8)] from time step N to time step N + 1, we first advance the velocity from
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its known value o0~1/2 to #/"1/2 (superscript denotes time level) via:
SN N— es At =N N SN e, At N
v, +1/2 =1, vz 22 (E + 0y x BY) = =—nJ (5.11)

mg mg

Recall that the last term represents the resistive drag on the ions by the elec-
trons. Ome can think of it as modifying the electric field felt by an ion and
combine it with E into an effective electric field E'. Also, to simplify some
of the expressions and for easier comparison with the code, we have expressed
quantities in dimensionless code units: velocities in terms of ¢, time in terms
of w; !, density in terms of n,, the ion charge and mass in terms of the pro-
ton charge e, and mass m,, and the electric and magnetic fields normalized by
mecw;/€,. Thus, e, and my are the ion charge and mass normalized to e, and
M.

Note that in order for Eq. (5.11) to be time centered, 17;,\’ is used to determine
the acceleration by the magnetic field. Since vi,v is not known explicitly, we use

o = 1/2(5 72 4-3)1/2). Then Eq. (5.11) can be solved for #3*1/2, by taking
its dot and cross product with BY and substituting back into (5.11) [Forslund,
1985], as shown in Appendix A. This gives

1 h? - o
2—}°N+1/2 = - 17N—1/2 1— 7B . B
P 1+hQB-B/4[” ( 4 )
2
+h(E'+ 33712 x B) + %—(E’ x B)
h? SN-1/2 1B h s o D
+= (B(@, 7' B)+ (B(E'- B))] (5.12)

To order (At)?, Eq. (5.12) is

N N h? - - - N _
ot = TP = 5B B) + (E + 5 % B)
h? - - h?. -

+7(E' x B) 33(55—1/2 - B) (5.13)

where h = e,At/m, E =F— esnf. Then the particle can be advanced from

its position at time step N (z)') to 2]

LL‘I]}V-H = xév +UT]X:1/2At (5.14)

In Eq. (5.12), E, B are explicitly E_'N(:vév), B?N(x;)v) and are obtained by
linear interpolation. For example, if a particle is located at 1’11,\7, EN<$éV) is a
linear combination of contributions from cell I and cell I 4+ 1 (Figure 5.2)

EN@Y) = ENW, + EN Wiy, (5.15)
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Figure 5.2: Particle shape and relation to the grid.

where
I = INT(z,/Az+ 1.5) (5.16)
and INT(x) is the FORTRAN integer truncation function, so that
Wiy = 2,/Az+15-1 (5.17)
and
Wr =10 — Wiy (5.18)

(as a simple check, z;, = 0 corresponds to a particle lying halfway between mesh
point 1 and 2, so that I =1 with W; = W, =0.5.)

In similar fashion after the particle is moved, its density is accumulated
on the grid by the same linear interpolation, again using Eqgs. (5.15-5.18) to
determine the cells I, I + 1 to which it is assigned, with corresponding weights
Wi, Wri1. In the scheme used in this version of the hybrid code [Sgro and
Nielson, 1976] the currents are also accumulated at the whole time step. To do
this, Eq. (5.11) is used with EV, BN evaluated at 2N+ to push the velocities

ahead one half time step to collect JN+L,

Because the particle charge density and current are shared with two cells,
it is possible that one of the two cells may be a ghost cell. For example, if
x, < HX/2, the source term contribution will be shared between I = 1 and
I = 2 [Egs. (5.15-5.18)]. After all the particles are moved, we then take the
density and currents accumulated in the ghost cells and place them back in
the physical cells of the system. How this is done depends on the boundary
conditions. In the version of the code being discussed here, periodic boundary
conditions are used so that the density and current accumulated in cell 7 = 1
are put in the last physical cell, I/ = NX1, while the density and current in
the ghost cell I = NX2 are deposited in the first physical cell I = 2. For
some applications it is useful to smooth the total ion density and current before
solving for the electromagnetic fields in order to further reduce the noise levels,
as discussed later.

5.2.3 Electrons

The electrons are treated in a most elementary fashion, using the quasi-neutral
approximation and a simple equation of state. The quasi-neutral approximation
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means that on spatial scales much greater than the electron Debye length, the
electron and ion densities are equal, i.e.,

Nep = N (5.19)

Thus, where the electron density is needed in the field (momentum) equation,
one uses n;, which is found, of course, from moving the ions. The longitudinal
electric field, E,, rather than representing a charge separation electric field, is
the field needed to maintain charge neutrality on ion spatial scales.

The continuity equation then implies

V-J =0 (5.20)

orin 1-D
Jy = Jep + Jiw = const (5.21)

with the constant almost always taken to be zero, implying for e, = 1 used
hereafter,

Voo = Viz (5.22)

In higher dimensions (5.20) is more complex and must be treated more carefully
[Hewett, 1980].

The electron equation of state can be treated in a number of ways. For
most problems, we have found the electron model has a very small effect on the
overall solution. We typically use either

T.(x) = const (5.23)

or

T.(x) = Too(ne(x)/ny)r " (5.24)

with 7. = 5/3. It is also possible to resistively heat the electrons by solving a
heat equation, as discussed by Winske and Leroy [1984b].

Finally, a few comments should be made about the resistivity. 7 represents
wave-particle effects due to high frequency (w > ;) plasma instabilities that
involve the electron mass, which are not explicitly modeled in the hybrid for-
mulation. One can express the effects of these processes in terms of an “anoma-
lous™ electron-ion collision frequency v,,, which is related to the resistivity in
the standard way, i.e.,

N = ATV /w? (5.25)

In the code 7 is expressed in dimensionless form

Wi Van $
s = 4 - Qe Wi
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A practical way to estimate the size of 7, is to express it in terms of a resistive
length ,
R .

L"7 = AV = V/'UA?L;’L (027)
where V is some characteristic flow velocity of the problem. One typically
chooses L, to be some fraction of a cell size (e.g., < 0.1Az). For many problems,
as in the examples discussed later, 77 can be taken to be zero. For other problems
(e.g., some shock problems), a finite 7 is very useful in eliminating unwanted
high frequency noise. In such cases typical values for n, correspond to values
of the collision frequency on the order of the lower hybrid frequency, consistent
with various types of cross-field instabilities [Leroy et al., 1982; Spicer et al.,
1990).

5.2.4 Electromagnetic fields

Given the current and charge density at time step N + 1, the transverse (i.e.
y and z components) electromagnetic fields EN+L BN+1 are obtained by ex-
pressing the fields in terms of the vector potential AN+1 (see Winske and Leroy
[1984b] and Winske [1985]). The x-component (i.e., the longitudinal part) of
EN+1 ig easily obtained from (5.4) and in one dimensmn Eq. (5.3) implies

B, = const (5.28)

In the following, we discuss the mechanics of solving for AN+ in some detail.

Although in general it is possible to express the magnetic field in terms of
the vector potential, in a 1-D periodic system it is best to remove the constant
part of B, (= By.) and B. (= BZC) and express only the fluctuating part of B
in terms ()f the vector potential A. We then have for the fluctuating part

B, = —0A./0z (5.29)
B. = 0A,/0x (5.30)
or in difference form (subscript I represent the mesh point)
BNH = —(Ajz\,lltrll ivlﬂl)/QAf (5.31)
BNt = (AT - AL 200 (5.32)
The y and z components of the electric field are given by
8A
E, = 5.3:
Yy 6f (‘) 33)
A
E, = —8 z (5.34)

- ot
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or
ENY = (AN — Al /At (5.35)
ENTY = —(ANH - AY)) /At (5.36)
Ampere’s law [Eq. (5.1)] then becomes
0?A
5 = (5.37)
0?A
E = -, :
o (5.38)

The right hand side of (5.37-5.38) contains the currents, which consist of ion
and electron contributions. The ion contributions are obtained directly, along
with the density, from moving the ions and collecting the moments. The electron
currents are obtained from the y and z components of the electron momentum
equation (5.4), assuming a constant 7. Then Egs. (5.37-5.38) become [Winske,
1985]

A, F, + OF.

a2 - 1 s (5.39)
0%A, F. —¢6F,
_ — 4
o2 1+ 62 (5.40)
where g Vo(B, + B,.)
z i + c
Fy = nlVy = 5 =~ o) (5.41)
o Ey V;x(Bz + Bzc)
F, = n[Vi. + B, T] (5.42)
s
6 = B, (5.43)

where all the quantltles in (5.39-5. 43) are at time level NV + 1. Then using the
expressions for E and B in terms of A, Egs. (5.39-5.40) become the coupled set
of equations

924, 8Ay 0A. DA, DA, ]
oz = " e e e (5:44)
9?A, aA aA A, aA

o~ ot ot ) (5.45)

Using the differencing of Egs. (5.31—5.32) and (5.35—5.36), Eqgs. (5.44-5.45)
become a tridiagonal system of coupled equations:

AI-X1,1+BI-X]+C1'XI+1 = [j[ (546)

) AT
L= (5.47)
AZf

where
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The matrices A, B, C are of the general form

Z1 z9
Z = (5.48)
—Z2 2
with
a; = 1—bay (5.49)
n; AxVi, .
“ = T9B. (11 6% (5.50)
by = —2—6by (5.51)
n; Ax?
= - 5.52
b= Bt oar (5.52)
cg = 1—bcy (5.53)
C = —ap (5.54)
Dis given by
. e A Vi, 0V — (A.r — 0A, 1)/ B. At
= - (5.55)
2
LHOE\ Ve — v+ (A1 + 8A.0)/ BuAt
where
and

In the case of periodic boundary conditions considered here the set of equa-
tions (5.46) is easily solved, assuming a solution of the form

X, = E - X+ F+Gr-Xyx1 I=1,2,...NX1 (5.58)

(The case of fixed boundaries is somewhat easier; see Winske and Leroy (1984b)
for details.) Substituting this solution for X;_; into (5.46) yields

X = (A;-E;, +B))™!
(=Cr- X1+ Dr—Ap - Fo1—Ar-Groy - Xyxn) (5.59)

which is of the form (5.58) with
E; = —(A;-E/1 +B)'-C; (5.60)

ﬁl = (AI'E1—1+B1)71 '(Dl—AI'F:Ifl) (561)
G, = —(A-E;1+B)) A -Gy (5.62)



116 CHAPTER 5. HYBRID CODES

Because all the A;, B, Cy, ﬁl are known, the E;, F}, G; (I =3,..NX1)
are easily computed if Eo, F5, Go are known to start the process. This is done

using the boundary conditions; for example, in a periodic system
X1 = Xyxi

and

—

Xo = Xyxo
so that (5.46) for I = 2 becomes
A2'X1+B2‘X2+CQ'X3 = DQ

or

XQ = —BQ‘I 'CQ')?3+B51'52_B;1 'AQ'XNXl
which is of the form (5.58), yielding
E, = -B,'-C,
Fy, = By D,
GQ - *Bgl . A2

(5.63)

o

(:
(5.69)

68)

It is also evident that (5.58) then yields all the )?1, provided XNXQ (or XNXl)

is known. A repeated use of (5.58), starting with I = 2, yields

—

Xy = EQ'X3+ﬁ2+G2'XNX1

= EE'(ES'X4+ﬁ3+G3')?NX1)+F’2+G2'XNX1
= EZ'E3'(E4'X5+ﬁ4+G4'XN'X1)+E2'ﬁ3+ﬁ2

+(E2 - Gz - +Gg) - XNXl
etc., which can be eventually written as
X, = Eo- Xyx1+ F + Go - Xyx

where, evidently
E. = Ey-E;-E;---Enx
Fo = Fo+ By - Fy+Ey By Fy4 -+ Ey- By Fuy
G. = Go+Ey-G3+Ey E;s- Gy +--+Ey Eg- - Gyy
Using (5.46) for I = NX1 then yields

Anxi - Xyx +Byxi - Xnx1 +Cnx1 - Xyx2 = Dyxa
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Using (5.58) to express Xyy in terms of Xyy; and (5.64) and (5.73) to express
Xnx2 in terms of Xyx; then yields

XNXl = [Anx1- (Enx +Gnyx)+Byxi + Cuhx - (B, + Gc)]k]
(Dnx1— Anxi- Fnx — Cyx1 - Fo) (5.76)

which with (5.58) completes the solution of X; = (AN AN,

We can then use Eqs. (5.31-5.32) and (5.35-5.36) to obtain B)*!, BN*!,
Eév 10BN+ With an assumed model for the electron pressure, the compo-
nent of (5.4) can then be solved for E,:

L. 1 0P,
E, = —(Vex B), — 10k (5.77)
n; Ox
with B . .
V. = V?A/n; +V, (5.78)

This completes the solution of the field equations. One now continues the
cycle by again moving the ions in the new fields and collecting the moments to
then solve the field equations at the next time step.

5.2.5 Initialization

To complete the discussion of the mechanics of the hybrid code, we turn to
how to get started: the initialization. We need to load the particles in both
physical space as well as velocity space and to initialize the fields. The last part
is easiest, because after all the particles are loaded, we can “move” them with
At = 0 to collect the moments and solve the field equations at ¢ = 0.

Loading the particles in space is also straightforward. For the problems to
be considered in our simple test code, the initial densities are uniform and the
particles are loaded uniformly in space

z, = XMAX LPJN—W

PJ

(5.79)

where [,; =particle number= 1,2, ...N,; = total number of particles of species
J- In general, of course, the initial density may be a function of z, n;(x). In
this case if we define a function G,

we can invert the function

Gj(zp) _ Ly —1/2
Gj(XMAX) Ny,
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to find z, for each I,;. We can use any number of simulation particles to
represent each ion species, multiplying the species density by some factor to
represent the actual physical density. For example, we will find it useful later
to use half the simulation particles to represent a very weak beam, n, < n,,
with the other half for the denser background component.

In similar fashion we load the ions in velocity space by defining a loading
function R;(?¥) in terms of the velocity distribution F}(¥) [e.g., Aldrich, 1985].
This can be done component by component. However, in the special case of
gyrotropic or isotropic distributions it is often easier to do two components
together, i.e.,
= v/ cos¢ (5.82)

= v/ sing (5.83)

!/
Yy
v
where ¢ is a random angle 0 < ¢ < 27. The magnitude v, is obtained by
inverting

fovl F;(vi)vidv,

Ri(v)) = =% 5.84
.7( J_) fo F}'(U_L)UJ_d’UJ_ ( )

For example, if F;(7) is Maxwellian
Ri(v) = 1 exp(—v?/0?) (5.85)

which is easily inverted to obtain v,. Evidently, 0 < R; < 1 and choosing R;
to be a random number between 0 and 1 then gives a random v, and hence
a random loading to v;, and v;. One can also do the same with v}, (throwing

away the second velocity component.) Here, ’U; and v}, are perpendicular to the
magnetic field direction, while v/, is parallel to B,, which may not be along the
x axis. We then rotate the particle velocities v;, vy, v] to v, vy, v, in the
usual manner. This method is readily extended to include a nonrandom drift or
other forms of the distribution function. It is also possible to weigh the particles
differently in order to load them preferentially in some regions of velocity space

(e.g., Burgess [1987]).

5.2.6 Diagnostics

Lastly, a discussion of a simulation code would not be complete without the
diagnostics, whereby the outputs of the calculation are expressed in a form that
can be related to the physics. In the version of the code discussed here, there are
three kinds of output. First, during the run various quantities are plotted out
and saved in a PLOT file. These include phase space (z — v,, © — vy, & — v;)
plots of the various ion species at specified time intervals. Also plotted are
profiles in z of the magnetic fields and the density of each ion species. Generally,
these profiles are plotted with scales that adjust to the minimum and maximum
value displayed in order to insure that all important effects (as well as potential
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problems) are visible. Plots with fixed scales, suitable for publication, can
generally be produced via a postprocessor later.

Second, at specified intervals we calculate the velocity and temperature (each
component separately) and the energy of each ion species. We also calculate
the energy in the magnetic and electric fields, the total particle energy, and the
total energy in the system. These quantities are written into an OUTPUT file.
In addition to looking at the numbers, one can also obtain plots during the run
of some of these quantities.

Thirdly, the full array of NX values of the transverse components of the
magnetic field (B,, B.) are written into files BYS and BZS, respectively, every
few time steps. These files can then be postprocessed to generate at desired
time intervals such field quantities as profiles of By, B., |B| = (B2 + B?)"/? and
¢ =tan ' B,/ B, with suitably defined, fixed scales. In addition, Fourier spectra
of these quantities can be produced as well as space-time plots of the entire run
(examples shown later). Also, the magnetic field can be decomposed into waves
with positive and negative helical parts [Terasawa et al., 1986]. Profiles, Fourier
spectra, and space-time plots of these separate helical components can also be
generated. Similar diagnostics can be developed for the density as well as the
electric fields, if one chooses to save these quantities as well. Many of these
displays vary with the individual problem, the preferences of the simulator, etc.
Thus, we leave this part of the diagnostics to the designs of the reader, but
some relevant examples will be shown later.

5.3 Simple Applications

In this section we consider some elementary, but nevertheless interesting prob-
lems that can be studied with a 1-D hybrid code. We begin with the resonant
electromagnetic ion/ion instability that is driven by a low density field aligned
ion beam moving with respect to the background ions at a velocity large com-
pared to the Alfven speed. This instability was briefly discussed in Section
4.1 in relation to the ion foreshock. The physical mechanism of the instability
and its properties inferred from linear theory are first described. We then go
through the reasoning needed to set up the simulation and show some repre-
sentative results from an actual calculation, both from the PLOT file generated
during the run as well as some plots obtained from a postprocessor. We then
compare the output to the predictions of linear theory and briefly describe some
nonlinear effects. We also discuss some simple numerical tests that are useful
to assess the accuracy of the results and their sensitivity to various numerical
parameters. Next, we discuss other sample problems, which include the nonres-
onant ion/ion instability that occurs at higher beam density [Gary et al., 1981;
Sentman et al., 1981; Winske and Leroy, 1984a] and the electromagnetic ion
cyclotron beam anisotropy instability [Gendrin et al., 1984; Gary and Schriver,
1987] that is excited when there is a temperature anisotropy (T}, /Ty > 1) in
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the beam. We then consider how to modify the code to change the initial condi-
tions (to study other instabilities), to include injection of particles (to simulate
active experiments and comets), and how to switch the boundary conditions (to
generate collisionless shocks). These types of problems have been well studied;
here we outline the changes that are needed in the code and cite the appropriate
references to direct the interested reader.

5.3.1 Resonant electromagnetic ion/ion instability

Let us assume there is a weak (density n, < mn,) ion beam drifting rela-
tive to a background ion population (density n;, n, = n, + n;) along a uni-
form magnetic field (B,%) with relative velocity Vi, > va (va =Alfven speed=
B,(4mnym,)"Y/2).  For simplicity, we take both ion species as protons (see
Winske and Gary [1986] for the more general case). We assume that there is no
net current in the system and take the charge neutralizing electron background
at rest. Relative to the electrons the beam velocity is thus V, = (1 —np/n,) Vo,
while the background ions drift at V; = —(ny/n,)Ve&. Assuming waves with
complex frequency w = w, + iy and wavenumber k, the linear dispersion equa-
tion for electromagnetic waves propagating along the background magnetic field
in the cold plasma limit is [Scharer and Trivelpiece, 1967]

2
9 99 wi(w = kVj) 7
T Pt i LA 5.86
e L v, — (586)

where j = e (electrons), b (beam ions) or i (background ions), w? = 4mn;e? /m;
(with ne = n, = np + 1), ; = €;Bo/mjc (S = Q; for my = m; = m,), and the
+(-) sign refers to right (left) hand polarized waves. For right hand polarized
waves propagating in the direction of the beam, the resonant electromagnetic
ion/ion instability occurs for

w—kVy+Q;~0 (5.87)

i.e., the beam ions are in cyclotron resonance with the waves. Note that in the
reference frame of the beam the waves are left hand polarized (ion cyclotron)
waves, but in the electron frame they are right hand polarized.

The dispersion equation (5.86) can be solved analytically for n,/n, < 1,
Vi/va > 1 [Kovner, 1961; Quest, 1988] to yield

[(3/2)° + (0a/ )12 (/)7 = a2 (5.88)
For very weak beams v ~ 0 and

v = (m/2n0)? (Vo /ua) 20 (5.89)
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Figure 5.3: Results from linear theory for the resonant electromagnetic ion/ion
instability (ny/n, = 0.015, Vy/va = 10, 8, = 3; = B. = 1), showing w, (solid
line) and ~y (dashed line) versus k.

But for beam densities of the order of a few per cent (like the foreshock),
v/ > va/Vy and

v o (ny/2n,)Y3 (5.90)

[Winske, and Leroy, 1984a]. Numerical solutions of (5.86) verify that for beam
velocities somewhat above threshold, the growth rate maximized over wavenum-
ber is indeed independent of V; (cf. Figure 4, Winske and Leroy [1984a).

The linear and nonlinear properties of the instability have been thoroughly
studied via simulation [Winske and Leroy, 1984a; Hoshino and Terasawa, 1985;
Gary et al., 1986; Terasawa, 1988; Zachary et al, 1989; Omidi and Winske, 1990;
Akimoto and Winske, 1990]. Thus, it is a good test problem for illustrating the
use of hybrid code techniques. As in Winske and Leroy [1984a], we take the
beam velocity relative to the background ions to be 10vy4, the plasma beta of
each species to be unity (8; = 8mn,T;/B? = 1), and the beam density ratio,
ny/ne = 0.015.

With these parameters a numerical solution of the complete electromagnetic
dispersion equation [e.g., Gary et al. 1981], rather than of the simplified version
(5.86), yields the growth rate (dashed curve in Figure 5.3) and real frequency
(solid curve) as a function of wavenumber, kc/w;. The growth rate peaks at
kejwi ~ 0.12 with v,0,/ ~ w,/Q; ~ 0.2, and the unstable modes persist
out only to kc/w; ~ 0.18. Thus, the wavelength of the dominant unstable
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mode is about 50c/w;. Because we wish to have the system contain at least four
wavelengths of the most unstable mode, the system length should be > 200¢/w;.
Furthermore, to simplify the use of the fast Fourier transform routine, it is most
convenient to take NX to be a power of 2. We thus choose NX = 128 and
HX = 2c/w; so that XMAX = 256c/w; ~ 5 wavelengths of the dominant
linear mode, which allows plenty of room for possible wave-wave interactions
and enough cells to well resolve the dominant modes. The number of particles
per cell should be large enough to give good statistics, yet not too many to make
the run time excessive. With NX = 128 a reasonable number is 80 particles per
cell, 4.e., 10240 total particles in the system, as shown in the next subsection.
Because the instability is driven by a cyclotron resonance with the beam ions, we
represent the beam species with half of the simulation particles, the background
ions with the other half. The simulation, like the linear theory, is done in the
frame where the electrons are at rest, although this is not necessary. We could
just as easily do the calculation in the background or beam ion frame. There
are, however, some numerical pitfalls and limitations to be aware of. These are
discussed in the next subsection.

In similar fashion we see from Figure 5.3 that the maximum growth rate
iS Vmae/$% == 0.2. A useful rule of thumb is that the run time should be at
least 10y,,L , d.e., 509; . The time step should be small enough so that the
particles do not traverse more than one cell per time step (V. At < HX).
With Vyez ~ Vi = 10v4 and HX = 2¢/w;, taking Q;At = 0.05 satisfies both
conditions. We thus choose NTIM ES = number of time steps in the run =2000
(i.€., Qitimae = 100). It will be useful to generate pictures every 200 time steps
(102 ), store the fields every 20 time steps and write out the moments and
energies every 40 time steps. As mentioned before, in the hybrid code w;/; is
arbitrary; we thus take w;/€; = 10

Some results from the run are shown in the next series of figures. We show
representative panels from the PLOT file generated during the run at several
times (Q;t = 20, 40, 60):  — v, and = — v, phase space for the beam ions, the
beam density (normalized to its initial value), B, (normalized to B,), and phase
angle ¢ = tan™! B,/B,. By Q;t = 20 (Figure 5.4) the instability has begun to
develop. There are transverse waves in B, of modest amplitude (B, /B, =~ 0.2)
and corresponding oscillations in the beam v, velocity that are evidently out
of phase with B, by about 90°. Note that the dominant mode is m = 5,
consistent with linear theory, although there are evidently many other waves,
some much shorter in wavelength that are mostly noise. The plot of ¢ shows a
left hand sense of rotation as one proceeds towards positive z (the direction of
B, and l?), this corresponds to positive helicity [Gary, 1986]. Some fluctuations
have begun to develop in n;, (6ny/ny, ~ 0.3) and slowing of the ions in v,
is beginning to occur. At ;t = 40 (Figure 5.5), the wave amplitudes are
much larger (B,/B, ~ 0.9) and because of the fast growth of the dominant
modes, the waveforms have become more sinusoidal (note that the scales on
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the plots have changed), and the helicity is very well defined. The beam ions
have started to become scattered in v, and the beam has begun to be spatially
bunched, heated, and slowed in v,. The corresponding fluctuations in the beam
are very large (6ny/n, ~ 2). By Q;t = 60 (Figure 5.6), the beam has been
thermalized with a remnant of smaller amplitude, more irregular magnetic field
and density fluctuations. Further information about the waves can also be
obtained. Figure 5.7, for example, shows Fourier spectra of B, at various times
in the run. While mode 5 dominates early, consistent with linear theory, and
remains large throughout the run, at later times mode 6 dominates and the
overall spectrum is broadened and more complex.

Also generated during the run are plots of time histories of various quantities,
some of which are shown in Figure 5.8. Displayed are histories of the fluctuating
magnetic field energy density, §B%/B2, the beam velocity, and parallel and
perpendicular temperatures (normalized to their initial values). We see the
growth of the fluctuations, which peak at ;t ~ 35, and then decay to a lower
level. The beam velocity drops as the waves grow and the beam is heated first
in the perpendicular direction and more slowly in the parallel direction. These
changes correlate well with second order theory [Winske and Leroy, 1984a].

Other information about the fields can be obtained from the magnetic fields
stored during the run in the BYS BZS files, which can be analyzed after the
run by writing a simple postprocessor. A very useful type of display is a time
sequence of magnetic field profiles stacked upon each other. Figure 5.9 displays
such space-time profiles of the B, component of the decomposition of the trans-
verse waves into their helical parts [Terasawa et al., 1986; Miller et al., 1991],
as discussed in Appendix B. The left panel corresponds to the positive helicity
part (left hand sense of rotation in space in the direction of & and go), the right
panel is the negative helicity part. For the positive helicity component waves
traveling to the right are right hand polarized, while waves traveling to the left
are left hand polarized. Similarly, in the right hand panel waves traveling to
the right are left hand polarized, those moving to the left are right hand po-
larized. Note that a Galilean shift in the frame of reference of the simulation
(i.e., from the electron frame to the beam frame) does not change the helicity,
although the polarization may change. Similarly, if we reverse the direction of
the beam (or of the ambient magnetic field), the helicity changes, although the
polarization of the waves will not. In the present case positive helicity waves
propagating to the right predominate, as predicted by linear theory, with just
low amplitude noise in the other helicity component. It can also be seen that
some of the positive helicity waves seem to split into two parts, with one wave
front then moving to the left at about the same speed as the other part that
is moving to the right. From the space-time evolution of the phase fronts one
can infer a real frequency, w, ~ 0.2€);, consistent with Figure 5.3 [one can do
this more carefully by constructing a similar plot for each Fourier component
to obtain w,(k)]. Similarly, to obtain growth rates one can plot time histories
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of the Fourier modes of the separate helical components. For example, Fig-
ure 5.10 shows such histories of the first six Fourier modes of B; , from which
Ym=5 = 0.2€2; can be obtained, again in good agreement with linear analysis.

Thus, from more specialized diagnostics additional information about the
instability is easily obtained. We have, however, only briefly discussed some of
the interesting physical processes that occur during the evolution of the insta-
bility. To see such effects better, even more detailed diagnostics are needed;
the interested reader is encouraged to read the extended list of references cited
earlier. For example, as the instability develops, the beam ions become gy-
rophase bunched. This is suggested by the correlation of the  — v, and B,
plots. However, to see the phase bunching in more detail, one needs to plot
the phase of the waves tan ¢ = B, /B, and that of the beam ions tan x = v, /v,
together (e.g., Figure 5.6 of Hoshino and Terasawa [1985]). At early times there
is a well defined difference between these two phase angles, which disappears as
the beam ions give up energy to the waves. The nonlinear consequences of this
gyrophase bunching include the generation of density pulses (e.g., Figure 5.5)
[Terasawa, 1988] and corresponding magnetic field pulses (“pulsations”) [Aki-
moto and Winske, 1990]. The nonlinear behavior of the instability also involves
complex wave-wave interactions that depend to some degree on the beam pa-
rameters [Terasawa, 1988] as well as the generation and interaction of soliton-like
structures [Akimoto and Winske, 1990].
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5.3.2 Numerical checks

Having carried out a successful simulation of the resonant electromagnetic ion/
ion instability, using linear theory as a guide to verify properties of the mode,
we turn to the question of the accuracy of the calculation, i.e., how sensitive
are the results to the numerics. We briefly discuss a few simple tests, which
are useful in differentiating between physics and numerics, on this same sample
problem. We leave other checks as additional exercises for the reader. The
degree to which such tests are necessary depend to some degree on the problem
and the familiarity of the user with the code.

One simple numerical test is to vary the number of simulation macropar-
ticles. As we show in detail later, increasing the number of particles per cell
reduces the noise level and usually allows an instability to grow up out of the
noise more readily. However, there is a tradeoff, as more particles increases the
run time, and hence the expense of the calculation. We consider the resonant
electromagnetic ion/ion instability with the same physical parameters as used
in the run shown in Figures 5.4-5.10. We also keep the number of cells, the size
of the time step, and the number of time steps fixed to their previous values.
Some results are shown in the next three figures. The previous run, which had
10240 macroparticles (80 particles/cell, half to represent each ion species) is
labelled in the figures as (b). We also consider 160 particles/cell (a) as well as
40 (c) and 20 (d) particles/cell. Figure 5.11 shows the magnetic field energy
density as a function of time for these runs (the other two runs, denoted (e)
and (f), will be discussed later). In each case there is a well define (exponen-
tial) increase of the fluctuations to a maximum, followed by a rapid decay to a
smaller level that tends to oscillate in time. Generally, there is a decrease in the
peak fluctuation level as the particle number decreases and an increase in the
level of wave activity at early times before the instability begins to grow. (The
somewhat higher than expected peak fluctuation level in the 40 particle/cell
case is within the expected case-to-case variation, as shown later.) The time of
saturation of the instability also decreases slightly as the particle/cell number
is reduced, as the waves grow from larger initial values.

Histograms of the spectral density of B, at ;¢ = 30 for these same runs are
displayed in Figure 5.12. With 160 particles/cell there is a very clean, sharply
peaked spectrum, as one would expect from linear theory (Figure 5.3). With
smaller particle numbers, the spectrum is less nicely shaped: modes 5 and 6 are
about the same amplitude in (b) and modes 3-6 are all large in (c). Beyond
mode m = 8 the spectrum is essentially flat (these modes are stable according
to linear theory). As expected, the fluctuation level in these short wavelength
modes decreases as the number of particles per cell increases. Figure 5.13 shows
B, profiles in = at the same time. Again, one sees mode m ~ 5 dominates,
and an increase in the overall magnitude of the waves at this time and in the
amount of short wavelength noise at lower particle/cell number. The profiles
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also demonstrate the considerable variation in the wave pattern from run to
run.

Another simple test is to exchange the two ion components (i.e., make
species #1 the background, #2 the beam). This run, using 80 particles/cell, is
shown in panel (e) in Figures 5.11-5.13. Compared to its counterpart (b), we
see slight differences (~ 4%) in the peak fluctuation level, some variation in the
spectral density, and significant differences in the shape of the B, profile (with
very similar wave levels). These differences are evidently due to changing the
seed of the random number generator used in the initialization of the particle
velocities.

One can also reduce the high frequency noise in the simulation by smoothing
the ion density and currents. Again using 80 particles/cell, a run with such
smoothing has been carried out and is plotted in Figures 5.11-5.13 in panels
(f). As seen in Figure 5.12, there is some reduction in the high frequency noise,
as described quantitatively later, resulting in a smoother profile (Figure 5.13).
The most noticeable effect is a significant reduction in the saturation level of
the waves (Figure 5.11). While in this problem smoothing does not appear to
be useful, in other situations (e.g., shocks) it can be very helpful in removing
unwanted high frequency waves.

We next consider the related issue of the effect of the inherent noise in the
simulation on the ions. We consider the same test run, with the beam density
set to zero (i.e., DNSPEC(1)=0 in the INPUT file). In this case there is no
instability and the beam ions are essentially test particles. We again consider
80 particles/cell, but since the beam ions don’t contribute here, we actually just
have 40 (background) ions/cell. Figure 5.14 shows vy-x phase space for both
the beam and background ions at Q;t = 0 and ;t = 50. There is negligible
heating of the background ions. However, the beam ions have been heated
about a factor of eight, and there are oscillations in vy, Teminiscent of those
seen with growing waves (Figure 5.4). While there are no growing waves in
this simulation, there are in the plasma stable magnetosonic modes that are
in resonance with the beam ions, causing these (test) ions to be heated. (If
the beam density were not zero, there would be a feedback in the response of
these ions back on the waves, leading to wave growth and hence an instability.)
Generally, one finds a steady level of fluctuations and essentially linear heating
of the beam. Both the fluctuation level and the heating decrease with the
number of (background) ions per cell, as shown in Table 5.1. The heating rate
is defined as o = [T (t) — T (0)]/T.(0)$t, evaluated here at 2t = 50. As
in the earlier test cases, we consider runs with 10, 20, 40, and 80 background
ions/cell as well as the 40 ion/cell case with smoothing. The level of fluctuations
decreases linearly with particle number. Including the smoothing decreases the
fluctuation level another 30%. At smaller particle/cell number the heating
rate decreases with the fluctuation level, but at higher particle numbers the
heating is more constant. (As a result, we chose 80 particles/cell for the run
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Figure 5.14: v,~x phase space for the beam and background ions at €;f = 0
and Q,;t = 50, when n, = 0, showing the amount of beam heating due to the
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Table 5.1: Background fluctuation level and associated beam heating with num-
ber of background ions/cell (n, = 0).

# background ions/cell | (6B%/B?) | heating rate: «
+10 0.026 0.73
+20 0.013 0.36
+40 0.0068 0.14
+80 0.0034 0.11
+40 (smoothed) 0.0045 0.16

in the previous subsection.) Smoothing does not have much effect on the beam
heating (in fact, in this case the heating is slightly increased). Because the linear
stability properties of the resonant electromagnetic ion/ion instability are not
very sensitive to T /Tj, it is not suprising that the overall characteristics of the
instability (Figure 5.11) are not changed much, in spite of the beam heating
due to noise. However, for other problems, particularly weak instabilities when
one is trying to measure the amount of heating, it is something to keep in mind.

One can also investigate changes in the fluctuation level and the mode spec-
trum with system size, cell size, and time step, keeping in mind the restrictions
on Ax and At discussed earlier. We leave this as an exercise for the reader.
Hopefully, we also leave the reader with the impression that numerical tests are
an important part of any simulation study and should be used often to verify
the validity of the calculations.

5.3.3 Nonresonant electromagnetic ion/ion instability

At higher beam densities a second ion beam instability is excited, termed the
nonresonant electromagnetic ion/ion instability. This instability is a fluid mode,
driven by the anisotropy of the ion kinetic pressure, in analogy to the usual
firehose mode in a single ion component plasma. At times in the foreshock, the
beam density and/or velocity can be large enough to excite this mode [Sentman
et al., 1981]. Figure 5.15 shows the growth rate and real frequency for the
resonant (w, > 0) and nonresonant (w, < 0) mode for V; /v, = 10, ny/n, = 0.1
and 3, = 3 = [}, = 1. For these parameters the maximum growth rates
of the two modes are comparable, v, =~ 0.4€;, but they occur at different
wavenumbers: ke/w; ~ 0.15 (resonant), kc/w; ~ 0.5 (nonresonant). Thus,
the nonresonant mode tends to grow at shorter wavelengths than the resonant
mode. The real frequency for this mode is negative, i.e., the waves propagate
in the direction of the background ions (in the electron frame). To simulate this
instability, we again take N.X' = 128, the same munber of simulation particles
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(10240), but now reduce XMAX to 128¢/w; (HX = 1) and also reduce Q;t =
0.025.

Figure 5.16 shows results from the simulation at Q;t = 20 (a little before the
wave energy saturates). Displayed in a similar format to Figures 5.4- 5.6 are z —
v, and & —wv, phase space for the beam ions, the beam and background densities,
B,, and ¢. Compared to the earlier case, here the beam is more violently
scattered at comparable times to the resonant case, the wave amplitudes are
much larger (B, /B, ~ 2), and there are large density fluctuations in both ion
components. In this case v, and B, are in phase, and a predominant right hand
sense of rotation of the wave is apparent from ¢ (negative helicity). The space-
time profiles of B, for both helicities are shown in Figure 5.17. At early times the
dominant waves have negative helicity and initially propagate to the left with
the background ions; these are the right hand polarized nonresonant modes.
As the instability saturates, however, some of the wave fronts appear to stop
and reverse direction. There are also positive helicity waves that are right hand
polarized, which appear later. These are the resonant modes (cf. Figure 5.9).
Figure 5.18 displays the time histories of § B? (total, top panel), §B? (negative
helicity, middle panel), and § B? (positive helicity, lower panel). Consistent with
the space-time plots of separate helicities, the shorter wavelength nonresonant
modes grow up initially to large levels, but eventually the resonant, positive
helicity waves grow to comparable amplitudes.

5.3.4 Electromagnetic ion cyclotron beam anisotropy
instability

At smaller beam velocities (Vj ~ v4) and higher beam densities (n;/n, ~ 0.1),
an anisotropic beam (71 /Ty > 1) can be unstable to a left hand polarized
Alfven ion cyclotron instability. Such an instability occurs in the equatorial
magnetosphere and is responsible for the heating of minority ions [Gendrin et
al., 1984]. Figure 5.19 shows the characteristic growth rate and real frequency
as a function of wavenumber for n,/n, = 0.1, V, = 0, By = 10, Ty, /Ty = 5,
fi = . = 1 [Gary and Schriver, 1987]. In this case the instability is unstable
over a wide range of wavenumbers with dominant wavelength A ~ 20c/w,;. With
these beam parameters we thus take our simulation parameters to be: NX =
128, the total number of simulation particles = 10240, X M AX = 128¢/w; and
Q;At = 0.05. Figure 5.20 shows the results of the simulation (r — v, and
@ — v, phase space for the beam ions, n,, B,, and ¢ profiles) at Q;t = 20,
about the time that wave growth ceases. The phase space and density show
no remarkable features, other than the beam ions have been scattered into a
nearly isotropic distribution, while the waves are generally smaller in amplitude
(6B/B, ~ 0.4). ¢ shows no well defined helicity, because there are waves of
comparable amplitude propagating in both directions. Space time profiles of
B, separated by helicity (Figure 5.21) confirm this. The waves propagate in
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Figure 5.17: Space-time profiles of B, for this case, in the same format as

Figure 5.10.

opposite directions (negative helicity modes to the right and positive helicity
modes to the left), and they are evidently left hand polarized. We leave it to the
reader to go on to include a third ion species to study the heating of minority

ions [e.g., Omura et al., 1985].

Also left as an exercise is to examine instabilities when & is not aligned
along B,. One can simulate, for example, the resonant electromagnetic ion/ion
instability at oblique propagation to study wave steepening effects [e.g., Omidi
and Winske, 1990] or other electromagnetic ion beam instabilities, e.g., the
electromagnetic ion/ion cyclotron instability [Winske and Omidi, 1990].

5.3.5 Modifying the Code

To treat more complex problems we must go into the code and modify it ap-
propriately. We briefly discuss three types of changes that are most useful and

cite examples where they have been employed.

The first type of change involves the initial conditions of the ion species,
for example, including a finite length beam or a different velocity distribution
(e.g., aring-beam). In this case we merely need to change the particle loading in
subroutine INIT. For a finite length beam one also needs to modify the variable
DFAC, which relates the number of simulation particles to normalized density.
Examples of changes of this type include the study of instabilities with a ring-
beam distribution [Winske et al.,, 1985b] and the interaction of a finite length

beamn with a background plasma [Onsager et al., 1991].

A second type of change involves the injection of ions, for example, to study
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active experiments and comets [Gary et al., 1988; Miller et al., 1991]. In this
case the modifications are more extensive. First, the density normalization is
different: n, is taken to be the density of the fixed background ion population
rather than that of the total density. The time varying density of the injected
beam ions depends on the number of ions injected per time step as well as a
normalizing parameter that takes the place of the variable FRAC. Second, we
must leave room in storage for the ions that will be injected throughout the run;
this is done when specifying NSPFEC for each species. Third, we must decide
on how many ions to inject at each time step in TRANS, and then in PARMOV
give these newborn ions velocities and positions and move them accordingly. An
alternative way to proceed would be to initialize all the ions at ¢ = 0, but only
start to move them at the appropriate time.

A third type of modification involves changing the boundary conditions.
For example, a common type of problem studied by hybrid codes involves the
generation of collisionless shocks. Shocks can be produced by several different
methods, but the “hard wall” method has become the most commonly used. In
this method the incident ions, which have directed velocity V., are reflected off
the right boundary at * = XMAX. The incident and reflected streams then
interact to produce a heated downstream state and a shock that propagates out
ahead to the left. Typically, V, is chosen to be V,, = V; — V5, where V] = M v4
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Figure 5.21: Space-time profiles of B, for this case in the same format as Fig-
ure 5.10.

is the desired Alfven Mach number of the shock and V5 is the downstream
flow velocity calculated from the Rankine-Hugoniot relations. In this case the
simulation frame corresponds to the downstream (plasma) frame of the shock.

To modify the code accordingly, numerous changes are again necessary.
First, injection of new ions (see above) is needed to maintain the flow of the

incident stream into the simulation domain at x = 0. Second, the particle
boundary conditions are altered so that the ions are specularly reflected at the

end of the box. For example, if a particle’s new position, V!, is greater than
b b I) b

XMAX, we set

= XMAX — ()" = XMAX) (5.91)
and
vt = =t (5.92)

Similar conditions are imposed for particles with x,ﬂv“ < 0; the particles can
either be reflected, reinjected with the incident stream, or removed from the
system. Third, the ion densities and currents collected in the ghost cells are
put into adjacent cells, rather than at opposite ends: e.g., the contributions
to n; collected at I = 1 goes to the cell I = 2 and the contribution collected
at I = NX2 is placed in cell I = NX1. Fourth, the field solver is modified
(in fact, simplified), as discussed in Section IID. In this case suitable boundary
conditions are: E, = (V; = V3)B.., E. = —(Vi — V5)By., E, = 0 at x = 0 (B,
and B, are the upstream uniform fields). At the right boundary we either fix
B, and B; to their values specified by the Rankine-Hugoniot conditions and set
the x-derivative of the electric field equal to zero, or set £, = E, = E, = 0 and
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the x-derivative of B, and B, equal to zero. Similarly, we take n;, J;,, and J;.
to be continuous and J;; = 0 at each end.

Collisionless shocks have been studied extensively by means of 1-D hybrid
codes. The two most significant parameters for characterizing shocks are the
Alfven Mach number M, and g, the angle between the shock normal direc-
tion n = —& and the upstream magnetic field. Shocks with g, > 45° are
termed quasi-perpendicular shocks. Quasi-perpendicular shocks with M4 > 3
(“supercritical shocks™) have been studied by Leroy et al. [1981, 1982] and more
recently by Burgess et al. [1989]. A good introduction is given by Goodrich
[1985]. Quasi-parallel shocks (0p, < 45°) have also been well studied [Kan and
Swift, 1983; Mandt and Kan, 1985; Quest, 1988]. In recent years they have
been the target of much work [Burgess, 1989; Lyu and Kan, 1990; Scholer and
Terasawa, 1990; Thomas et al., 1990; Winske et al, 1990; Omidi et al., 1990]
because of their inherent unsteadiness and the tendency of the shock front to
undergo a cyclic disintegration and then reformation.

Unsteady shock behavior can also occur in the quasi-perpendicular regime
at very high Mach numbers [Quest, 1986] in the absence of sufficient resistiv-
ity. Collisionless shocks with M4 < 1 (slow shocks) have also been simulated
[Swift, 1983; Winske et al., 1985a; Omidi and Winske, 1989; Lee et al., 1989]
as well as intermediate shocks (M4 ~ 1) [Wu and Hada, 1991b]. More com-
plex studies of shocks have included the interaction of two quasi-perpendicular
shocks [Cargill and Goodrich, 1987] and the bow shock generated in the ex-
osphere of a comet [Omidi and Winske, 1987]. Hybrid codes have also been
used to study the structure of discontinuities other than shocks, e.g., tangen-
tial [Cargill, 1990] and rotational [Lee et al., 1989; Richter and Scholer, 1990;
Goodrich and Cargill, 1991; Wu and Hada, 1991a] discontinuities. In these later
cases one again uses plasma injection at one end of the simulation, but initializes
the calculation with the discontinuity already in place separating two uniform
(upstream, downstream) states, as was done in early shock studies [Leroy et al.,
1981, 1982].

5.4 Discussion

Thus far, we have motivated the need for and the usefulness of a hybrid plasma
description in which ion kinetics are retained and electrons are represented as
a massless fluid. The details of a simple 1-D hybrid code have been discussed,
and test problems and applications have been illustrated. At this stage the
reader should be able to go on to set up, run, and understand the results of his
or her particular problem. Before concluding this chapter, however, we wish
to briefly address the extension of hybrid codes to higher spatial dimensions,
mention some of the state of the art calculations that are being carried out at
present, and indicate some future trends.

It should be emphasized that we have discussed here only one method of
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solving the electromagnetic fields in a 1-D hybrid code. Other methods have
been devised and work as well as, if not better than, the one described here.
Recall that the basic problem is to advance EN . BY to the next time level when
3 and #@)T1/2 are known. The method we use extrapolates N2 — N+ g
get the currents and density at time level N + 1. Other methods employ a
predictor-corrector scheme [Harned, 1982], a Runge-Kutta scheme [Terasawa
et al., 1986] involving a subdivided time step to solve an implicit equation for
BN and an implicit method involving the solution of an ion moment equation
[Quest, 1989] or a direct extrapolation of the ion current [Thomas et al., 1990).
Some of these methods are discussed and compared in Winske [1985] and Quest
[1989]. In one dimension they work about equally well and the tradeoff between
accuracy and efficiency is not much of a problem.

In higher dimensions, however, the tradeoff becomes more significant, and
some of the schemes are more readily adaptable. The predictor-corrector scheme
Is easily generalized and has been applied to numerous problems [Thomas and
Brecht, 1986; Brecht and Thomas, 1987, 1988; Winske and Quest, 1986, 1988],
although it is somewhat slower because it requires two passes through the parti-
cles each time step. Likewise, the Terasawa scheme [1986] requires an iteration
involving the particles. Quest’s [1989] scheme suffers from the lack of an easy
generalization to multiple species with different charge to mass ratios. The re-
sistive scheme discussed here requires a more complex decomposition and field
solver [Hewett, 1980]. An iterative field solver that works in 3-D has also been
developed [Horowitz et al., 1989]. None of these schemes, however, have been
tested against each other in a quantitative manner on a 2-D test problem. How-
ever, as 2-D hybrid codes come into wider use, such comparisons will certainly
be conducted.

Two and three dimensional calculations, however, have been carried out and
illustrate the degree of complexity and new understanding that such simulations
can give. The major bottleneck of large scale simulations seems to be the limited
analysis and visualization tools that are available rather than the algorithims
themselves. We briefly discuss three examples.

Thomas and Winske [1990] have studied the formation of and ion dynamics
at a curved bow shock. Figure 5.22 shows the formation of the shock, in which
are plotted shaded density contours at three times. The arrow indicates the
direction of the upstream magnetic field; the plasma flows in from the right.
A key ingredient of the simulation is to allow the ions to interact with the
“magnetosphere”, which in this case is a solid object, only the edge of which
lies at the left end of the simulation domain, in such a way that a steady state
shock can form. In these calculations the particles bounce off the object, drift
upwards out of the simulation plane, and escape over it out of the system,
thus allowing a steady shock to eventually be set up. At late times some ions
have escaped upstream of the shock to begin forming the foreshock. The 2-D
simulations demonstrate that the energetic ions found in the foreshock result
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Figure 5.23: Results of 2-D hybrid simulations of the interaction of two current
sheets in the upstream region with a quasi-perpendicular shock showing B at
two times: [left panel] beginning of the interaction; [right panel] formation of a
hot diamagnetic cavity at the shock [Thomas et al., 1991).

primarily from shock drift acceleration, i.e., gaining energy from the shock
electric field as they drift along the surface of the shock. Other large scale 3-D
simulations have been carried out for the bow shock of Venus [Brecht, 1990;
Moore et al., 1991] that show the structure of the shock and corresponding ion
dynamics (of both solar wind and planetary origin). In this case the flow of the
ions around the object is naturally included, but at the expense of much poorer
resolution.

The interaction of a current sheet in the upstream flow with a planar shock
has also been recently done in 2-D [Thomas et al., 1991]. The interaction of
ions reflected at the shock with the current sheet produces a low density cavity
filled with these energized ions that exclude the incoming plasma and magnetic
field. Figure 5.23 shows a 3-D perspective of the magnetic field magnitude
at two times. The left panel shows two current sheets in the upstream flow
encountering the shock (which is propagating to the right in the figure). The
right panel shows a similar perspective somewhat later in time. At the lower
current sheet little happens. At the upper current sheet, however, one sees that
a magnetic cavity has formed at the shock that extends both downstream as well
as into the upstream region. Enhancements of the magnetic field (and density)
form at the edges of the cavity. Such “hot diamagnetic cavities” or “hot flow
anomalies” have been observed in the vicinity of the bow shock [e.g., Thomsen
et al., 1986]. The observations, however, have not been able to establish the
origin of such structures and determine whether they are attached to the shock
or freely propagating in the upstream solar wind. The simulations provide a
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clear explanation, verify and extend previous test particle calculations of this
process [Burgess, 1989], which first predicted that one of the current sheets will
make a cavity and the other will not, and suggest further observational tests.

Finally, 3-D hybrid simulations of active experiments, such as AMPTE,
have been carried out [Brecht and Thomas, 1987; 1988; Bingham et al., 1991].
The simulations show how the released ions move with respect to the ambient
plasma and expand to form a cavity. The surface of the expanding plasma is
also subject to an instability, which leads to the formation of field aligned stria-
tions. Figure 5.24, from Brecht and Thomas [1988], shows some results of a 3-D
calculation of an AMPTE release. The initial configuration, two perspectives
of the magnetic field (one showing the formation of a diamagnetic cavity), and
the background ion density are displayed. Again, the simulations have been
instrumental in sorting out the forces on the released ions and their interaction
with the background plasma. Such types of calculations should prove to be
extremely useful in interpreting the recent CRRES releases.

In the years ahead, we expect that hybrid codes will continue to be ma-
jor contributors to the understanding of space plasma phenomena. As more
powerful computers become more readily available, we expect to see larger and
more complex 2-D and 3-D calculations. We will also see the inclusion of more
physics, e.g., more ion species, complex charge states and rudimentary chem-
istry to couple them together, collisional processes to model ionospheric effects,
etc. We anticipate the rapid growth and increased sophistication of high speed
graphics and visualization techniques, which are absolutely essential for 3-D cal-
culations. With the development of parallel architecture machines, even larger
scale problems involving sizable segments of the entire magnetosphere are no
longer out of the question. We remain convinced, however, of the continued
need for a detailed understanding of the underlying physics, the development
of modules for localized processes, and the testing of simple models: much of
this will remain in the domain of 1-D calculations.
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Thomas, 1988] showing the initial configuration, two perspectives of the mag-
netic field, and the background ion density.
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Appendix A: Ion Dynamics

In this appendix the ion equation of motion and how it is solved is discussed
in some detail. Starting with dX Jdt = V, we let X~ be the position of an ion
at time ¢t = NAt. Then the left hand side of this equation in finite difference
form becomes:

)Z'N-H _ XN

LHS =——— 5.93
A7 (5.93)

To make the differencing time centered, we need to know VN+3, Thus,
XN+ = XN 4 A VNS (5.94)

The ion equation of motion is:
d‘_/’N+‘l . . o .

me L., (E +V x B) —eand (5.95)

For the above equation to be time centered, we need EN VN, BN, and JV.
This then implies that the electromagnetic fields used to push the particle are
those at time step N. Note, however, that velocity and current are also needed
at time step N. The way in which we obtain JV will be discussed later. For
VN we use VN = (VN’E + VN+3). The above equation can then be written
as:

eSAt

mg

N1
2

= vV

-

VNt (EN— nJN + (VN+:» + VN2 x BN> (5.96)

To rewrite this equation in a simpler form we define the following:

JUAN A = 1 1
h=¢ ,EIEEN—nJ_N,mEN-F—,nEN—— (5.97)
ms 2 2
Then,
. . L1 . . .
VA (E o (P77 x BN) (5.98)
To solve for V™, we first find the dot product of (5.98) and BYN:
Lo Lo I . o
BN.ym = BY -V"+hBN~E’+§BN.(vm+V”) x BN
— BN .ym=FBN.V"+hBN . E (5.99)

Next we find the cross product of (5.98) and BY which involves a number of
terms; writing only that involving V'™ we get:

. L 1 - . .

Vmx BN = -~-—|—§(me BY) x BN +

1 5 ~ o= 1 5 =N
= ...+§(BN.vm)BN-§(BN.BN)Vm+...
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Substituting Equation (5.99) into (5.100) and Equation (5.100) back into (5.98),
after some rearranging we get:

< v e - R v =
(1+ 5B 5% = Vra - B BY)
Lo I,
+h(E'+v"xBN)+3(E'xBN)

h? . I hs - o
+7(BN . ‘/n)‘BN+ Z(BN . E/)BN

(5.101)

which is the same as Equation (5.12) in the text. Dropping terms of the order
At? and higher, Equation (5.101) reduces to:

. . B2 Lo . L L
v o= V(1 - L?BN~BN)+h(E’+V" x BN)
W2/ o e o L
T <(BN-V") BY 4+ B % BN) (5.102)

which is the same as Equation (5.13). By defining the following parameters:

fo= B g = hE
Ve = pn +%E/ (5.103)
Equation (5.102) is rewritten as:
Vo= [V h(E +gBN +V° x BY) (5.104)

This is the form in which ion equation of motion is cast in the hybrid code.
Given VN *2, we would also like to calculate V;N *1 (average ion velocity at
t = (N+1)At). VN is needed in order to calculate JV*L which in turn
is needed to obtain EN+1, BN+! and also during the next particle push. To
obtain VN*! we push the ions half a time step using:

PNEL_ N g(EN (XNH1) 4 PN 5 BN (XN+1)> (5.105)

where the fields from time step N at the ion’s new position (XV*!) are used.

Appendix B: Magnetic Helicity

Helicity decribes the sense of rotation in space of a wave with respect to
k. As it is determined at a fixed time, the helicity is a convenient quantity to
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compute in the simulation. Because it is a function of wavenumber and not
frequency, it is not subject to Doppler shift and hence is independent of the
frame in which it is measured. However, a particular mode may not have a
unique helicity [e.g., Gary, 1986], and hence, it can be a useful diagnostic, but
one that cannot be used by itself to identify wave modes.

To decompose a wave into helical parts, we expand it in a Fourier series:

B, = ZBZ coskx — By sin kx (5.106)
k

B,

> B{coskx — B:sinkx (5.107)
k

(Note that unlike Terasawa et al. [1986], the sin terms in (5.106-5.107) have
a minus sign, which is consistent with the Fourier transform routine supplied
with the hybrid code.)

We define helical components, B, B~ as

B - %[(B;+Bj)+i(B§—B;)] (5.108)
B - %[(B5*32)+i(B§+B;)] (5.109)

where + and — refer to spirals with left and right hand sense of rotation with
respect to the positive x direction (here assumed to be the direction of the
magnetic field and k). These spiral modes can be written as

Bf(z,t) = > BY(k,t)e ™ (5.110)
k

B (z,t) = Y B (k,t)e™™ (5.111)
k

and hence

B = Re[B*(x,1)] (5.112)
BY = Im[B"(z,t)] (5.113)
B, = Re[B™(,1)] (5.114)
B, =Im[B™(z,t)] (5.115)
which can then be related to the original Fourier decomposition, using (5.108-

5.109).

As discussed in the text, the positive helicity mode corresponds to a right
hand polarized wave propagating in the +x direction and a left hand polarized
wave propagating in the —z direction. Similarly, the negative helity mode
corresponds to a left hand polarized wave propagating in the +z direction and
a right hand polarized wave propagating in the —z direction. As noted above,
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shifting reference frames (e.g., from the background ion to the beam frame)
does not change the helicity. However, the direction that the waves propagate,
and hence the polarization, may change.

For parallel propagating waves, the helicity has the value of +1. In general,
however, the helicity is calculated using [Gary, 1986]

o(k) = A (5.116)
where, as usual, B =V x A.
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