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Angle-resolved photoemission is used to determine the energy bands of permalgyetNi and
compare them to Ni, Co, and Cu. The energy and momentum resolst@01 eV and~0.01 A%

is high enough to resolve the magnetically split bands at the Fermi level that are responsible for
spin-dependent conductivity and tunneling. For the band we find the magnetic exchange
splittings SE¢=0.27 eV (0.23 eV for Nj, Ske,=0.16+0.02 A~1 (0.12+0.01 A~ for Ni), the

Fermi velocityvg;=(0.22+0.02)16 m/s (0.28<10° m/s for Ni, 0.33< 10° m/s for fcc Co, and

the widthssk;<0.11 A~! and sk, =0.24 A~1. Compared to Ni, permalloy features a 27% larger
magnetic splitting of the Fermi surface and an extremely short mean free path of 4—8 A for minority
spins. © 1998 American Institute of Physids$S0003-695(98)01249-2

Permalloy is one of the most common materials in mag{ocalized s,p electrons form a common band, whereas the
netic data storage and can be found in a variety of magnetilocalizedd electrons produce a Fe impurity level separated
micro- and nanostructurésSeveral useful properties come from the Nid levels. There has been a long-standing discus-
together to make permalloy so pervasive: The magnetostricsion about the electrons that are responsible for spin trans-
tion of Ni—Fe alloys vanishes at the composition of permal-port in 3d transition metals:** They are crucial for magnetic
loy (NiggFey,), keeping the strain in small structures from devices such as the spin valve, the spin transistor, and the
magnetizing the material. High permeability and low coer-magnetic tunnel junction. Thed3electrons carry a large
civity make permalloy an excellent soft magnet and providemagnetization and a high density of states, compensated by a
low switching fields in sensors. State-of-the-art readingow group velocity. Thes,p electrons have a large group
heads for hard disks utilize the anisotropic magnetoresistandéelocity but low density. A possible solution of this dilemma
(AMR) of permalloy, or the giant magnetoresistafGMR) has been the notion of an “itinerat band” that exhibits
of permalloy/Cu/Co films. Particularly remarkable is the magnetism as well as conductivity.
large difference in conductivity of majority and minority ~ We use high resolution photoelectron spectroscopy to
spins in permalloy:® Most recently, it is being studied in the Map out the energy band dispersion and lifetime broadening
context of spin-polarized tunneling for a nonvolatile, mag-Of electrons close to the Fermi levig:. This technique has
netic random access memoMRAM). Surprisingly, it advanced in recent years to achieve energy resolutions better
emits electrons with a higher spin polarizati#6%) than than the thermal enerdy, even for low tem_peratures. That
pure Fe and Ni{40% and 23%—33%" even though its mag- makes the electrons &g which are responsible for conduc-
netic moment is lower than that of Fe. tivity, magnetoresistance, and spin-polarized tunneling ac-

Despite this rich spectrum of magnetic phenomena angessible. Our focus lies on the region where the so-called

applications, very little is known about the underlying elec-  S:Pband” crossesg and flattens out to beconelike. At
tronic structure. To our knowledge, the energy bands of perltiS Point, we find both, a sizable magnetic splitting and a
ubstantial group velocity, suggesting that this part of the

malloy have not been mapped yet, despite extensive work onv Sk S F
Ni.>~7 Calculations of magnetic energy bahdsare not as Fermi surface represents the itinerdridand. In addition, we

reliable as one might expect. For example, the magnetiélre able to respl_ve t.he- energy and momentum broadening
splitting of thed bands in Ni is overestimated by a factor of caus;d by :‘hehfg]{te Ilfet|m3 a;nd_ rtnean ftreet pz.itt:: of.eI::-ctrons
2 to 3 in first principles, local density calculations, and the"'e@rEr , WHICh bings our data into contact with spin rans-

calculated band width is 40% too larg&ermi surface tech- port measurements in GMR structures. The salient features

- . of our results are a 27% larger magnetic splitting of the
niques, such as the de Haas van Alphen efteat difficult Fermi surface compared to Ni, and a much shorter minority

in alloys because of the reduced mean free path. Even be-". " ~" :
o . Spin lifetime atEg , which produces a mean free path of only
yond the specific case of permalloy, basic concepts about thf[i g A

band structure of alloy8 can be tested. Is there a common Permalloy was grown epitaxially on a D0 surface in
band structure, or a separate set of levels for each of the y 9 P y

constituents? In permalloy, one might speculate that the deqrder to minimize lattice mismatctr-0.799 and to have a
cinp Y gnt sp direct comparison with the Ni band structure under exactly

the same conditions. The permalloy film was about 10 mono-
dpermanent address: Synchrotron Radiation Center, UW Madison, Stoughayers (35 A) thick, which exceeds the escape depth of the

ton, WI 53589-3097. L . )
Ypermanent address: MINT Center, University of Alabama, Box 870209,ph0toeIECtronS' The StOIChlometry was monitored by phOtO

Tuscaloosa, AL 35487-0209. emission from the Fef8and Ni 3 core levels The films
9Electronic mail: himpsel@comb.physics.wisc.edu were deposited below room temperat(t60—-200 K to pre-
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FIG. 1. Energy and momentum distribution of photoelectrons near theryg 2. Momentum distribution of photoelectronsE (horizontal cut in
Fermi level crossing of th&; band, obtained with a two-dimensional pho- Fig. 1). The maxima give the Fermi wave vectdss and the spin splitting

toelectron detectothigh photoelectron intensity is dgrkThe four panels Skex=ke;— ke, . The width 5k of the Lorentzian fit curves can be used to
display data from th¢100) surface of permalloy (NigF&2), Ni, Cu, and  gerjye the mean free path=1/6k. Note the large width of the minority
fcc Co. For N|,_the_ spin splitting of thé1 band is clearly visible, for _ peak in permalloy, which translates ian=4A.
permalloy the minority spin component is much weaker. In Co, the minority
spinX; band never reaches beldsy .

spin component is hard to discern, because it is much

broader and weaker. It can be observed more clearly in Fig.

vent island formation. A postanneal to 500—700 K sharpeneg, where a sharp majority spin Fermi level crossing is located
the photoemission features. Anneals higher thaB00 K next to a broad minority spin crossing. Theplitting in Fig.
caused Ni-rich films. For comparison, we also prepared @ js sk,,=0.16 A~* in permalloy andske,=0.12 A~ in Ni.
Cu(100 single crystal and grew an epitaxial fcc @00  The energy splitting in Fig. 3 iSE.,=0.27 eV in permalloy
film, 10 monolayers thick. Angle-resolved photoelectronand §E,,=0.23 eV in Ni, which is comparable to the split-
spectra were taken at100 K with an energy resolution of 9 ting of thed bands in NP The larger magnetic splitting of
meV (photons-electrons), using a new undulator beam line permalloy reflects its increased magnetic morte(it.0 ug
at the SRC and a Scienta spectrometer. The angular depeys 0.6 w5 in Ni), following a general tren§ in 3d transition
dence was determined by parallel detection over a 14° rang®etals. In Co, the magnetic splitting is so large that the mi-
with +0.15°(~0.01 A™%) resolution. Photons were incident nority spin3,; band moves up beyor .>°
at 50° from the emitted electrons with an in-plane electric  The intensity of the majority peak & is larger than
field vector. This geometry selects even states, such as thkat of the minority peakFig. 2), giving an area ratio of
s,pband. A,/A;=1.8in NiandA,;/A =2.0 in permalloy. It is inter-

Among the large volume ik-space sampled in this ex-
periment, only a small portion is represented in Figs. }3-3.
It contains the Fermi level crossing of tig s andp bands
along a[011] line starting from the(200) I" point. Thek
vector is determined following standard procedures. The par-
allel componenk' is given by the kinetic enerd,;, and the
polar angled via k'=%"1 (2mEg,)Y? sin 9. The perpen-
dicular componenk! is obtained fromE,;, via a free elec-
tron final state bandfine circles in Fig. 4. As a test of our
method, we determine the Fermi vectar and the Fermi
velocity vg=%"1 9E/ok of Cu from Fig. 1. The values are
consistent with de Haas van Alphen date-€1.23 A1,
ve=1.10<x10° m/s). In Cu, the Fermi velocity is compa-
rable to the free electron value of 1.880° m/s. In the tran-
sition metals Ni, permalloy, and Co, it is four times smaller
(ve=0.28, 0.22, and 0.3810° m/s, rsp)'* The steeps,p
band begins to hybridize with the fldtbands at the Fermi <~ L
level. Howeveryp is still three times as large as the average 20 -15 -1.0 -05 00 -20 -1.5 -1.0 -0.5 00
velocity (v)=0.1x10° m/s of thed-like stretch of the3, Energy relative to E; (eV)

band(from ke to F1.2= Er—0.6eV). . . FIG. 3. Energy distributions of photoelectrofw@rtical cuts in Fig. L The
A ferromagnetic exchange splitting of the; band is  momentunk! has been chosen close to the Fermi level crossing if0the

clearly visible in Fig. 1 for Ni. In permalloy, the minority direction. In cobalt the minority band lies abokg .
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[011] of photon energies. The resulting data points in Fig. 4 fall
K, Egi10 2 30 4 5607080% (e onto the spin-splitsp sheef!’ The most notable change
I —Kin from Ni to permalloy is a 27% larger magnetic splitting of
\ the Fermi surface.
In summary, we have mapped out the energy bands of
U permalloy for the first time and have demonstrated how high-
resolution photoemission near the Fermi level helps explain-
[100] ing magnetic and transport phenomena in terms of the under-
r X T X k lying band structure. There exist many other interesting
(000) (200) 1 magnetic alloys, such as invrwhere our method is di-
rectly applicable.

FIG. 4. Spin-split Fermi surface of thepband in Ni and permalloyfull
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