Chapter 7

HIGH-PRECISION MHD
SIMULATION

Kunihiko Watanabe and Tetsuya Sato

7.1 Introduction

Since the middle of 1960’s, studies of space plasma physics using computer sim-
ulation have started. At first, quite specialized and simplified one dimensional
simulation models were used. From 1970’s magnetohydrodynamic (MHD) sim-
ulation and particle simulation began to be used for various problems in plasma
physics. Now, together with developments of “super computer ”, such simula-
tions show a great power in the study of solar-terrestrial plasma physics. In this
lecture, a new scheme of MHD simulation as well as the traditional scheme and
the estimation of the numerical preciseness of those schemes are introduced.
In MHD simulation, we solve the following equations (MHD equation)
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where B, E, j, v, p,p,n, and v denote the magnetic field, the electric field,
the electric current, the plasma flow velocity, the plasma density, the plasma
pressure, the electric resistance and the ratio of the specific heats, respectively.
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Essentially, MHD simulation code is just a program to solve above time de-
velopment equations under certain boundary conditions and initial conditions.
Usually, we divide the simulation box ( the physical region in which we want to
solve above equations ) into many grid points where the physical quantities are
defined. And the derivatives of each quantity is given by the finite difference
method.

In the following introduction of the schemes, for simplicity, one dimensional
wave propagation problem is considered.

0u ou

— = V,— 7.7

ot 0 x (7.7)
where V), is the phase velocity of the wave. Initially, the value of u at each grid
point (z=z;=Ax-(j—1),j =1~ N, : Az ; grid interval ) is given. Then,
the problem is how to decide the value at t = ¢, 1 from t = t,(t, = nAt : At ;
time step ).

7.2 2-Step Lax-Wendroff Scheme

Here, the 2-step Lax-Wendroff method is introduced. This scheme is very tra-
ditional one and has been used by many researchers of computational physics.
In this scheme, intermediate values w1/, at the half timesteps t,.,/, and the
half mesh point z;,,/; at the first step are defined. These are calculated by

niljz | Ui +oUj VoAt . uj — uf (78)
Uitz = 2 2 Az '
In the second step, using these intermediate values, the updated value 'u,",’,-’“
is calculated by
LTY2 2
n+l _ . n Jj+1/2 j—1/2
uim = + V,At- B P— (7.9)

Thus, we can get the time developing solution of the equation through
these two procedures (this is why this scheme is called two-step Lax-Wendroff
method).

In order to consider the stability of this scheme, or in other words, how large
numerical damping the wave suffers by this scheme, we derive the amplification
factor for one time step. We assume the wave which is proportional to exp(ikz),
then at the first step

W2 = uj - {exp(ikAz) +1}/2 + %{6’»?1?(’”6&’5) — 1}] (7.10)

G+1/2

Wtz = uj - [{1+ exp(—ikAx)}/2 + %{1 — exp(—ikAx)}] (7.11)

i—1/2
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where o« = V,At/Az. Then, at the second step,

,n+l
u; =

uj - [1 + iasin(kAz) + o*{cos(kAz) — 1}] (7.12)
= G-uf} (7.13)

Here, G is a numerical amplification or damping factor which is called “G-
factor”. The discussion about the numerical accuracy using G-factor will be
done together with G-factor of the new high precision scheme.

7.3 High Precision Scheme

This scheme essentially adopts the 4th order Runge-Kutta-Gill method for time
integration which has been well-known as the traditional integration method,
but no one (maybe) has used this scheme for the MHD simulation. For the
space derivatives, we use the usual centered finite difference method in the 4th
order. This method consists of 4 steps as follows;

- _(U;‘LH - U‘;'L»Q) + 8(u] Uiy — u]n'fl)

djy = At - Az (7.14)
fin=0.5-dj, (7.15)
q]'72 = dj,l (7].6)

_ —(fivo1 = fi—21) + 8(fix11 — fi-11)
dj2 = At - 5Ag (7.17)
fiz=(1—=v0.5)(d;j2 — q;2) (7.18)
qj3 = 2(1 — v O.B)dj,g +2(3v0.5 — 2)(1‘,;2 (7.19)

- —(fiva2 = fi—22) + 8(fix12 — fi12)
dJ‘;; = At- 12Az (720)
fis =1+ Vv0.5)(dj3 - g;3) (7.21)

gja = 2(1+V0.5)d; 5 — (3v0.5 + 2)g;5 (7.22)

—(fira3 — fi—23) + 8(fj+13 — fi-13)
12Ax
Wt =d; /6 — q;4/3 (7.24)
In this case, the amplification factor, G, is calculated in the same manner
as in the Lax-Wendroff case so that

(1]"4 = At-

(7.23)

G=1+ H + H?/2 + H*/6 + H'/24 (7.25)

H= ~ig[4 — cos(kAx)] sin(kAx) (7.26)
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Figure 7.1: Ratio of the wave amplitude after 10 wave transit times to the initail
amplitude. (a = 0.8)
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Figure 7.2: Ratio of the wave amplitude after 10 wave transit times to the initail
amplitude. (o = 0.1)
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Figures 7.1 and 7.2 show the examples of the ratio of the wave amplitude
after 10 wave transit times to the initial amplitude, against the normalized wave
number kAz /27, when o = 0.8 (Figure 7.1) and a = 0.1 (Figure 7.2). The solid
and dashed lines express the theoretical curves of the high-precision scheme and
Lax-Wendroff scheme, respectively, while the solid circles and triangles are the
respective simulation results. As is clearly seen in both figures, waves of short
wavelength are much more strongly damped in the Lax-Wendroff scheme than
in the high-precision scheme. For example, when a = 0.8 in Figure 7.1, the
amplitude of the wave of wavelength 12Ax came down to 73% of the initial
amplitude in the Lax-Wendroff scheme, while the wave maintained its initial
amplitude (99.6%) in the high-precision scheme. Furthermore, in the case of the
wavelength 6Ax, only 11% of the initial amplitude survived in the Lax-Wendroff
scheme, while 95% of the wave amplitude survived in the high precision scheme.

Suppose that we make a criterion that a wave will be physical when the
damping is less than 10% at 10 wave transit times. Then, only the wave
with wavelength longer than 17Ax satisfies the criterion in the Lax-Wendroff
scheme, while all wavelength waves can satisfy this criterion in the high preci-
sion scheme( the largest damping is 8% ). It should be noticed that when we
execute global simulation of the solar wind - magnetosphere interaction, Ax is
usually chosen as large as 0.5 Rg(Rp ; the earth radius ) and the wavelength
17Ax corresponds to about 9Rr . When we consider the case where o = 0.1,
the difference between the two schemes is more obvious. This means that most
of the phenomena in the global interactions with characteristic change times,
say, a few wave transit times or larger, may suffer a serious damping in the 2-
step Lax-Wendroff method. Thus, even though some qualitative resemblances
to observations are obtained by the simulations using Lax-Wendroff method,
quantitative arguments are highly irrelevant.

Figure 7.3 shows one of the examples of the ratio of the wave amplitude
after 10 wave transit times to the initial amplitude, as a function of the normal-
ized time step o when kAz/2m = 0.125. The solid and dashed lines express the
theoretical curves of the high precision scheme and the Lax-Wendroff scheme,
respectively, while the solid circles and triangles are the respective simulation
results. One can easily see that the 2-step Lax-Wendroff scheme becomes numer-
ically unsatble when o > 1. Therefore, when we wish to make a long simulation
run with the Lax-Wendroff method, we meet a conflict: Namely, when « is
chosen close to 1, the numerical scheme is easily unstable against the small nu-
merical fluctuation of the density and/or the magnetic field because the Alfven
velocity determines the characteristics of the system in the actual MHD sim-
ulation. Thus, large artificial damping terms must be added in the equations
which make numerical artifacts. In contrast, when « is chosen much less than
1, it takes a large number of time steps, and thus a long computer time is re-
quired to make a long simulation run. When the intermediate « is chosen, the
wave amplitude suffers a serious numerical damping. In contrast with the Lax-
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Figure 7.3: Ratio of the wave amplitude after 10 wave transit times to the initail
amplitude as a function of a.

Wendroff scheme, the high-precision scheme is stable even for a > 1, so that a
physically sound, long time scale simulation can become real.

This high precision scheme is found to be numerically unstable when o > 2.2
for any wave number. In reality, the phase error of the propagating wave is more
severe than the amplitude error. In fact, the phase condition of the propagating
wave shows that a should be chosen to be less than 1.2 for the physically sound
use of this new scheme.

7.4 Other Schemes

There are a few more schemes which have good accuracy in space and/or time
to some extent, for example, the upstream scheme which is the space differential
scheme. This scheme was developed for the shock problem in fluid dynamics.
In this scheme, It is considered that the information is carried by the fluid itself
(fluid movement), and that the quantity on the upstream side has larger influ-
ence on the space differential than that on the downstream when the finite dif-
ference is taken. In plasma physics, however, the information is usually carried
by the wave in plasma such as Alfven wave or magnetosonic wave. Therefore,
the upstream scheme is not so good scheme for the problems in plasma physics
(of course, to the shock problem in plasma physics such as the bow shock, this
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scheme may make a good contribution). Some other schemes which are devel-
oped in fluid dynamics, are not applicable to the plasma physics by the other
reason. Namely, they require more boundary conditions outside the simulation
box, while boundary conditions in plasma physics are so complicated and it
is almost impossible to give the boundary conditions outside the simulation
box. From these viewpoints, we recommend the MHD code which adopts above
introduced high-precision scheme with the 4th order centered finite difference
method in space for the general use in plasma physics ( All the MHD codes of
our Simulation Center adopt this scheme and make quantitative simulations in
fusion plasma physics ).
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