A small tour of Prosper facilities ETIEX presentations made easy

Frédéric Goualard

Centrum voor Wiskunde en Informatica
The Netherlands

Introduction

- If you click on my name in the previous page, you should be directed to the Prosper homepage, provided your Acrobat Reader has been properly configured.
- Press on CTRL-L to go to/leave full screen view.
\square Curious? Want to go directly to the last page? Push here.

Transitions

Prosper offers seven transitions between slides:

- Split;

Transitions

Prosper offers seven transitions between slides:
\square Split;

- Blinds;

Transitions

Prosper offers seven transitions between slides:

- Split;
- Blinds;
- Box;

Transitions

Prosper offers seven transitions between slides:
\square Split;

- Blinds;
- Box;
\square Wipe;

Transitions

Prosper offers seven transitions between slides:
\square Split;

- Blinds;
- Box;
\square Wipe;
- Dissolve;

Transitions

Prosper offers seven transitions between slides:
\square Split;

- Blinds;
- Box;
\square Wipe;
- Dissolve;
- Glitter;

Transitions

Prosper offers seven transitions between slides:
\square Split;
\square Blinds;

- Box;
\square Wipe;
- Dissolve;
- Glitter;
\square Replace.

Diagrams

A small diagram with some few lines of LTEX.

Diagrams

A small diagram with some few lines of LTEX. Since the diagram and the text are at the same level, there is no difficulty to add some link from one to another.

A small clipping effect

Any practical use for this?

- un etait pas une petite ya. mais une porte dérobée. Elle u en apparence sur la campagne. S l'œil d'un contrôleur paisible on nait une route blanche sans mvr

A small clipping effect

Any practical use for this?
~~u etait pas une petite ya.
mais une porte dérobée. Elle u en apparence sur la campagne. S
l'œil d'un contrôleur paisible on nait une route blanche sans mvr

Houscholder formula

The Householder formula below lets you compute $f^{-1}(x)$ for an arbitrary f.

$$
\begin{equation*}
x_{k+1} \mapsto \Phi_{n}\left(x_{k}\right)=x_{k}+(n-1) \frac{\left(\frac{1}{f\left(x_{k}\right)}\right)^{n-2}}{\left(\frac{1}{f\left(x_{k}\right)}\right)^{n-1}}+f\left(x_{k}\right)^{n+1} \psi \tag{1}
\end{equation*}
$$

Houscholder formula

The Householder formula below lets you compute $f^{-1}(x)$ for an arbitrary f.

$$
\begin{equation*}
x_{k+1} \mapsto \Phi_{n}\left(x_{k}\right)=x_{k}+(n-1) \frac{\left(\frac{1}{f\left(x_{k}\right)}\right)^{n-2}}{\left(\frac{1}{f\left(x_{k}\right)}\right)^{n-1}}+f\left(x_{k}\right)^{n+1} \psi \tag{1}
\end{equation*}
$$

where $n \geq 2$ and ψ is an arbitrary function.

Houscholder formula

The Householder formula below lets you compute $f^{-1}(x)$ for an arbitrary f.

$$
\begin{equation*}
x_{k+1} \mapsto \Phi_{n}\left(x_{k}\right)=x_{k}+(n-1) \frac{\left(\frac{1}{f\left(x_{k}\right)}\right)^{n-2}}{\left(\frac{1}{f\left(x_{k}\right)}\right)^{n-1}}+f\left(x_{k}\right)^{n+1} \psi \tag{1}
\end{equation*}
$$

where $n \geq 2$ and ψ is an arbitrary function.
Formula (1) gives an iteration of order n converging towards x_{*} such that: $f\left(x_{*}\right)=0$.

Overlaps of colors

Intersection of sets. First the yellow one ...

Overlaps of colors

Intersection of sets. First the yellow one ... Then the blue one. Remember how to do that with MS PowerPoint?

Last slide

This is the last slide. Do you want to go to the second one?

