Abstract

The solar wind strahl is a narrow, field-aligned population of high-energy electrons that originate in the solar corona. The beam-like shape of the strahl in velocity space is believed to come from the competition of two physical processes: the mirror force tends to narrow this population, while Coulomb collisions wave-particle interactions tend to broaden it. Using data from the Wind satellites's SWE strahl detector, we investigate the detailed shape of the strahl and compare with predictions from a kinetic "self-similar" model.

Background

As shown in [1], electron heat conduction in the solar wind is well described by the predictions of a proposed "self-similar" kinetic theory. This theory applies when the temperature Knudsen number $\gamma(x) \sim \frac{T(dT/dx)}{r}$ is nearly constant distance with distance x along the flux tube (this condition was observed to hold 0.3-1 AU). From this point of view γ , which characterizes the importance of Coulomb collisions, is the central parameter that determines the shape of the distribution function $f(x, \mathbf{V})$. The self-similar kinetic equation is the drift-kinetic equation written under a change of variables (see "Definitions" below), under the assumption $\gamma(x) = \text{const.}$ In the high energy $(\xi >> 1)$, field-aligned $(\mu \approx 1)$ regime, the kinetic equation can be written as:

$$\alpha\mu F + \mu\xi \frac{\partial F}{\partial \xi} + (2 - \alpha')(1 - \mu)\frac{\partial F}{\partial \mu} = \frac{\beta}{\gamma\xi^2}\frac{\partial}{\partial \mu}(1 - \mu)\frac{\partial F}{\partial \mu}.$$
 (1)

Where we used the definitions:

$$f \equiv \frac{NF(\mu,\xi)}{T(x)^{\alpha}} = \frac{nF}{v_{th}^3}, \gamma \equiv -\frac{T^2(d\ln T/dx)}{2\pi e^4 \Lambda n}$$
$$\mu \equiv \mathbf{v} \cdot \mathbf{B}/(|v||B|) = \cos\theta, \xi \equiv \left(\frac{v}{v_{th}}\right)^2 \qquad (2)$$
$$\beta \equiv (1+Z_{eff})/2, \alpha' \equiv 2 - (\alpha+1/2)\alpha_B$$
$$n \propto x^{\alpha_n}, T \propto x^{\alpha_T}, B \propto x^{\alpha_B}$$

Self-Similarity of the Electron Strahl: Wind Data

Konstantinos Horaites¹, Stanislav Boldyrev¹

¹University of Wisconsin-Madison

Asymptotic Solution

The theory predicts the shape of the "strahl" distribution. Equation 1 has approximate solutions for the distribution $F(\mu, \xi)$ of the form:

 $F(\mu,\xi) \sim C\xi^{\alpha'-\alpha} \exp\left\{\Omega\gamma'\xi^2(1-\mu)\right\}$ (3)

Where we introduced $\Omega \equiv -\alpha' \alpha_T / \beta$, $\gamma' \equiv \gamma / \alpha_T$. An approximate expression for the full width at half maximum, θ_{FWHM} , of the distribution reads:

$$\theta_{FWHM} \approx \frac{2}{\xi} \sqrt{\frac{2\ln(1/2)}{\gamma'\Omega}}.$$
(4)

Data—SWE Strahl Detector

Our data comes from the Wind satellite's SWE strahl detector [2], which was an electrostatic analyzer devoted solely to observing the strahl.

Figure: The SWE strahl detector measured electron counts in a 14x12 angular grid centered on the ${f B}$ field, as above (from [2])

Figure: Example of an angular distribution measured by the SWE strahl detector. The strahl (shown) is isolated from the background with a cleaning procedure

Figure: The full width at half-maximum, θ_{FWHM} , of the strahl (green) at constant energy is found by fitting the data in the vicinity of the strahl peak to the function y = mx, where $x = (1 - \mu)$ and $y = \ln(F/F_{peak})$.

Results

Our linear fitting procedure for the slope m is equivalent to measuring the quantity Ω for each pitch angle distribution (PAD). Explicitly, $\Omega = m/(\gamma'\xi^2)$. We set $\Omega = -0.41$, which is the average value inferred from our measurements, to calculate an "Expected θ_{FWHM} " for each PAD. We then compare with the "Measured θ_{FWHM} " calculated from the fitting procedure.

Figure: Expected strahl widths (FWHM, in degrees) from equation 3, plotted versus measured widths. The parameter Ω determines the slope of the data above. Setting $\Omega = -0.41$ shows very good agreement between our model and the data.

Along the B-field direction $\mu = 1$, our model predicts the strahl will vary as a power law with energy. That is, $F(\mu = 1) \propto \xi^{\alpha' - \alpha}$. We fit the peak F vs. ξ , to infer the scaling coefficient $\alpha' - \alpha$. There is a "knee" in our graph, that is likely due to the strahl becoming so narrow at high energies that the detector cannot resolve the angular width.

Diffusion Coefficient

Consider an ideal model of the solar wind in the inner heliosphere, with radial field lines: $\alpha_n = -2$, $\alpha_T = -2$ -1/2, $\alpha_B = -2$. This corresponds with $\alpha' = -2$. If we set $\Omega = -2/5$, as indicated by our measurements, then we conclude $\beta = \alpha' \alpha_T / \Omega = 5/2$. However, for a hydrogen-dominated plasma, $Z_{eff} \approx 1$ and $\beta \approx 1$. A more realistic set of α_n , α_T , α_B does not fix the problem: the β inferred from measurements of Ω is too large by a factor $\sim 2-5$.

This implies a source of anomalous diffusion, beyond Coulomb collisions, that leads to broadening of the strahl population.

Conclusions

The asymptotic solution (3) correctly predicts the shape of the strahl distribution. Our model has one free parameter, Ω , that can be measured by least-squares fitting.

• The measured Ω is lower than expected, i.e. the strahl is too broad. An additional source of broadening, that mimics Coulomb collisions, may be required to explain the data.

• Our data was taken at 1 AU. The field lines are not purely radial here (and B) so measurements of the strahl in the inner heliosphere would provide a better test of our model.

References

[1] K. Horaites *et al.*, Self-similar theory of thermal conduction and application to the solar wind. *Phys. Rev. Lett.*, 114:245003, Jun 2015.

[2] K. W. Ogilvie *et al.*, SWE, A Comprehensive Plasma Instrument for the Wind Spacecraft. Space Science Rev., 71:55–77, February 1995.

Contact Information

San Francisco, CA

• Website: http://home.physics.wisc.edu/~horaites/ Email: horaites@wisc.edu

Fall AGU 2016