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Abstract 

This work explores the possibility of creating mass in Yang-Mills gauge theories via their 

intrinsic gauge bosons, rather than by an additional Higgs boson. Instead, pairs of gauge 

bosons in the spin and isospin singlet state form a pair of composite Higgs bosons. Those 

pairs can be viewed as glueballs in Yang-Mills gauge theories, with the SU(2) gauge 

group as the simplest example. Quadratic and quartic gauge boson self-interactions form 

a potential that leads to a finite expectation value for each virtual gauge boson in the 

vacuum state. The Lorentz invariance of the vacuum is protected after averaging over all 

possible polarization vectors (analogous to averaging over all momenta). But the scalar 

pair products of gauge bosons used in the definition of the composite Higgs boson exhibit 

a finite vacuum expectation value. That breaks the gauge symmetry dynamically and 

thereby creates masses for the gauge bosons. In the standard model, the ad-hoc potential 

of the Higgs boson can be replaced by the intrinsic quadratic and quartic self-interactions 

of the gauge bosons, thereby eliminating two free parameters. These can be taken as the 

mass and the vacuum expectation value of the standard Higgs boson. 
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1.  Introduction 

Calculating adjustable parameters of the standard model from first principles has 

been a long-time challenge. Particularly mysterious have been the two parameters 

determining the Higgs potential of the standard model. One of them (labeled 2) 

corresponds to an imaginary mass and the other (labeled ) belongs to a quartic 

Lagrangian. None of the other fundamental particles exhibits such a Lagrangian. This ad-

hoc potential is responsible for breaking the SU(2)U(1)Y gauge symmetry of the 

electroweak interaction by creating a finite vacuum expectation value (VEV) for the 

Higgs boson. That in turn conveys mass to fundamental particles. 

Such considerations led to models where the Higgs boson is not fundamental, but 

composite [1],[2]. In most cases the constituents were fermion-antifermion pairs [1], but 

a Higgs boson composed of the three SU(2) gauge bosons was proposed as well [2]. It 

explained the Higgs mass, which became simply half of the standard Higgs VEV in 

lowest order. That matched the experimental result [3] with tree-level accuracy (2%). 

Apart from exploring the origin of mass in particle physics, the SU(2) gauge 

theory has attracted interest in mathematical physics [4]. The three SU(2) gauge bosons 

form the simplest non-abelian gauge theory. Such Yang-Mills theories play a dominant 

role in the standard model and its extensions. A particular concern has been the very 

existence of such theories (by rigorous mathematical standards), together with the 

mechanism of dynamical symmetry breaking and the resulting mass gap [4]. 

 In the following we start out with a review of the composite Higgs model 

proposed in [2], restricted to the minimal set of particles, i.e. , the three gauge bosons of 

the SU(2) Yang-Mills theory. The definition of the composite Higgs boson via these 

gauge bosons is worked out and its consequence on the Higgs mass is demonstrated. This 

section establishes several relations between the composite Higgs boson and the SU(2) 

gauge bosons. Section 3 investigates the precise form of the expectation value (EV) for 

the amplitude of a gauge field, as dictated by Lorentz and gauge invariance. The gauge 

fields in the Lagrangian are decomposed into their EVs and observable gauge bosons. 

Section 4 introduces the gauge boson potential which breaks the SU(2) gauge symmetry 

and creates VEVs for gauge boson pairs. Gauge-invariant model Lagrangians serve as 

building blocks for this potential. Section 5 exploits compatibility criteria between the 
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potentials of the gauge bosons and the Higgs boson. Those fix the quadratic and quartic 

coupling constants. Section 6 summarizes the concept of dynamical symmetry breaking 

by gauge bosons and places it into the broader context of Yang-Mills theories. Appendix 

A discusses tree-level gauge boson self-interactions and explains why they do not 

contribute to the symmetry-breaking potential. Appendix B outlines the extension of the 

SU(2) model to the electroweak SU(2)U(1)Y symmetry. 

 
2.  Composite Higgs Model for Pure SU(2) Gauge Symmetry 

 The pure SU(2) model is chosen to provide clearer insight into the concept of a 

Higgs boson composed of gauge bosons which was developed originally for the full 

SU(2)U(1)Y electroweak symmetry in [2]. Mixing with the U(1)Y hypercharge 

symmetry does not affect the W1,W2 gauge bosons that form the observed W particle, 

leaving their mass and couplings unchanged. The consequences of electroweak mixing 

will be addressed briefly in Appendix B. 

 The strategy for replacing the Higgs boson of the standard model by a composite 

of SU(2) gauge bosons can be summarized as follows: 

1)  Remove the standard Higgs boson from the Lagrangian. 

2)  Replace it by a Lorentz- and gauge-invariant composite of SU(2) gauge bosons. 

3)  Establish a potential for the gauge bosons from their self-interactions.  

4) Obtain EVs for the gauge bosons and VEVs for their scalar products by generalizing 

the Brout-Englert-Higgs mechanism from scalars to vectors. 

5)  Transfer VEVs and masses from the gauge bosons to the composite Higgs boson. 

The standard Higgs field can be written as the combination of a SU(2) singlet H0 

with a triplet of Nambu-Goldstone modes (w1 ,w2 ,w3), forming a complex doublet 0. 

The subscript 0 labels fields appearing in the original, gauge-invariant Lagrangian 

("lagrangian fields"). These are decomposed into a VEV and an observable field. The 

Higgs field 0 can be represented by a 22 matrix 0 using the 22 unit matrix 1 and the 

Pauli matrices j  (with 22 matrices in bold): 

(1) 0 =      (H01 + i j wj j )   0 = 0         =                C
0 = 0          1  w2+ i w1 

 H0 i w3

1 

0 
0 
1 

 1
2 

 
2 
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H0 =  H0 + H      H0 = v = 21/4 GF
1/2 = 246.22 GeV   wj = 0 

C
0 is the charge conjugate of 0. The singlet acquires a finite VEV H0=v  via the Brout-

Englert-Higgs mechanism. Its value is directly related to the experimental four-fermion 

coupling constant GF [3]. The VEVs of the Goldstone modes vanish.  

 The standard Higgs potential combines a quadratic with a biquadratic term: 

(2) V =  2  0
†0 + [0

†0]
2       General gauge 

V =  ½2  H0
2  +  ¼H0

4       Unitary gauge 

Using the pairs 0
†0 or H0

2 as variables simplifies the potential to a linear plus a 

quadratic term, providing a hint that pairs may play a role in Higgs interactions. 

The SU(2) gauge bosons form a triplet (W0
1,W0

2,W0
3). The sum over gauge boson 

pairs iW0
i
,W0

i, is a Lorentz scalar and a SU(2) singlet, thereby matching 0
†0. That 

suggests a proportionality between a pair of Higgs bosons and pairs of gauge bosons: 

(3) 0
†0  =  ½ [H0

2 +iwi
2]    ½iW0

i
,W0

i, =  ½i (W0
iW0

i)               (+) metric 

Using the equal sign gives each bosonic degree of freedom the same weight. The minus 

sign compensates for the negative scalar products of the space-like gauge bosons. 

 Instead of defining 0 via (1), the Goldstones wi  can be incorporated in nonlinear 

fashion as SU(2) matrix U (see [5], including a note regarding V0, defined below): 

(4) U = exp i j     j     =  cos(x) 1  + i   sin(x) y/x         x=          |w|=(iwi
2)½ 

|w| 
  v 

           =  1 + i y  ½x2 1  ⅙x2  i y + O(x4)                       y =j     j  

       H0U  0    for        , x « 1 

The gauge bosons are incorporated via the gauge-invariant derivative D of the matrix U: 

(5) iDU =  iU  + g (jW0
j
,½j) U                 x =j           

A four-vector of hermitian 22 matrices V0, represents the gauge bosons W0
j
,: 

(6) V0,= (iDU)U† = ½gjW0
j
,j   y i xx 1 + (⅓xx y + ⅙x2 y) + O(x4) 

(7) tr[(V0V0)] = ½g2 iW0
i
, W0

i, + 2i         + O(x4)    

Notice that the Goldstone terms contain the longitudinal vectors  i       k    , while the 

gauge bosons W0
j
, are purely transverse. As a result, their mixed products vanish in (7). 

Also, the mixed products between the matrices y and 1 have vanishing trace.  

 1  
2 

wj v  

wjv

|H| 
  v 

 wj 
 |w| 

wj
v

wiwi vv
wi v

wi v  
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Equation (7) provides a gauge-invariant definition of the composite Higgs boson: 

(8) 0
†0 =  tr[(V0V0)]        General gauge 

(9) ½H0
2 + ½iwi

2  =  g2 ½i (W0
iW0

i)  2i         + O(x4) 

(10) ½H0
2  =  g2 ½i (W0

iW0
i)       Unitary gauge      

Notice a subtle, but conceptually-significant difference from Ref. [2], where the 

composite Higgs boson was defined in terms of observable gauge bosons. Here we start 

with lagrangian gauge bosons and discuss observable gauge bosons in Section 3. Making 

the definition in the Lagrangian preserves explicit SU(2) gauge symmetry.      

 The leading term on the left side of (9),(10) comes from the VEV of the Higgs 

boson H02 =v2 , because the observable Higgs field H represents small oscillations about 

the VEV. Otherwise the VEV would not be noticed on top of the oscillations. This 

implies that the leading term on the right side must be due to finite VEVs of gauge boson 

pairs. A vector field with a finite VEV W0
i would violate Lorentz invariance of the 

vacuum by specifying a specific direction in space-time. This problem is avoided by 

having different orientations for the expectation values W0
i of individual field quanta, 

depending on their momenta [2]. These EVs change from one gauge boson to another and 

average out to zero after summing over all virtual gauge bosons in the vacuum of 

quantum field theory (compare the summation over the vacuum photons in the 

calculation of the Casimir effect). But the scalar products (W0
iW0

i) do not average out. 

They provide a finite VEV to match that of the Higgs boson. The leading term of (9),(10) 

then establishes a relation between v2 and scalar products of gauge boson EVs: 

(11) v2 = g2i (W0
iW0

i)        General gauge 

 v = 3gw           defining   w2 = (W0
iW0

i)    for  i =1,2,3  

The smaller terms of (9),(10) will be worked out at the end of Section 3, after switching 

from lagrangian bosons to observable bosons in (17). That will lead to an approximate 

(tree-level) relation between the mass terms of the observable Higgs and gauge bosons: 

(12) †   tr[(VV)]        General gauge 

(13) ½H2 + ½iwi
2    g2 ½i (W

iWi)  

(14) ½H2
    g2 ½i (W

iWi)                             

wiwi vv

     Unitary gauge 
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 An important consequence of (14) is the determination of the Higgs mass from the 

four-fermion coupling constant GF in [2]. This can be seen after generating the mass 

Lagrangians by multiplying (14) with (½v)2 : 

(15) LM
H = ½MH

2 H2     with    MH  ½v 

(16) LM
W = ½ MW

2 i (W
iWi)     with    MW½v g        

  LM
H   LM

W

With the tree-level gauge boson mass MW½v g taken from the standard model, the 

tree-level Higgs mass becomes MH  ½v = 25/4GF
1/2 = 123.1 GeV. That matches the 

experimental result of 125.1 GeV within 2% [3]. A similar match exists between 

MW ½vg = 77.5 GeV and the observed value of 80.4 GeV. Such a margin is typical for 

the tree-level approximation which neglects corrections of the order w = g2/4  3%. 

 
3.  Expectation Values of Gauge Bosons 

 The derivation of (12)-(14) from (8)-(10) calls for a more detailed analysis of the 

gauge boson EVs. They have to be transverse for two related reasons: 1) Only the 

transverse modes are gauge-invariant, while the longitudinal mode is traded for a 

Goldstone scalar when going from the unitary gauge to the Landau gauge. 2) A gauge-

symmetric Lagrangian requires massless gauge bosons, which are purely transverse. 

These arguments also apply to their EVs. One can then decompose the lagrangian gauge 

bosons W0
i into their EVs W0

i  and the transverse component of the observable gauge 

bosons: W0
i = W0

i+WT
i .  

 To obtain the polarizations of the gauge bosons contained in the composite Higgs 

boson we start at its definition, which involves pairs of identical gauge bosons. In a pair 

they move around their center of mass with opposite momenta. Those serve as reference 

for the polarizations / helicities. Both have the same circular polarization / helicity in this 

state. The wave function of the singlet ground state with even parity has the form 

(+)/2. (For a more detailed description see [6],[14].)  The three gauge boson pairs 

defining the Higgs boson all have the same polarization vector . They become products 

of  with scalar operators wi plus a common expectation value w. Similar to the Higgs 

boson, a SU(2) gauge boson is decomposed into an EV and an observable gauge boson:  

(17) W0
i = W0

i+Wi       Wi= 0       W0
i= w     WT

i  = wi   General gauge 
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(18) (*) =              (WT
i WT

i ) = (wi)2 

Only transverse components WT
i  appear explicitly. The longitudinal componens WL

i are 

gauge-dependent and thus require gauge fixing. This is an elaborate procedure, but it has 

been performed routinely for the standard model and its extensions.  

To obtain the relations (12)-(14) between the observable Higgs and gauge bosons 

we insert (17) into (9): 

(19)  ½H0
2 + ½iwi

2  =  g2 ½i (W0
iW0

i)    2i            + . . .     General gauge wiv
wiv

    H0
2 = v2 + 2vH + H2         (W0

iW0
i) = (W0

iW0
i) + 2(W0

iWT
i ) + (WT

i WT
i ) 

It is tempting to identify the derivatives of the Goldstones wi  in the last term with 

longitudinal gauge bosons. Those vanish in the Landau gauge, where their role is played 

by the Goldstones. 

There is a more general argument to justify the relations (12)-(14). These are 

between between the mass Lagrangians of the Higgs and gauge bosons. Since mass is an 

observable, they must be independent of the chosen gauge. However, they represent only 

the (dominant) tree-level masses and omit self-energy corrections. Therefore it is not 

surprising to see a deviation of a few % between the results in (15),(16) and the observed 

masses.   

 With the conversion from lagrangian to observable bosons in hand, one can 

expand the relation (10) between Higgs and gauge bosons into powers of their dominant 

quantities, i.e. , their VEVs. The first three terms of the expansion have the form 

VEVVEV, VEVBoson, and Boson Boson . The leading term produces the relation (11) 

between VEVs. The next-to-leading term provides a linear relation between observable 

Higgs and gauge bosons: 

(20) vH  g2i (W0
iWi)         General gauge 

 H    (g/3) i wi
    0.38 i wi      via (11),(17) 

That makes it possible to replace Feynman diagrams containing the Higgs boson by 

diagrams for its constituents, the gauge bosons Wi. One can then proceed by analogy to 

other composite particles, such as replacing the proton by quarks and gluons. The third 

terms in the expansion leads to the relation (14) between pairs of observable bosons 

which determines the mass of the Higgs boson. 
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4.  Symmetry-Breaking Gauge Boson Potential 

In order to develop a finite VEV one needs a gauge-invariant potential that has a 

symmetry-breaking ground state. In the standard model, this is accomplished by the ad-

hoc potential for the scalar Higgs boson which combines an attractive quadratic term 

with a repulsive quartic term. These are associated with two adjustable parameters 2 

and  . The SU(2) gauge bosons, on the other hand, exhibit non-abelian self-interactions 

which generate a suitable potential dynamically. These do not involve adjustable 

parameters (apart from the gauge coupling g  which is also adjustable in the standard 

model). The gauge boson potential corresponds to the one-loop self-interactions shown in 

Figure 1. They contain quadratic and quartic terms analogous to the Higgs boson 

potential. For the diagrams in Fig. 1 these are of O(g2) of O(g4), respectively. They come 

with the effective coupling constants 0 and 5. Those can in principle be obtained by 

evaluating the diagrams in Figure 1, but such a calculation would go beyond the scope of 

this work. Instead, we will use compatibility with the standard Higgs potential to 

constrain them. 

          i jk 

            time                W0
j       W0

j 
Wk 

Wi 
 Wk             W

k 

 W0
j                                    W0

j 
 
     W0

j                         W0
j,k        W0

j                       Wj,k       W0
j                      W0

j,k   

  

 

     W0
j                           W0

j,k           W0
j                 Wj,k          W0

j                       W0
j,k 

 W
k         W

k,j 

Wi 

Wi 

Wi 

Wi 

Wi

 

Figure 1   One-loop self-interactions of the SU(2) gauge bosons. These determine the 
symmetry-breaking potential. Top row: The quadratic self-energies of O(g2) which 
determine L0 ,0 . Bottom row: The quartic + biquadratic self-interactions of O(g4) which 
determine L4 ,4 and L5 ,5 . They describe elastic scattering of gauge bosons [7],[8]. 
External lines correspond to lagrangian gauge bosons W0

i which contain an expectation 
value (EV), while internal lines Wi lack an EV (see also Fig. 2 in Appendix A). To 
preserve the equivalence of the three gauge bosons W0

i they have not been rearranged into 
W0

 and W0
3. 

 W
i 

Wk 

 
 One can make a generic ansatz for the gauge boson potential (and the 

corresponding Lagrangian) which satisfies gauge symmetry together with a custodial 

symmetry [5],[9]. The four-vector V0, defined in (4)-(6) generates three Lagrangians: 
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(21) L0 = 0 ¼v2  tr[V0,V0
]          0 ¼g2v2½i (W0

iW0
i)       ¼v2MH

2    ¼g2v2MW
2  

(22) L4 = 4   tr[V0, V0,]  tr[V0
V0

]     4 ¼g4 jk(W0
jW0

k)(W0
jW0

k) 

 L5 = 5   tr[V0,V0
]  tr[V0,V0

]     5 ¼g4  jk (W0
jW0

j)(W0
kW0

k) 

On the right side the Lagrangians have been reduced to the unitary gauge. To keep 0 

dimensionless, L0 includes the scale factors MH
2 and MW

2  representing the squared tree-

level masses of the Higgs and gauge bosons [9]. The factors g2 and g4  correspond to the 

diagrams in Fig.1 top and bottom. While L4 and L5 consist of quartic+biquadratic terms, 

their difference L45 is purely biquadratic: 

(23) L45 = 45 (L5/5L4/4)    45 ¼g4 jk[(W0
jW0

j)(W0
kW0

k) (W0
jW0

k)2 ] 

L45 is proportional to the non-abelian gauge Lagrangian Lbq which describes the non-

abelian vertex between four SU(2) gauge bosons (see Appendix A). It does not contribute 

to the potential of the composite Higgs boson. That leaves two independent Lagrangians 

for the dynamical gauge boson potential. These are chosen to be L0 ,L5: 

(24) Vdyn = (L0+ L5) = 0 ¼v2 tr[(V0V0)]  5 {tr[(V0V0)]}
2 

(25) Vdyn =  0 ⅛g2v2i (W0
iW0

i)  5 ¼g4{i (W0
iW0

i)}2  Unitary gauge 

Choosing L5 avoids mixed scalar products of the form (W0
jW0

k) which would complicate 

the minimization of the potential. L0 is an attractive potential arising from the gauge 

boson self-energies (see [2]). It drives the potential minimum toward a finite EV. The 

quartic potential L5 must be repulsive to prevent a runaway of the potential minimum to 

 at large field amplitudes. To find the appropriate signs for the coupling constants one 

needs to take into account two minus signs, one from V=L , and the other from the 

negative scalar products of space-like gauge bosons in (V0V0) and (W0
iW0

i). A potential 

with an attractive quadratic term and a repulsive quartic term requires 0<0 and 5<0. 

 The gauge boson potential (24) mimics the standard Higgs potential (2). This 

becomes obvious after replacing the standard Higgs field 0
†0 by the composite Higgs 

field  tr[(V0V0)] via (8)-(10): 

(26) V =  2  tr[(V0V0)] + {tr[(V0V0)]}
2 

The comparison with (24) establishes a simple connection between the Higgs potential 

parameters 2,  and the gauge boson couplings 0 , 5:  
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(27) 2 = 0 ¼v2    ¼v2MH
2  = 5 0<0 , 5<0 

 As a consequence of this similarity the minimization of the gauge boson potential 

becomes similar to that of the scalar Higgs potential. It requires only the solution of a 

quadratic equation in the variable i(W0
iW0

i). The potential takes its minimum over a 

plane in the three-dimensional space spanned by the coordinates (W0
iW0

i), i =1,2,3: 

(28) Vdyn = 26v42
0/5  i (W0

iW0
i) = ¼v2/g20/5          at the minimum 

This relation connects the EVs of the gauge bosons with the VEV v of the Higgs boson. 

Assuming equal EVs simplifies i (W0
iW0

i) to 3w2. This assumption will not be made 

here to allow for trade-offs between the three EVs W0
i allowed by (28). 

 
5.  Compatibility Criteria and their Consequences 

 The EVs W0
i obtained from the gauge boson potential are connected to the Higgs 

VEV v by the relations (11),(20) derived from the definition (10): 

(29) i (W0
iW0

i) = v2/g2         General gauge 

(30) i (W0
iWi)  v/g2H        General gauge 

Compatibility between the two VEVs obtained in (28) and (29) from the two potentials 

fixes the ratio of the coupling constants in the gauge boson potential: 

(31) 5/0  ¼ 

 This line of reasoning can be applied to other quantities as well. To obtain a 

second constraint for 0 ,5 we apply this criterion to the gauge boson mass. In the 

standard model one obtains MW
2 =¼g2v2 via the gauge-invariant derivatives D in the 

kinetic Lagrangian (D0)
†(D0) of the Higgs boson. This term combines a pair of 

gauge bosons from D with a pair of Higgs VEVs v from 0. Attempting a similar 

scheme with the kinetic Lagrangian of the gauge bosons in (A1),(A2) would not work, 

since this term vanishes for the gauge bosons that form the composite Higgs boson (see 

Appendix A). Instead one can use the scheme that determines the Higgs mass in the 

standard model. After converting the Higgs potential from the lagrangian field H0 to the 

observable field H, its mass is extracted from the H2 term. Here we convert the gauge 

boson potential (25) from W0
i to Wi via (19) and collect the mass terms (WiWi): 

(32) (W0
iW0

i)   (W0
iW0

i) + 2(W0
iWi) + (WiWi)     Unitary gauge 
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       VM
dyn   0 ⅛g2v2 i (W

iWi)   5 ½g4{i (W0
iW0

i) i (W
iWi) + 2[i (W0

iWi)]2} 

     {0 ⅛g2v2i (W
iWi)   5 ½g4[v2/g2 i (W

iWi) + 2v2/g4H2]}  

     (¼0  35) g2v2 ½i (W
iWi) 

(33)                  =  MW
2 ½i (W

iWi)  MW
2 = ¼g2v2      (¼0  35)   ¼ 

The two sums containing W0
i are converted to v2,H2 via (29),(30). H2 is then converted 

to g2i (W
iWi) via (14). The results for MW

2 from the gauge and Higgs boson potentials 

are compared in (33). The resulting constraint for 0 ,5 is combined with the constraint 

(31) from the VEVs to obtain the coupling constants of the gauge boson potential: 

(34) 0  ½       5  ⅛ 

An evaluation of the diagrams in Fig. 1 can then be used to check the potential (25). The 

two Lagrangians L0 ,L5 are expected to provide the dominant contribution due to their 

close relation with the standard Higgs potential. But there are additional gauge-invariant 

Lagrangians available, such as analogs of  L0 ,L5  that violate custodial symmetry [5]. 

 A promising additional result arises when applying Fermi’s Golden Rule to the 

relation (13) between observable gauge bosons and the composite Higgs boson. This 

involves averaging over all 3 polarization states  of the 3 observable gauge fields Wi 

and summing over the 4 components of the scalar Higgs field . By simply counting the 

degrees of freedom one obtains:  

(35) 4 = g2 3 3   g2 = 4/9  g = 2/3  

That reproduces the value of the weak SU(2) coupling g with tree-level accuracy [3]. 

 
6.  Summary and Outlook 

 In summary, a symmetry-breaking mechanism for the minimal SU(2) Yang-Mills 

theory is explored, where the gauge bosons themselves break the gauge symmetry via 

their quadratic and quartic self-interactions. The respective coupling constants 0,5 can 

be mapped onto the two parameters , of the standard Higgs potential via the composite 

Higgs model proposed in [2]. An estimate of 0 and 5 is obtained by requiring that the 

scalar Higgs potential should not depend on whether it is derived from the gauge bosons 

or from the standard Higgs boson. The coupling constants 0,5 can also be calculated in 

leading order from one-loop diagrams, thereby providing a self-consistency criterion.  
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 This minimal model may serve as prototype for solving the mass gap problem for 

Yang-Mills gauge theories in general [4]. It suggests that gauge bosons are able to break 

their symmetry dynamically and thereby acquire mass. A pair of composite Higgs bosons 

formed by pairs of SU(2) gauge bosons represents the simplest possible bound state in 

Yang-Mills theories. This is the prototype for the glueballs that have been studied 

extensively for the SU(3) symmetry of the strong interaction [14]. The weaker SU(2) 

coupling and its smaller group size should make the mass gap problem more tractable. 

Calculations of  SU(2) gauge boson self-interactions were reported in Refs. [5],[7]-[13], 

as discussed in [2]. Most of them focused on the high energy limit in order to explore 

unitarity constraints at the TeV scale. Experimentally, it will be interesting to get access 

to the threshold v  2MH for producing Higgs pairs [15], the SU(2) version of glueballs. 

The composite Higgs model can be extended from SU(2) to the full symmetry 

group of the standard model by adding three rules for constructing Feynman diagrams: 

1)  Omit all diagrams containing the standard Higgs boson. 

2)  Define the composite Higgs boson in terms of SU(2) gauge bosons using (1),(17),(20). 

Treat this composite like a hadron composed of gluons. 

3)  In diagrams containing SU(2) gauge bosons, include their expectation values [16]. 

The extension to the SU(2)U(1)Y symmetry of the electroweak interaction is outlined in 

Appendix B. The addition of the strong interaction with SU(3) symmetry follows the 

standard model, since it does not involve the SU(2) gauge bosons.  

 
Appendix A:    Biquadratic Gauge Boson Lagrangians 

While the potential (L0+L5) can be minimized analogous to the standard Higgs 

potential, the biquadratic Lagrangian L45 in (23) introduces scalar products (W0
jW0

k) with 

jk which tend to produce more complex potential surfaces. L45 is proportional to the 

non-abelian part Lbq of the kinetic gauge boson Lagrangian: 

(A1) Lkin = ¼ i  W0
i
 W0

i         W0
i
  =  [W0

i
 W0

i
]  g jkijk W0

j
W0

k
 

(A2) Lbq  = ¼g2 ijkmn ijk
 imn W0

j
W0

k
 W0

m W0
n                    i , j,k,m,n = 1,2,3 

                  = ¼g2 jkmn [δ
jm

 δ
kn δ

jn
 δ

km] W0
j
W0

k
 W0

m W0
n 

      = ¼g2 jk[(W0
jW0

j)(W0
kW0

k) (W0
jW0

k)2 ] 
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In the following we consider only gauge bosons that contribute to the composite Higgs 

boson (and to its potential). These are restricted by (17) to have a common polarization 

vector . The lagrangian gauge bosons in the last line of (A2) can then be decomposed 

into EVs and observable gauge bosons via (17):  W0
i = W0

i+WT
i , W0

i= w  , WT
i  = wi   

For Higgs-like terms of the form (WkWk) in (3) one finds: 

(A3) ¼g2jk[(W0
jW0

j)(WkWk) + (W0
kW0

k)(WjWj)]  =             1
st term 

 =  + ¼g2w2 jk[(WkWk) + (WjWj)]   =  + g2w2 i (W
iWi)   

(A4) + ¼ g2jk[(W0
jWk)2 + (WjW0

k)2 ] =  + ¼ g2w2 jk[(wk)2 +(wj)2] =        2nd term 

 =  ¼g2w2 jk[(WkWk)+(WjWj)] =  g2w2 i (W
iWi)             

In the 2nd term the vectors W0
j,k or Wj,k are first decomposed into w   or wj,k  , then 

sorted into equal pairs (wi)2, and eventually converted back into scalar products (WiWi). 

In the last conversion of (A3),(A4) the factor ¼ is compensated by reducing the 12 

elements in the sum jk  to 3 in the sum i . The final results for (A3) and (A4) cancel 

each other. Such cancellations also occur for the other terms generated by (A2). This is 

due to the requirement of equal polarization vectors for the gauge bosons forming the 

composite Higgs boson. That makes it possible to convert the 2nd term to the same form 

as the 1st term, but with opposite sign. Without this constraint one obtains non-zero mass-

like terms with the polarizations =, = for the 1st term and =, = for the  2nd term 

(with ,,, referring to the gauge bosons j ,j ,k,k). The Lagrangian L45 defined in (25) 

is proportional to Lbq and thus exhibits the same properties. 

 In addition to the biquadratic vertex (A2) there are other diagrams of O(g2) to be 

considered, as shown in Figure 2. They consist of two trilinear vertices connected by a 

propagator (compare gauge boson scattering [7],[8]).  

W0
j 

W0
j
 

W0
k

      W0
k 

Wi

               

             
ijk
     

 
            

 

W0
j W0

k 

Figure 2   Biquadratic tree-level interactions of O(g2) for SU(2) gauge bosons W0
j ,W0

k 
(jk). In addition to the quadruple vertex there are diagrams consisting of trilinear 
vertices connected by an internal Wi. Time is to the right. 

 W0
j W0

k 

Wi  

 W0
k,j 

0
j 0

j,W W k 

W0
k 

Wi

W0
j 

   W0
k,j   W0

k 

  W0
j,k 
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These vertices originate from mixed products between the derivatives and the non-

abelian term in the Lagrangian (A1):  

(A5) Ltri = ½ g   ijkijk [W0
i
 W0

i
] W0

j
W0

k
  

The derivatives associated with the triple vertices eliminate the EVs from the internal 

bosons Wi in Figures 1,2 while the external bosons W0
j ,W0

k  keep their EVs. 

 
Appendix B:    Extension to the SU(2)U(1)Y Electroweak Symmetry 

 The electroweak interaction mixes the SU(2) gauge boson W0
3 with the U(1)Y 

gauge boson B0 to form the new mass eigenstates Z0 and A0 (the photon). The remaining 

SU(2) gauge bosons W0
1,W0

2 form the charge eigenstates W0
: 

(B1) Z0
 = (gW0

3gB0)/(g2+g2)½  A0 = (gB0+gW0
3)/(g2+g2)½ 

 W0
+ = (W0

1 iW0
2)/2              W0

 = (W0
1+ iW0

2)/2 

The ratio g/g = tanw determines the weak mixing angle w. The couplings g , g, and e of 

the symmetry groups SU(2),U(1)Y, and U(1)EM are given by: 

g /(g2+g2)½ = cosw= cw      g/(g2+g2)½ = sinw= sw      e =gg/(g2+g2)½ = g sinw= gcosw 

Analogous to (17) one can extract the EVs from the gauge bosons Z0 and B0: 

(B2) Z0
 = Z0+ZT       Z0= z     ZT= 0 ZT = z   Landau gauge 

 B0
 = B0+BT       B0=b     BT= 0 BT = b  

The EV of the photon A0 vanishes, since it represents the remaining electromagnetic 

U(1)EM symmetry. The VEVs z ,b are obtained by inserting W0
3=w3 from (17) into 

the EV of (B1), taking into account A0= 0: 

(B3) B0  =  g/g W0
3  =   g/g w3          b = w3g/g  = w3sw/cw 

 Z0  = (g2+g2)½/g  W0
3 =  z     z = w3(g2+g2)½/g = w3/cw 

The ratio of the VEVs w3/z = cosw is identical to the tree-level mass ratio MW/MZ. 

 In order to generalize the definitions of the composite Higgs boson and the 

symmetry-breaking gauge boson potential to SU(2)U(1)Y one has to include the U(1)Y 

gauge boson B0 in the gauge-invariant derivatives (5),(A1): 

(B4) DU = U  ig W0,U + i gUB0,           W0,= j W0
j
,½j   B0,= B0,½3 

(B5) W0
i
  =  [W0

i
 W0

i
]  g jkijk W0

j
W0

k
  B0  = [B0   B0] 
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From there one can proceed as in Sections 2,3 after the following conversions: 

(B6) W0
1

  (W0
++W0

)/2          W0
2  i (W0

+W0
)/2 

 W0
3

  (gZ0+ gA0)/(g2+g2)½ = cwZ0+ swA0 

The definition (10) of the composite Higgs boson and the relations (11),(20),(14) become: 

(B7) H0
2  = g2  [2(W0

+W0
) + (Z0Z0)/cw

2 ]      Unitary gauge 

(B8) v2 = g2[2(W0
+W0

)  + (Z0Z0)/cw
2 ]     General gauge 

(B9) vH  g2 [(W0
+W)+(W+W0

) + (Z0Z0)/cw
2 ]    General gauge  

(B10) H2
   g2  [2(W+W) + (ZZ)/cw

2 ]      Unitary gauge 

The gauge boson potential takes again the form Vdyn =  L
dyn = L0L5: 

(B11) L0 = 0 MW
2  [(W0

+W0
) +½ (Z0Z0)/cw

2 ]     MW
2 = ¼ g2v2 

 L5 = 5 ¼g4  [(W0
+W0

)2+(W0
+W0

)(Z0Z0)/cw
2 +¼(Z0Z0)

2/cw
4 ] 

The photon is massless and therefore does not contribute to L0,L5 which are built from 

mass Lagrangians. The potential minimum has the same depth as in (28) for pure SU(2): 

(B12) Vdyn
 = 2

6v42
0/5      for [2(W0

+W0
)+ (Z0Z0)/cw

2 ] = ¼v2/g20/5 

The minimum extends now along a line in the two-dimensional space spanned by the 

coordinates (W0
+W0

) and (Z0Z0), as shown in Fig. 7a of  [2]. A well-defined point on this 

line can be selected by requiring identical VEVs wi for the three gauge bosons W0
i, even 

after mixing. This converts (B8) into v2 = g2[2w2+z2/cw
2 ] and (B3) into z2=w2/cw

2 , with the 

common VEV wi = w= v /[g(2+cw
4)½] =194 GeV and z = 220 GeV. The ratio of the VEVs 

w/z = cosw then becomes equal to the tree-level mass ratio MW/MZ. 

 The compatibility criteria (31),(33) for the coupling constants 0,5 require 

identical results for gauge boson EVs and masses from either the Higgs potential (2) or 

the gauge boson potential (B11). The comparison of the EVs in (B8) and (B12) yields: 

(B13) 5/0 = ¼ 

This holds for all values of g. Consistency of the gauge boson masses involves the 

quadratic part of the potential for observable gauge bosons. As in (32),(33) one obtains: 

(B14) (W0
+W0

)   (W0
+W0

) + [(W0
+W)+(W+W0

)] + (W+W) 

 (Z0Z0)   (Z0Z0) + 2(Z0Z0) + (ZZ) 
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 VM
dyn

  0 ⅛g2v2  [2(W+W) + (ZZ)/cw
2 ]     Unitary gauge 

   5 ½g4 {[2(W0
+W0

) + (Z0Z0)/cw
2 ]  [2(W+W) + (ZZ)/cw

2 ]  

           + 2[(W0
+W)+(W+W0

) + (Z0Z0)/cw
2 ]2} 

           (¼0  35) g2v2  [(W+W) + ½ (ZZ)/cw
2 ]   = [MW

2 (W+W) + ½MZ
2 (ZZ)]  

Use of (B8)-(B10) leads to the last line. The compatibility condition becomes: 

(B15) MW
2 = ¼g2v2        MZ

2  = MW
2/cw

2    (¼0  35)   ¼ 

This is again independent of g, leaving the combined result (34) for 0 ,5 unchanged: 

(B16) 0  ½       5  ⅛ 

 The full set of diagrams for the Lagrangians L0,L5 (including fermions) is given in 

Fig. 4 of [2]. Calculations related to the coupling constants 0,5 have been published in 

[5],[7]-[13]. They still need to be performed for an energy scale comparable to the EVs 

{w,z} around which the fields W,Z oscillate. One can estimate the (transverse) self-

energy T of the gauge bosons using the identification L0  [T
W (W0

+W0
) +T

Z ½(Z0Z0)],  

i.e. , replacing {MW
2 ,MW

2 /cw
2 } by {T

W,T
Z} in (B11). Assuming a common VEV wi = w  we 

can use the values of {w,z} from above to obtain: 

(B17) T
W(w2) T

Z(z2)  0¼ g2v2  (57.7 GeV)2     at   w=194 GeV, z =220 GeV 
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