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Abstract 

The couplings among bosons are given for a Higgs boson composed of gauge bosons. 

Compared to the standard model there are three differences: 1) The standard Higgs boson 

is absent, and with it the self-couplings induced by the standard Higgs potential. 2) The 

Higgs boson is a composite of the SU(2) gauge bosons. 3) New couplings are introduced 

for the gauge bosons, because their scalar products acquire finite vacuum expectation 

values. The absence of a fundamental scalar particle in this model opens new avenues for 

mitigating problems with the standard Higgs boson, such as radiative corrections that 

increase quadratically with energy, hierarchy and naturalness. 
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1.  Background 

The discovery of the Higgs boson at CERN in 2012 was a strong boost for the 

Brout-Englert-Higgs mechanism of symmetry breaking. Since then, there has been 

enormous experimental and theoretical activity dedicated to detect new physics beyond 

the standard model. Such efforts aim at expanding our knowledge toward fundamental 

energy scales, such as the Planck scale of gravity and the unification scale of the three 

interactions comprising the standard model. These are many orders of magnitude beyond 

currently accessible energies. It remains unclear how far the standard model can be 

extrapolated from the narrow observational energy range [1]. Furthermore, the mass of 

the Higgs boson remains a free parameter of the standard model. Such considerations 

have led to the development of composite Higgs models [2].            

Existing composite Higgs models involve fermions as constituents [2]. In contrast 

to those, a Higgs boson was defined in [3],[4] that consisted of the three gauge bosons of 

the weak interaction. In this model, scalar products of gauge boson pairs take finite 

vacuum expectation values (VEVs) and thereby create their own masses  which then 

create the mass of the composite Higgs boson. The tree-level mass of the composite 

Higgs boson becomes half of its VEV v , which is directly related to the four-fermion 

coupling GF.  

The coupling of this composite Higgs boson to fundamental fermions was 

investigated in [5]. In the Yukawa coupling of the standard model, the Higgs boson was 

converted to scalar products between gauge bosons and their expectation values. These 

represented the Higgs – fermion couplings. Likewise, scalar products among gauge boson 

expectation values produced fermion masses. 

In the following, the techniques developed in [3],[4],[5] are employed for 

converting the standard model to the composite Higgs model. They can be summarized 

by three basic rules which are to be added to the usual Feynman rules for the standard 

model: 

1)   Omit the standard Higgs potential and the resulting Higgs self-interactions. 

2)  Express the composite Higgs boson in terms of SU(2) gauge bosons. 

3)  In diagrams containing SU(2) gauge bosons, include their expectation values. 
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Rule 1 eliminates all vertices originating from the standard Higgs potential. This 

may remove problems associated with a fundamental Higgs scalar, such as an effective 

Higgs mass that increases quadratically with the energy scale [6],[7]. The kinetic term of 

the Higgs remains unchanged. It leads to the propagator of the composite Higgs boson.  

Rule 2 converts the standard Higgs couplings to those of the composite Higgs. 

This is achieved by combining the quadratic relation defining the composite Higgs boson 

in [3],[4] with a linear relation used in [5] for the Yukawa coupling to fermions.  

Rule 3 adds expectation values (EVs) to the gauge bosons. These form vacuum 

expectation values (VEVs) for scalar products of gauge bosons with themselves, with 

their EVs, and among their EVs. Those generate masses for fundamental particles.  

 
2.  A Brief Review of the Composite Higgs Model 

In the standard model, the complex Higgs doublet 0 with the VEV v  is given by: 

(1) 0 =            w+ = w1i w2  H0 =  H0 + H         H0 = v       wi = 0 
   

    i w+ 

H0 i w3 

 1  
2 

A pair of composite Higgs bosons was defined by scalar gauge bosons pairs in [3],[4]: 

(2) 0
†0  =  ½ [H0

2 +iwi
2]  =  g2 ½i (W0

iW0
i)  

The subscript 0 indicates that these are the lagrangian bosons, which are massless but 

exhibit a finite expectation values (EVs). After subtracting their EVs one obtains the 

observable bosons, which are massive and lack an EV (shown without the subscript 0). 

Gauge invariance requires a specific form of the SU(2) gauge bosons W0
i and their EVs, 

consisting of scalar fields wi  multiplied by a common transverse polarization vector : 

(3)  W0
i = W0

i+Wi      W0
i= w      Wi = wi      (*) =       (WiWi) = (wi)2     

By moving the Goldstones wi to the right side of Eq. (2) via the unitary gauge, the gauge 

bosons Wi acquire longitudinal components WL
i . Like the wi , they have vanishing EVs. 

 After decomposing H0 and the W0
i  into VEVs and observable bosons, one can 

expand each side of (2) into a Taylor series (with H/v  and wi/w  as small quantities). The 

three leading terms provide three separate constraints [3],[4]. These have the form 

VEVVEV, VEVBoson, and Boson Boson: 

(4) v2    g2i (W0
iW0

i) v  3gw 
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(5) vH  g2i (W0
iWi)  H    (g/3) i wi 

(6) [H2 +iwi
2]    g2 i (W

iWi) 

3.  Interactions among the Composite Higgs Boson and the Gauge Bosons 

First, one has to eliminate the standard Higgs potential from the Lagrangian. It 

gets replaced by the gauge boson potential introduced in [3]. The remaining couplings 

between the composite Higgs boson and the gauge bosons originate from the gauge-

invariant derivative D in the kinetic Higgs Lagrangian: 

(7)  L0 = (D0)
†(D0)  D0 = [+ ig j½jW0

j
,]0 

D contains the weak coupling g and the Pauli matrices j, which connect the gauge 

boson triplet with the Higgs doublet. 

(8)  L0 = (0)
†(0) +  ¼g2(0

†0) (jW0
j
,W0

j,) 

Gauge fixing terms and ghost fields [6] have been omitted for clarity. Focusing on the 

observable Higgs boson H and its VEV v , the decomposition H0= (v+H) in (1) produces 

the kinetic term of H, the quadruple vertex HHW0W0, the triple vertex HW0W0, and the 

quadratic term W0W0, which contains the mass terms of the observable gauge bosons Wj:  

(9)  LH = ½(H)(H) +  

         + ⅛g2(HH) (jW0
j
,W0

j,) + ¼g2(vH) (jW0
j
,W0

j,) + ⅛g2v2(jW0
j
,W0

j,) 

The terms proportional to 2H0
2 and λH0

4 from the standard Higgs potential are absent. 

The additional decomposition W0
i = (wi +w)  of the gauge bosons in (3) yields 

the Lagrangian for the composite Higgs boson and its interactions with the gauge bosons: 

(10)  LH = ½(H)(H) +  

         + ⅛g2(HH) (jW
jWj,) + ¼ g2(vH) (jW

jWj,) + ⅛g2v2(jW
jWj,) 

            ¼g2(HH) (wjw
j)        ½g2(vH) (wjw

j)      ¼g2v2(wjw
j)  

            ⅛g2(HH) 3w2             ¼g2(vH) 3w2               ⅛g2v23w2 

The last two lines are generated by the VEV w of the gauge bosons. The minus signs 

reflect the space-like polarization vector of the gauge bosons (*= 1). 

At this point one could consider two additional conversions. Either eliminate the 

composite Higgs boson H in (10) by replacing it with gauge bosons using (4),(5): 
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(11)  v    (3g) w  H    (g/3) jw
j   

Or make the inverse substitution via (4),(5),(6) to eliminate the gauge bosons: 

(12) w    v /(3g)  jw
j    (3/g) H  (jW

jWj,)    (HH)/g2 

The latter yields an effective potential for the composite Higgs boson: 

(13)  LH = ½(H)(H)   ⅛ (HH) (HH)   ¼ (vH) (HH)   ⅛ v2(HH)          

                     ¼ (HH) (vH)    ½ (vH) (vH)    ¼ v2(vH) 
                     ⅛ (HH) v2         ¼ (vH) v2            ⅛ v2v2 

                 =  ½(H)(H)   ⅛H4   ½vH3   ¾v2H2    ½v3H   ⅛v4 

      =  ½(H)(H)   ⅛(H+v)4     =     ½(H0)(H0)    ⅛H0
4    =    LH0 

In contrast to the standard model, the quadratic term is absent in LH0. Only a higher order 

H0
4 term remains.  

 
4.  Conclusion 

 In summary, this work is meant to facilitate calculations involving the composite 

Higgs model. Three simple rules are provided for the overall changes to the standard 

model. Specific information is given here about the boson-boson couplings in this model. 

Combined with the Lagrangians for the Higgs-fermion couplings from [5], this enables 

minimal modifications to codes developed for the standard model.  

To get started, one could simply omit the composite Higgs boson from the 

diagrams for the gauge boson potential given in [3]. That makes sense, because the 

definition (2) shows that the amplitude of the composite Higgs boson is down by a factor 

of g from that of the gauge bosons. It is also consistent with the poor sensitivity of 

precision measurements to the Higgs mass, which has made the search for the Higgs 

boson more difficult. Already the signs of the quadratic and quartic terms of the gauge 

boson potential would provide an important self-consistency check. As pointed out in [3], 

early calculations of the quadratic gauge boson self-energy had already the correct sign.  

The extension from SU(2) to the SU(2)×U(1) symmetry of the electroweak 

interaction follows standard procedures, as outlined in [3],[6]. A further extension to the 

complete SU(3)×SU(2)×U(1) standard model can be accomplished by using the Higgs-

fermion coupling to fermions in [5] for the quarks. 
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