Chapter 6

TWO-DIMENSIONAL MHD CODE

Tatsuki Ogino

6.1 Introduction

6.1.1 General remarks on tutorial course on MHD sim-
ulation

It is not easy to understand the solar-terrestrial phenomena from only the lim-
ited measurements provided by spacecraft or from only the pure theories. This is
because the solar-terrestrial phenomena have three particular features which are
characterized by the high nonlinearity, the strong inhomogeneity and the great
temporal variations from a steady state. For example, large amplitude distur-
bances frequently propagate in the interplanetary space, and a large amount of
energy is stored in the earth’s magnetotail, then it is suddenly released. During
the past decade a new technique, a computer simulation which uses a fluid model
including a magnetohydrodynamic (MHD) model, has been developed to solve
for the solar-terrestrial phenomena and to provide a self-consistent picture of
the solar-terrestrial system and physical processes in it. The three-dimensional
global MHD simulation of the interaction between the solar wind and the earth’s
magnetosphere is a typical example to solve the solar-terrestrial system, and the
local MHD simulations for the magnetic reconnection and Kelvin-Helmholtz in-
stability are two typical examples to make clear the physical processes in space
physics.

The fluid and MHD simulation codes have been well developed to handle
the particular subject in space physics by introducing new numerical methods,
and the diagnostic tools have also progressed in graphic software to help the
understandings of simulation results. Thus we have been able to reach a new
stage that the simulation results by a supercomputer have some meaning in
comparison with the realistic phenomena. However, those simulation codes
must be developed furthermore in order to treat a more realistic problem in
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the solar-terrestrial phenomena, to quantitatively compare with observational
results, and also to bring a fruitful understanding in space physics.

In the present stage, we want to arrange the basic ideas of numerics and
to present several fundamental numerical methods which were used as starting
points in the fluid and MHD simulations in space physics. Then, I will mention
about several recent developments in numerical methods and MHD codes, and
also successful applications to simple space physics problems. These include
several numerical algorithms such as implicit-explicit schemes, leap-frog scheme,
two-step Lax-Wendroff scheme and other improved schemes to solve the linear
and nonlinear wave propagations in one dimension. By a two-dimensional MHD
code based on the two-step Lax-Wendroff method, the magnetic reconnection
is simulated as an example of local processes and the solar wind and earth’s
magnetosphere interaction is simulated as an example of global simulations.
This fundamental course of the fluid and MHD codes will be useful for beginners
to understand the simple idea and technique of simulations and also for scientists
of ripe experience to grasp an essential and unified idea of numerics and a future
direction of global MHD simulation.

6.1.2 A survey of global MHD simulations

As was mentioned previously, it is not easy to investigate an interaction process
between the solar wind and the earth’s magnetosphere or a magnetospheric
system because the observations are temporarily and spatially limited to the
spacecraft trajectory. In order to understand a magnetospheric system, the
experimenter is challenged to interpret the limited single point measurements
in terms of a large-scale and highly dynamic system. During the past several
years a new technique, computer simulation by using the global magnetohydro-
dynamic (MHD) model, has been developed to solve the magnetospheric config-
uration and to present a self-consistent picture of the solar wind-magnetosphere
interaction process.

The first work on the time-dependent global MHD simulation of the earth’s
magnetosphere was done by Leboeuf et al. [1978] to produce a interplane-
tary magnetic field (IMF), where a 2 dimensional MHD particle code was used.
Leboeuf et al. [1981] successively developed their 2 dimensional MHD par-
ticle code to a 3 dimensional code and again reproduced a similar topology.
The MHD particle code has an advantage to be numerically stable without ad-
justment of the time step there. However, the plasma sheet was short (about
—30R,) due to the effect of a large numerical magnetic diffusion, where R, is the
radius of earth and the earth’s magnetosphere was simulated by using a mini-
mally diffusive MHD code to show the basic features of the magnetosphere such
as the bow shock, magnetopause and long magnetotail [Lyon et al., 1980]. They
used the flux-corrected transport (FCT) for the hydrodynamic variables and the
partial donor cell method (PDM) for the magnetic field. Lyon et al. [1981; 1986]
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modified the MHD code and applied to simulate a substorm-like process occur-
ring in the earth’s magnetosphere, where a leapfrog time-integration scheme, a
20th-order finite difference approximation to the spatial derivatives and flux-
corrected transport were used. As the result, the MHD code could produce
a long magnetotail (more than —60R,) and obtained the simulation results
consistent with an empirical substorm model namely the near-earth magnetic
neutral-line model depending on the resistive terms.

Brecht et al. [1981; 1982] developed the MHD code to a 3 dimensional
version to study the 3 dimensional feature of the interaction between the solar
wind and the earth’s magnetosphere where the partial donor cell method was
used on the inhomogeneous grids. As the result they could successfully treat a
longer magnetotail (—90R,) as well as the sharp gradients of the bow shock, the
stagnation point and the magnetopause in the dayside interaction region. Wu et
al. [1981] simulated the steady state magnetospheric configuration to reproduce
many of the magnetospheric features such as the bow shock, magnetopause and
plasma sheet at a quiet time by using a 3 dimensional MHD model, where the
Rusanov scheme was used. He applied the MHD model to study the shape of
the magnetosphere [1983] and the effect of dipole tilt on the magnetospheric
structure [1984].

The interaction of the solar wind with the earth’s magnetosphere was also
studied by using a different time-dependent 3 dimensional MHD model by Ogino
and co-workers [Ogino, 1986; Ogino and Walker, 1984; Ogino et al., 1985; 1986]
where a modified two step Lax-Wendroff scheme was adopted. They tried to
project the physical quantities such as the parallel vorticity and field aligned cur-
rents onto the polar cap along magnetic field lines in order to compare with the
observations and demonstrated the projected patterns of the magnetospheric
convection system and field aligned currents depending on the IMF orienta-
tion. The nature of the solar wind-magnetosphere- ionosphere coupling was
also simulated by Fedder and Lyon [1987] in order to investigate the physics
and behavior of the controlling processes. They showed the current-voltage
relationship in the magnetosphere as a dynamo process and discussed the op-
eration of the dynamo and its location. Watanabe and Sato [1990] developed a
new 3 dimensional MHD code based on the fourth-order Runge-Kutta-Gill time
advance and the direct finite space difference and applied to the study of the
solar wind interaction with the earth’s dipole field. The method has an advance
to keep a long time step of difference.

The tearing mode at the dayside magnetopause was successively investi-
gated by 2-dimensional computer simulations of stagnation-region flow toward
a current sheet [Fu and Lee, 1985], coupling with Kelvin-Helmholtz instability
[La Belle-Harmer et al., 1988] and a multiple X line reconnection in a global
configuration [Shi et al., 1988]. However, their MHD simulations were limited
to an incompressible and 2-dimensional case. Scholer [1988] and Southwood et
al. [1988] have suggested that the reconnection associated with FET’s occurs at
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a single location but is time dependent. Sato et al. [1986] demonstrated a mag-
netic flux tube created as a result of repeated reconnection between the IMF
and geomagnetic field by using a semi-global MHD model. Ogino et al. [1989a,
1990] modeled the generation of magnetic flux ropes at the magnetopause and
in the magnetotail from a global MHD simulation.

Global MHD simulation codes have been used to model magnetosphere other
than the Earth’s magnetosphere. Schmidt and Wegmann [1980, 1982; Wegmann
et al., 1987, Fedder et al. [1984], Ogino et al. [1986a, 1988a] and Sydora
and Raeder [1988] investigated cometary magnetospheres. Walker and Ogino
[1986] simulated the Jovian magnetosphere. Most recently Linker et al. [1988]
developed a model of the interaction of Jovian plasma with the moon Io.

The main purpose of the present lecture note is to study a 2 dimensional
MHD code of the global simulation and apply the code to simulation of the
interaction between the solar wind and the earth’s magnetosphere. We will
obtain a quasi-steady state magnetospheric configuration when we change the
IMF z-component. The present 2 dimensional MHD code in which the two-step
Lax-Wendroff method is used can be of course applied to simulate other physical
phenomena in space physics such as nonlinear MHD waves, MHD instabilities,
magnetic reconnection and tearing mode. Moreover, an extension to the 3
dimensional MHD code is also briefly mentioned with several examples of the
global simulation.

6.2 Global MHD Model of Magnetosphere

A global MHD simulation model of the interaction between the solar wind and
the earth’s magnetosphere is described in detail in this section [for example refer
to papers of Ogino, 1986; Ogino et al., 1985]. The present purpose is to study
the MHD simulation code generally. Therefore, we will start with 3-dimensional
MHD model because the 2-dimensional model can be straightforward reduced
from the 3-dimensional one.

6.2.1 Basic equations

The MHD and Maxwell’s equations are solved as an initial value problem by
using the two-step Lax-Wendroff scheme [Ogino et al., 1981a]. The normalized
MHD equations used in the present simulation are written as follows:

0
5% = —V-(vp)+DV? (6.1)
1 1
A _(v.v)v_lvp+—JxB+g+—<I> (6.2)
ot p p p
dp 2
= —(v-V)p—9pV v+ D,Vp (6.3)

at
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0B

ot
J

= Vx(vxB)+7nV’B (6.4)
V x (B -By) (6.5)

where p is the plasma density, v is the flow velocity, p is the plasma pressure, B
is the magnetic field, J is the current density, g is the gravity force, ® = uViv
is the viscosity, v = 5/3 is the ratio of specific heats, n = 1(T/Ty) /% is the
resistivity with a classical temperature dependence, T = p/p is the temperature,
Tp is the ionospheric temperature, and By is the 3-dimensional dipole magnetic
field. Typical numerical values are 1y, = 0.01 and i/ psw = 0.02, where the
diffusion coefficients D = D, = u/p,,,. Hence the typical magnetic Reynolds
number is S = 7, /74 = 50—1000. Here, the subscript sw indicates the quantities
in the solar wind.

The normalization quantities in the basic equations are the radius of the
earth, z, = Rp = 6.37x10° m, the magnetic field of the earth at one earth radius
at the equator, By = 3.12x107° T, the density of the ionosphere, ps = mng(n, =
10'%m~?), the Alfvén velocity at one earth radius, v, = B/ (1ops)'/? = 6.80x10°
m/s, and the Alfvén transit time, ¢, = Rg/vs = 0.937s. Insuch a case, the other
normalization quantities are automatically determined as p, = psvi=B%/uy =
7.75x107" N/m?, J, = B,/pors = 3.90x107% A/m?, and g, = vg/ts = 7.26x10°
m/s?. The subtraction of the dipole field in (le) is performed to suppress the
numerical error arising from the difference approximation at the discontinuity.
The viscosity and diffusion terms in (1a), (1b), and (1c) were added to reduce
the MHD fluctuations which come from an unbalanced force at the initial state.
That is, the numerical oscillations on the scale of the mesh size decrease in front
of the bow shock when we include the viscosity and diffusion terms. The global
magnetospheric configuration is little changed by this, because the force between
the neighboring meshes cancel each other. In fact, the difference between the
maximum pressure at the bow shock for the parameters used here and that for
D = 1= Dp = 0 was less than 10%.

6.2.2 Coordinate system and boundary conditions

A quarter simulation box for z; < 2 < 25, 0 < y < y, and 0 < 2 < 20
can be used in the Cartesian coordinate system in Figure 6.1, since we assume
symmetry conditions which are consistent with the dipole magnetic field. The
center of the earth is assumed to be located at (z,y, z) = (0,0,0), and the solar
wind is assumed to flow into the box in the x direction through the boundary
at x = wxo. Therefore the following boundary conditions are imposed for each
physical quantity, ¢ = (p, v,p,B): (1) fixed boundary ¢ = const at = = xg; (2)
free boundary d¢/0x = 0 at « = z; (3) free boundary at an angle of 45° to
the x axis, 0¢/0y = 0 at y = yo, 0¢/0z = 0 at z = zy; (4) mirror boundary at
z =0,
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Figure 6.1: Solar-magnetospheric coordinate system in the 3-dimensional global
MHD simulation of the interaction of the solar wind with the earth’s magneto-
sphere (upper panel) and the schematic diagram of the magnetosphere with a
long magnetotail region (lower panel).
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dp _Op _Ov, dv, 0B,
9: " 0: 0z 02 92 (6.6)
v.=B, =B, =0 (6.7)

A

(5) mirror boundary at y = 0,

op Op Ov, Ov., 0B, OB,

oy oy oy oy oy oy 08
vy =B, =0 (6.9)

(6) all physical quantities are fixed for

E=@+y*+22)2 < ¢, (=3.5) (6.10)

The internal quantity ¢;, at the initial state and the external quantity ¢., are
at each time step connected by the introduction of a smooth function f =
agh®(aph® + 1) as

¢:f¢ew+(1_f)¢in (611)

where ag =100, h = (§/£,)* — 1 for £ > €, and h = 0 for £ < &,.

A fresh solar wind always flows into the simulation box through the bound-
ary accompanying the IMF and can interact with the dipole field of the earth.
The state in the neighborhood of the earth does not vary from the initial state.
The tail, upper, and side boundaries were cut at x = Ty, 2 = 29, and y = vy,
where xg = yy = z = 48.8Rg are typical parameters, and the free boundary
condition, in which the spatial derivative for all the quantities is Zero, was im-
posed. This boundary condition has less influence on the inside phenomena
when the plasma flows outward through the boundary. We used it to minimize
the effect of this boundary condition in our initial value problem.

6.2.3 Initial conditions

A steady state ionosphere is used in the neighborhood of the earth. The plasma
number density is approximately proportional to the magnitude of the magnetic
field, and the temperature is proportional to the radial distance for 1 <¢ <6.
Thus the following initial conditions are used for the ionosphere near the earth:

Density

Po = 5*3 Po > 0-2/)511:
Po = O-2psw Po < O'2psw (612)

Plasma pressure

po = poof? D0 = Pow
Po = DPsw Po < Dsw (613)
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Gravity force

Yo
Dipole magnetic field
1
By = —(—3zz, —3yz, 2 +y* —22%) (6.15)

&

where gy = 1.35 x 1075 and pgo = (7 — 1)go/y = 5.4 x 107".

The solar wind parameters used are py,, = 5x10~* (corresponding to 5/cm?),
Vew = (Us0,0,0) at © = —xg, vg, = 0.0441 — 0.118 (300-800 km/s), psw =
3.56 x 107 (Ty, = 2 x 10° K), and Bjyp = 0 or £1.5 x 10-%(£5 nT), where
By r stands for the z component of the uniform IMF traveling with the solar
wind.

The normalized equations in (6.1 — 6.5) are solved as an initial value problem
under the boundary conditions by the two-step Lax-Wendroff method in order
to obtain quasi-steady-state magnetospheric configuration. The mesh numbers
of the calculation are for example (N, N,, N.) = (60, 30,30) plus the boundary
mesh points. The mesh size is Az = Ay = Az = 1.6, and the time step At
is chosen to be 3Ax/2 = 2.2s from the numerical stability condition of the
difference scheme, Vy“*At < (1/2)Axz, where V9*(= £,%/?) is the maximum
Alfvén velocity in the calculation domain.

6.3 Description of 2-Dimensional MHD Code

The 2-dimensional MHD simulation code which we will use in the present tu-
torial course is described in detail in comparison with the 3-dimensional global
model in the previous section. The present purpose is to study the effects of the
north-south component of the IMF to the magnetospheric configuration from
a 2-dimensional global MHD simulation. Therefore, we try to solve the MHD
and Maxwell’s equations in the northern half plane as an initial value problem
by using the two-step Lax-Wendroft scheme.

6.3.1 2-dimensional case of basic equations

The MHD and Maxwell’s equations are solved as an initial value problem by
using the two-step Lax-Wendroff scheme when all the physical quantities are
assumed to be constant in the y-direction. The normalized MHD equations in
(6.1 6.5) are rewritten separately by the following set of component equations
in the z,y, z coordinates.

dp 0 ) 0 ¢
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(6.22)

(6.23)
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In the 2-dimensional case, V,, B, and the derivative with respect to the y-
component are always zero in (6.16 — 6.23) because the physical quantities are
assumed to be uniform in the y-direction. Thus the 2-dimensional equations are
trivial from (6.16-6.23) and we need to solve 6 arguments of (p, V,,, V., P, B, B.)
from 8 arguments of the original MHD equations.

Though many parameters are same as in the 3-dimensional case described
in the previous section, a few parameters should be changed due to the 2-
dimension. The ratio of specific heats, v = 2 due to the degree of freedom and
B, is replaced with the line dipole magnetic field. Typical numerical values are
no = 0.01 and p/ps,w = 0.005, and the typical magnetic Reynolds number be-
comes large as S = 7,,/74 = 200 —2000. Moreover, the normalization quantities
are exactly same.

6.3.2 Coordinate system and boundary conditions

A upper half simulation plane for ;1 < z < 29, 0 <y < gy, and 0 < z < 2
can be used in the Cartesian coordinate system in Figure 6.2, since we assume
symmetry conditions which are consistent with the line dipole magnetic field.
The center of the earth is assumed to be located at (z, 2) = (0,0), and the solar
wind is assumed to flow into the simulation plane in the x direction through the
boundary at x = xy. Therefore the following boundary conditions are imposed
for each physical quantity, ¢ = (p,v,p,B): (1) fixed boundary ¢ = const at
x = xo; (2) free boundary d¢/0x = 0 at x = x¢; (3) mirror boundary at z =0,

dp Op Ov, 0B,

R A = 6.24
0z 0z 0z 0z (6:24)
v, =B, =0 (6.25)
(6) all physical quantities are fixed for
£= (2 + 222 < & (=16.0) (6.26)

The internal quantity ¢;, at the initial state and the external quantity ¢., are
at each time step connected by the introduction of a smooth function f =
agh®(agh® + 1) as :

where ag = 100, h = (£/£,)? — 1 for £ > £, and h = 0 for £ < &,.

A fresh solar wind always flows into the simulation plane through the bound-
ary accompanying the IMF and can interact with the dipole field of the earth.
The state in the neighborhood of the earth does not vary from the initial state.
The tail, upper, and side boundaries were cut at * = x1, z = 2o, and y = Yo,
where xy = yo = 29 = 102 Rg, and the free boundary condition, in which the
spatial derivative for all the quantities is zero, was imposed.
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Figure 6.2: Solar-magnetospheric coordinate system in the 2-dimensional global
MHD simulation of the interaction of the solar wind with the earth’s magneto-
sphere (upper panel) and the schematic diagram of the magnetosphere with a
long magnetotail region (lower panel).
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6.3.3 Initial conditions

A steady state ionosphere is used in the neighborhood of the earth and the
dependence on radial distance differs from that in 3-dimensional case. The
plasma number density is proportional to the magnitude of the magnetic field,
and the temperature is proportional to the radial distance for 1 < ¢ < 30. Thus
the following initial ionospheric conditions are introduced near the earth in the
2-dimensional case:
Density

po = € po>02p

po = 0205 po < 0.2p, (6.28)

Plasma pressure

Po = pOOé_l pozpsm

Po = Psw Po < Psw (62())
Gravity force
g
g = —g—g(z, y, 2) (6.30)
Line dipole magnetic field
1 ‘ r
B, = @—(—2552, 2 — 2% (6.31)

where go = 1.35 x 1079 and pgy = (y — 1)go/y = 6.8 x 1077.

When an image dipole field, Bid is put on z = 2z4, = in (6.31) is only
replaced with x — 2x4. Therefore, the x-component of magnetic field is zero at
x = x4. Addition of the image dipole field corresponds to introduction of the
Chapman-Ferraro type closed magnetosphere. The solar wind parameters are
same as in Section 6.2.

The normalized equations in (6.16-6.23) are solved as an initial value prob-
lem under the boundary conditions by the two-step Lax-Wendroff method in
order to obtain a 2-dimensional quasi-steady state magnetospheric configura-
tion depending on the IMF z-component. The mesh numbers of the calculation
are for example (N, N,) = (100, 50) plus the boundary mesh points. The mesh
size is Az = Az = 2.0, and the time step At is chosen to be 8Az/2 = 155 from
the numerical stability condition of the difference scheme, Vi*** At < (1/2)Axw,
where Vi (= £-1) is the maximum Alfvén velocity in the calculation domain.

6.3.4 Application of two-step Lax-Wendroff method

Let us start to make a 2-dimensional MHD code by using the two-step Lax-
Wendroff method. For example, equation (6.16) can be rewritten as
dp 0 0

a9 —5;%,0 - 8_yvyp (6.32)
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in the 2-dimension when the diffusion term is neglected. Thus we can intro-
duce the following simple equation with the same format in order to apply the
numerical scheme.

OF 0] 0
—=—-——F—-_—F—-F 6.33
ot ox Jy ( )
The expression of difference scheme in the two-step Lax-Wendroff method
is written by the next two steps.

(1) First step

1 G
Fit%g,ﬁg =1 (Ft +EL Fz+1;+1> (6.34)
t+3 "
F;T+%.J+2 F+ Li+: T AchL g+
At
N (ﬂtﬂ,jﬂ + Fz+13 Fit,jﬂ - Fit,j)
At .
4A/ (F+1]+1 + FL]+1 Ef+1] - Etj) (635)
(2) Second step
1 1 1
F,tjz = 3 (F,:tj;j 1 "‘F'“, . +F 1 -I—F7+ il ) (6.36)
IR RN
At t+1 t+1 .
2Ax ( i+3.0+3 +F] N Fi—%d—%)
At
_QAy (Fitjll?Z.,jJrlQ + Ft 12 12 th++11227 12 Ft+1122] 12) (637)

Here we use an abbreviation in a form of F; = F(t,x;,y;) and the spatial
grids, Ax, Ay and the time step, At are introduced. That is, t +1,¢+1, j +1
mean t + At, x; + Az, y; + Ay, respectively.

For the first time we assume that F' isgivenfor2 <i<nr+land2<j <
ny+1. Then F} i ; at the boundary 5hould be determined from the assumption of
boundary condition. Using the two-step procedure, we can calculate new value
of F,-,'jl. A temporally forward difference is used in the first step, on the other
hand the time central difference is adopted in the second step.

The procedure of two-step Lax-Wendroff method is as follows;

1. F(i,j) is given for 2 <i < nzl and 2 < j <nyl

2. F(i,j) for i=1,nx2 and j=1,ny2 is determined from boundary condition
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3. 1st interpolation from (6.34)
P(i,j) = 3(F (i, j) + F(i +1,5) + F(i,j + 1) + F(i +1,j + 1))
U(i,j) = P(i,j)
4. Calculation of 1st step from (6.35)

Ulij) = Uli.j) = 3AtPG,J)

—ﬁ(ﬂi+ Lj+1)+F(i+1,j)—F(i,j+1)— F(i,j))

,ﬁTZ (P(i+1,j+ 1)+ F(i,j+1) = F(i+1,5) = F(i.))
(6.38)

5. 2nd interpolation from (6.36)

6. Calculation of 2nd step from (6.37)

_Qi—Z(U(z‘,j) +UGj—1)=Uli—1,5) = UGi—1,j — 1))
_%(U(i,j)-FU(i— Lj)=U(,j—1)-U(—1,j—1))

(6.39)

As the result of these sequences, F(i,j) in a time step advance is calculated,
where nzl = nx+1,n22 = nx+2,nyl = ny+1,ny2 = ny+2. In the simulation
code we use one dimensional array to keep a faster computation. The relation
between the one dimensional argument F(il) and the two dimensional array
argument F'(i, ) is

F(i1) = F(i,j) for il=i+na2x(j—1)

The schematic diagram of the procedure of the two-step Lax-Wendroff method
is shown in Figures 6.3 and 6.4. If one wants to directly apply the two step Lax-
Wendroff method to (6.16), we can obtain the following difference expressions
for the 3-dimensional case.

Modified two-step Lax-Wendroff method in 3-dimension
(1) First step

1
t _ t t t t
Pitdjrihst = 3 (pi,j,k * Pivrje T Pijrike T Pijrs

t t t t
P11k T Piv1jk+1 T Pijri e + pi+1,j+1,k+1) (6.40)
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Figure 6.3: Schematic diagram on the numerical procedure of the two-step Lax-
Wendroff method in the one dimensional space.
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Figure 6.4: Schematic diagram on the grid connection of the two-step Lax-
Wendroff method in the two dimensional case.
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(2) Second step

t+1 t
Pijk = Pijk

At t+1 el
- m{(pV),+ g kS +(/)Vf)z‘+;j+%,k—%

At t+i 4l
 4Ay {(pv‘/)z+2J+ et T (rVy )z+;j+%»’f—l

l
([)V) J+ k+1 + (pv) §]+%yk«ﬁ%
vyt V)2
—(p )i+1j Lrtl T (p ) +lj-lk—1
— (V) — (V)i
PVicta=, Pv)i-fa-pe—y
At t+] t+1
- o {<;»V>l;]+ e T OV L
t+3 t+3
+ (/)V.), E,j'l—%,k'i"l + (p‘é)i_217%7k+%
t+ t+4
- (pVZ)sz.ﬂ%,k—% (pVZ)ng—%,k—%
t+5 t+ 1
OV gy~ PV )

_‘._

Ag2 {pl+1]+1 kit T P gaie T Pisijkir T Pit ik



0.4.

EXECUTION OF 2-DIMENSIONAL MHD CODE

—2 (pi‘j+l‘k+1 + pf,j+1,k + P;’,j.kﬂ + p:Jk)

t t t t
TOi1 41 k41 T Pictjr1k T Pici k1 T pi—l,j,k}
At

t t ¢ 13
-2 </)i+1,j,k+1 + Pk T Pijrer T pi,ylk')

¢ ¢ ¢ ¢
FPix1j—1k+1 T Piv1 -1k T Pijo1 k41 + pi,j—l,k}
At

t t t t
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t t t t
=2 (P e+ Al ga + Ahjins Phix)

t t t t
FPit1j+1k-1 T Piv1jk—1 T Pijr1h—1 T pi,j.kvl}

6.4 Execution of 2-Dimensional MHD Code

6.4.1 Set up of numerical parameters

1 t t t
A {pi+1,j+l,k+l 1 Piv1grih T Pijrikrr T Pijrk

177

(6.42)

Program name of the main MHD simulation code is RECTGS81 and the 2-
dimensional MHD code is set up to simulate the interaction between the solar
1d and the earth’s magnetosphere. However it is a typical MHD simula-
tion code to be applied to other phenomena. The specific features to simulate
the earth’s magnetosphere just come from the inner boundary condition of iono-
sphere, the upstream boundary condition of solar wind, and the initial condition

wil

such as the initial distribution of magnetic field.

The several important parameters in the present global simulation are as
follows;

Grid number (N,, N,) = (100, 50)

Grid size  (Ax,Az) = (2,2)

Time step At = 1Az x THR = 8Ax = 16(= 15s)
IMF B, component B, =0, 1.5 (+5nT)
Speed of solar wind  Vy,, = 0.044 (300km/s)

Exercise in 2-dimensional MHD simulation

1. Change the magnitude of IMF B, component.
B, =1IBZ = CP(11) = £1.5 (£5nT)

2. Change the velocity or density of the solar wind
Vaw = CP(8) = 0.044 (300km/s)
p=RO01 =5 x107* (5/cc)
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3. Change the magnitude of earth’s dipole field
B,=CJ(4)=1.0

4. Change the resistivity model
n = EAT

Change the initial magnetosphere
subroutine EQUIP4  2-dimensional dipole model
EQUIP5 image dipole model

(@21

6.4.2 Examples of execution

Examples of the 2-dimensional MHD simulation are shown in Figures 6.5 ~
6.8. Figure 6.5 shows the initial configuration of the simulation. =~ The upper
left panel presents profiles of the physical quantities in the sun-earth line (in
the x-axis), where B.,V,,p and P are seen from the top panel to the bottom
panel. The upper right panel present profiles of the physical quantities in the
north-south line (in the z-axis). B,,V,, p and P are also seen from the top panel
to the bottom panel. The lower 9 panels show 2-dimensional magnetospheric
patterns:

1. magnetic flux (left bottom)

2. plasma pressure (center bottom)
3. plasma density (right bottom)
4. magnitude of magnetic flux

flow velocity

(2}

6. magnetic field
7. current density
8. vorticity, Q=VxV

9. electric field, E,

6.4.3 Graphics output

In order to obtain graphics output we use a graphics program “RDSPF801”
and a graphics subroutine package “SUBM2AS”. In the graphics main program,
GRAPT7G is a subroutine to draw line for profile in the sun-earth line, GRPH1M
is to draw the vector presentation and GRAP4M is to draw contour-line.
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Figure 6.5: Initial state of the 2-dimensional global MHD simulation of inter-
action between the solar wind and the earth’s magnetosphere. The top left
panel shows profiles of physical quantities in the sun-earth line, the top right
panel shows those in the north-south line (or z-axis) and the bottom shows two
dimensional patterns.
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Figure 6.6: Quasi-steady state magnetospheric configuration in the 2-D MHD
simulation for no uniform IMF (B, = OnT).
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Figure 6.7: Quasi-steady state magnetospheric configuration in the 2-D MHD
simulation for northward IMF (B, = 5nT).
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Figure 6.8: Quasi-steady state magnetospheric configuration in the 2-D MHD
simulation for southward IMF (B,o = —5nT).
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Figure 6.9: Schematic diagram of the earth’s magnetospheric phenomena.

6.5 MHD Simulation of Earth’s Magnetosphere

6.5.1 2-dimensional simulation results

In this section several 2-dimensional MHD simulation results are demonstrated.
In Figure 6.9, Schematic diagram of the earth’s magnetospheric phenomena
are displayed. From the MHD simulation we can study the global structure of
magnetosphere and macroscopic instability such as Kelvin-Helmholtz instability
at the magnetopause and magnetic reconnection at the dayside magnetopause
and in the magnetotail. The MHD code handles the space plasma as single fluid.
Therefore, phenomena in which particles play an important role are beyond its
task.

In Figure 6.10, typically simulated magnetospheres depending on the IMF
z-component are shown in the initial state and the quasi-steady state. The term
of “quasi-steady state” means here that global structure of the magnetosphere
does not change, however the structure of small scale at the magnetopause and
in the plasma sheet still continues to change gradually.

In Figure 6.11 is shown 2-dimensional magnetosphere with a long magneto-
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2D configuration of the earth’'s magnetosphere. Vg = 300 km/s
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BiMF = -5 nT Bimr =0 Bimr =5 nT

Figure 6.10: Simulated 2-dimensional configurations of the earth’s magneto-
sphere in the initial state and the quasi-steady state, when the uniform IMF
(southward, no or northward IMF) was imposed in the whole region at the
initial time.
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tail. The configuration does not change so much when time elapses. The grid
number is (N,, N,)=(400, 100) and Az = Az = 1.5Re. The time evolution on
formation of the 2-dimensional magnetosphere is shown in F igure 6.12, where
(Nz, N.) = (400, 100) and Az = Az = 1Re: The behavior of draping of mag-
netic field lines is clearly seen and another interesting point is the formation of
cusp which somewhat moves sunward.

6.5.2 3-dimensional simulation results

Two examples of 3-dimensional global simulation are shown in Figures 6.13 and
6.14. In Figure 6.13, the difference of configuration of magnetic field lines
clearly tells the effect of the IMF z-component. In Figure 6.14, the structure
of discontinuity composed of the bow shock and magnetopause can be com-
pared each other when we choose a particular grid size Az=1.6Re (top), Az
= 1.0(center) and Az = 0.5Re (bottom). From these global simulation, you
can recognize how spatial resolution is important if we want to discuss the
phenomena associated with the discontinuity.

6.5.3 High resolution MHD simulation

Recently we have tried to develop a higher resolution MHD simulation code
“modified leap-frog method”. In Figure 6.15 is shown the schematic diagram
of computation procedure for the method. The modified leap-frog method is
fundamentally a combination of the leap frog method and the two-step Lax-
Wendroff method. We use two-step Lax-Wendroff method in the first 1 step
and use the leap-frog method in the successive (I-1) time steps. Therefore,
the advantage for leap-frog method is reasonably included. That is, numeri-
cal accuracy of phase velocity is greatly improved and the absolute value of
amplification factor is also close unity (see Appendix: A and B).

We will discuss the amplification factor of the high resolurion MHD code in
more detail.
The amplification factor of two-step Lax-Wendroff method is

Apw = 1—28%sin® g +ibsink (6.43)
[Apw]? = 14 4(6* — 6%)sin’ g (6.44)

and that of leap-frog method is

Ap = 1—262sianiz‘25smg(1—62sin2%”)% (6.45)
|[ALe| = 1 (6.46)
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Figure 6.11: Simulated 2-dimensional magnetospheric configuration with a long
magnetotail in almost steady state.
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Figure 6.12: Time evolution on formation of the 2-dimensional magnetospheric
structure for no uniform IMF.
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Figure 6.13: Comparison of the simulated magnetospheres for northward, no
uniform, and southward IMF conditions in 3-dimension.
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Figure 6.14: Comparison of the spatial resolution in the simulated 3-dimensional
magnetosphere for (a) Az = 1.6Re, (b) Az = 1.0Re and (¢) Az = 0.5Re.
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Figure 6.15: Schematic diagram of computational procedure due to a higher
resolution algorithm, modified leap frog method.
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Thus the amplification factor of modified leap-frog method can be given by
combination of them.

Aprr = 1-2(1+ a)8®sin’ g

+£i26 sin g[l — (14 a)26%sin® g]% (6.47)

Aprr| = 1-—4a6? sin2g (6.48)

Avir = Apr T At (6.49)

[ApiLr| = |ADLF|[+1|ALW|% (6.50)

where 6§ = %f; , k& = kAz and Appr means the amplification factor of

leap-frog method with diffusion term. The two numerical parameters in the
modified leap-frog method are properly given from a test wave calculation as
follows;

a=0.01~01 and [ =8~ 16.

An interesting feature of modified leap-frog method is that it approaches leap-
frog method in a limit for larger [ and does two-step Lax-Wendroff method in
another limit for [ = 1.

In Figure 6.16 are shown the 3-dimensional global simulation due to the
modified leap-frog method. It is recognized that a very sharp discontinuity
of bow shock or magnetopause is formed, where a large number of grid point
(N, Ny, N.) = (240, 100, 100) and a fine spatial grid of Az = Ay = Az = 0.25
R, are used. Therefore it becomes possible to simulate phenomena which are
appear at the magnetopause.

6.6 Concluding Remarks

We have tried to simulate interaction between the solar wind and the earth’s
magnetosphere by using a 2-dimensional global MHD code in this tutorial
course. And also a fundamental idea of numerical method and a extension
to three dimensional version are also demonstrated. The present MHD code is
a fundamental one if we neglect specular inner boundary condition and initial
condition of the intrinsic dipole field. In the present MHD code we use the two-
step Lax-Wendroff method and it can be considered to be a standard method
because the method has been well understood for many investigators and is a
typically well balanced one in the numerical diffusion and the numerical damp-
ing. In this sense, it is important to compare with the two-step Lax-Wendroff
method when one develops a new numerical scheme.

When we search subjects which should be solved from the global MHD
simulation in the earth’s magnetosphere, we must so surprised how wide ranges
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Figure 6.16: Quasi-steady state magnetospheric configuration which was sim-
ulated by the modified leap frog method for no uniform IMF. Profiles in the
sun-earth line (top left panel), profiles along y-axis and z-axis at z = 5Re (top
right panel) and patterns in the noon-midnight and equatorial planes (bottom
panel).
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Figure 6.17: Tempral and spatial scales of the earth’s magnetosperic phenom-
ena. Time, space, and velocity scales in magnetospheric processes expand up
tp 1000 times.

in time and space are necessary for research targets as is shown in Figure 6.17.
The convection speed in the ionosphere is the order of 1km/s on the other hand
that in the magnetosphere is 70km/s and sometimes increases up to 1000km/s
in association with magnetospheric substorms. In the magnetosphere, small
scale structure looks connecting with large scale structure. The processes are
highly nonlinear and occurs in the inhomogeneous media. Therefore it will be
also important to study phenomena of magnetospheric physics from the global
MHD simulation. In particular, 3-dimensional simulation will become necessary
to analyze many complicated magnetospheric processes and also space physics.

Acknowledgments

This work was supported by a Grant-in Aid for Science Research from the Min-



194 CHAPTER 6. TWO-DIMENSIONAL MHD CODE

istry of Education. Science and Culture, by the NASA Solar Terrestrial Theory
Program Grant NAGW-78. The simulations were performed at the Computer
Center of Nagoya University and the Computer Center of the Institute of Space
and Astronautical Science.

Appendix A : Note on Numerical Scheme

1. Exact solution of wave equation

Here we consider to solve a hyperbolic partial differential equation by the
difference method. Let us start with the following wave equation with charac-
teristic speed of 1,

ou Ou
= 6.51
ot  Ox (6.:51)
When we use the Fourier analysis, the exact solution is calculated as
u = uoeiwt+ikr (652)
= k. (6.53)

Therefore we can determine an amplification factor, A for a time step advance
of At as

uTh = A (6.54)

A = ezwAt — ezkAt 6.5

ot
~—

where the abbreviation of /™' = u(t; + At,x;) = ugeti+A0+ika: and o =
u(ty, z;) = upe™*i is used. Moreover, by using the spatial difference, Az A
is rewritten to

A = BTy = gind (6.56)
where k = kAx and 6 = At/Ax are generally two important parameters to
express the wave number range of 0 < k(= kAz) < 27 and to determine the
numerical stability in the difference scheme. A difference scheme is admitted
to be numerically stable if |A| < 1 is satisfied for all » in the range of 0 < x =
kAx < 2m. Of course |A| = 1 is valid for (A4). Here, let us define the two
parameters of the absolute value, |A| and the normalized phase, 6 (or the phase
velocity, v,,) to study the amplification factor in the difference scheme in detail.

absolute wvalue |A] (6.57)
1

phase 6 = 3 tan~'(Im A/Re A) (6.58)

phase velocity vy, =60/k (6.59)
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where I'm A and Re A mean the imaginary part and real part of A. For the
exact solution in (6.56) the following values,

Al =1 (6.60)
0 = %tan_l(tan Kb) =K (6.61)
v, = B/k=1 (6.62)

are obtained.
Remarks for the exact analytical solution of wave equation:

1. |A] is always 1.

2. 0 is proportional to k(= kAz), or v,, =1.

2. Basic consideration of explicit and implicit difference schemes
Let us introduce the following difference scheme in order to solve (6.51)

u{“ — uf uf“ —ul Jtl u{ - uf_
VA Y P Ul ey vy (6.63)
where 0 < o < 1.
- At . At p )
Wi as sl - ) =l + (- a)s (il ) (664
At —iK At ik —ik ]
{1—a2m( —e ™) Ju J+1—{1+(1—a)2A (e — e~ "} (6.65)

From (6.54), we can calculate

14+ (1—a)idsink

A= —
1+ aibsink

(6.66)

+ (1 — a)?6%sin* K
1+ a282sin’ &
Therefore o > 1 is given from |A|? < 1.
Al <1 for $ <a<1 = numerically stable
[Al=1 for a =3 = marginally stable The explicit scheme
|A|>1 for 0<a<i = numerically unstable
is only for @ = 0 and the implicit scheme is for 0 < a < 1.
Remarks for explicit and implicit schemes

1
|A]* =

(6.67)

1. simple explicit scheme is unstable (« = 0).
2. time central scheme is marginally stable (a = 3).

3. some implicit scheme is unconditionally stable (3 < o < 1).
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3. Leap—frog scheme (complete time central scheme)
Ordinary leap frog scheme

w -l — .
20t 2Ax (6.68)
(A— Al = 6(e"™ — e ")l
AT = 26isink —1=0 (6.69)

A=+\/1-82sin K + i6sink|A]* = 1. (6.70)

Modified leap-frog scheme with a half spatial grid size

il i1
A S Rl (6.71)
At Azx '
. A —2i6sin gA% —1=0 (6.72)
AF =+ 1 —6231n2g+i6sing (6.73)
Al = 1 (6.74)
Remarks for leap—frog scheme
1. |A| is always 1.
2. modified scheme has higher numerical accuracy.
4. Two step Lax—Wendroff scheme
Ordinary two-step Lax—Wendroff scheme
1st step
wp t = 5 -+ 4A:c(u5+1 —uj_y) (6.75)
2nd step
, , il il
W=l (] - ) (6.76)
T = A
Lo 6.
A = 1+z(§)s1112/~c+(§) (cos2k — 1) (6.77)
6 o
A2 = 1+ {(5)4 - (5)2}(008 2k — 1)? (6.78)
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Therefore |A| < 1 is satisfied for 0 < 2(= :AL) < 1 and for all &.

Modified two-step Lax-Wendroff scheme

1st step ) ‘
i+ uwl 4wl At ;
uy =~ gl — ) (6.79)
2nd step
. . At i1 il
W= w4 E(ugg - u;jg) (6.80)
A = 1+ibsink +6%(cosk — 1) (6.81)
|A]? = 14 (8" —6*)(cosk — 1) (6.82)

Therefore |A| < 1 is satisfied for 0 < §(= £L) < 1 and for all &.

Remarks for the two-step Lax-Wendroff scheme

1. |A| <1 is satisfied for 0 < 6 < 2 (or 1 for modified scheme).

2. modified scheme has higher numerical accuracy.

Appendix B : Comments on Runge-Kutta—Gill Method

We have studied several higher order numerical schemes such as modi-
fied leap frog method, iterative Lax-Wendroff method, Runge-Kutta method,
Runge Kutta Gill method in order to improve the numerical accuracy in the
global MHD model. In those schemes, we will discuss the Runge-Kutta Gill
(RKG) method which is applied to a partial differential wave equation in com-
parison with the 2 step Lax- Wendroff (2LW) method. In conclusion we should
say that the RKG method with the second order spatial difference has not higher
numerical accuracy than the 2LW method in the order. The RKG method with
the fourth order spatial difference has a higher numerical accuracy of the fourth
order. Let us start with the following simple differential wave equation,

Ju _ du

ot Ox
The amplification factor of the exact solution in Fourier analysis (e"™!+k*) iy
given by

(6.83)

AE _ eiu;At — ei%kAw — eié&
= cos 66 + isin 6f
1 1
= {1-—= 24 (50—
{1-5(60)° + 5;(60) )

+i{60 — é(60)3 + 1%6((56)5 — } (6.84)
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Solution of the Wave Equation due to
Modified Leap—~Frog Method
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Figure 6.18: Numerical simulation of the wave equation by using the modified
two-step Lax-Wendroff method and leap-frog method.
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Solution of the Wave Equation
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Figure 6.19: Numerical simulation of the wave equation by using several nu-
merical schemes.



200 CHAPTER 6. TWO-DIMENSIONAL MHD CODE
2nd RKG 2) ( oxact
1.0 N — 1.000 1.0
1Al Vph
e ‘ ,." ¢ 2w o
4th \Eke >
0.0 0999 4¢
o n « 2n 0 L K 2n

8 =0.5

-0.35

Figure 6.20: Absolute value and phase velocity of the amplification factor on 2
step Lax-Wendroff (2LW) and Runge-Kutta-Gill (RKG) methods.

where, 6 = %, 0 = kAx, and At and Az stand for the temporal and spatial

grid intervals in the difference scheme. Therefore, |Ag| = 1 and the phase of
Ap is given by 6. The absolute value of the amplification factor keeps unity
and the phase is proportional to § = kAx. The amplification factor of the 2LW
method is

Aopw = 14 6%(cosf — 1)+ idsinf (6.85)
|[Aszw > = 14 (6" = 6*)(cosf — 1)* (6.86)
and that of the RKG method with the second order spatial difference, (())—‘f’ =
g =
1;2,2 64.4 1‘3-3
Arke = 1-— 5(3 sin® 6 + 52 5in 0+i(6sinf — 6(5' sin® @)  (6.87)
66 ) 68
|Arke)> = 1-— 7 sin® 6 + 75 sin® (6.88)

Therefore, the RKG method seems to have a much higher numerical accuracy
when we look at |Aggc| only. However, the complex amplification factors in
(6.85) and (6.87) can be expanded as follows;

_ 1¢ 5201
=1 5629'2 + o T
+i{69 _ % . }

AQLVV
(6.89)
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Figure 6.22: Absolute value and phase velocity of the amplification factor on
the modified leap-frog method with no explicit damping rate @ = 0.
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Figure 6.23: Absolute value and phase velocity of the amplification factor on

the modified leap-frog method with no a finite damping rate oo = 0.1.
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Arka =1-16%02 - 10" + S 4 ...
+i{6(0 - L) 4 - 18%3 4...... } (6.90)

Therefore, we can see that numerical errors in the same order appear in both
Axrw and Agge in comparison with the exact amplification factor, Ag in (B2).
That is, [Agkc| is less than unity for § < /8 and very close to unity. However,
the phase of Ak is the same order as that of Asryy, and the numerical error
of the phase in the RKG method rather increases than that in the 2LW method.
It might be possible that the RKG method is an improved method because the
wave damping becomes very small keeping the same order numerical accuracy
in phase as the 2LW method. Moreover, we can say that one can use a large
6 = ﬁ—;(< V/8) and the spatial difference in the RKG method is direct and
simple. However, I do not agree that the second order RKG method has a higher
accuracy than the 2LW method. It is not generally correct that simulation
results by the RKG method are valid because of smaller damping of MHD waves
even for larger 6 = kAx. This is because the waves with smaller damping for
larger ¢ propagate with incorrect phase velocity. Therefore, it might be possible
to say that simulation results for some problems by the RKG method are less
valid for smaller scale than those by the 2LW method because the waves for
larger 6 have incorrect phase velocity and do not damp. In the RKG method,
we can choose the fourth order difference in space as follows;

3_“ _ % _ 8(Uz‘+1 - ui—l) - (Uz‘+2 - ui—2) (6.91)

gt Oz 12Ax
then we can eliminate the numerical errors shown in (6.90) and the numerical
accuracy become higher up to the order of §*4*. We need a further effort to
apply the fourth order Runge-Kutta—Gill method to the global 3-dimensional
MHD model.
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