
Application of Self-Similar Kinetic Theory to the Solar Wind
Konstantinos Horaites1, Stanislav Boldyrev1, Chadi Salem2, Stuart Bale2,3, Marc Pulupa2

1Physics Department, University of Wisconsin-Madison, 2Space Sciences Laboratory, University of California-Berkeley, 3Physics Department, University of California-Berkeley

Abstract

If the temperature Knudsen number γ(x) =
λmfp|

dlnT
dx | in a plasma is constant thoughout the

system, the collisional kinetic equation for elec-
trons admits self-similar solutions. These solu-
tions have the novel property that the “shape” of
the eVDF does not vary in space. Such a theory
should be applicable in the solar wind, where the
density and temperature are observed to vary as
power laws with heliocentric distance r such that
γ(r) ∼constant. We present results of numerical
simulations, where we find the steady-state eVDF
for various γ. We then compare the predictions
of the theory with satellite observations from the
Helios and Wind missions. Overall, the theory
exhibits remarkable consistency with a variety of
electron measurements, and provides an intuitive
context for understanding the steady-state solar
wind eVDFs.

Introduction

Drift kinetic equation, ignoring E × B drifts:
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If γ = λmfp

LT
=constant, then for v ≡ V

Vth
>> 1, eq. 1

reduces to equation 3, independent of x:
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Applicability

Equation 3 assumes power law variation along B̂:
n ∝ xαn, T ∝ xαT , B ∝ xαB. The power law indices
αn and αT are such that γ is nearly constant as a
function of heliocentric distance in the solar wind.

Figure 1: If γ = constant, equation 3 applies. Histogram of γ

(columns normalized by peaks) 0.3-1 AU, Helios data.

Numerical Simulation

The steady state solution satisfies equation 3 with
∂F
∂τ = 0. To find this solution numerically, we use
the method of relaxation. Starting with an initial
guess for F, we simulate the evolution of F according
to equation 3 using stochastic Langevin equations,
until a steady state is reached.

Figure 2: Time evolution of ⊥ and ‖ cuts of F, for γ = 0.05.

The simulation approaches a steady state.

Simulation/Data Comparison

Figure 3: Results from Langevin simulations (points) plotted

over average eVDF cuts of Helios data (lines), for comparable γ

Figure 4: Comparison of heat flux obtained from Helios data (2D

histogram with columns normalized by peaks), and Langevin

simulations (points). A break is observed between the Spitzer-

Härm (γ << 1) and collisionless (γ & 1) limits at γ ≈ 0.3

Conclusions

• In the solar wind γ ≈constant, allowing
self-similar kinetic equation to be applied.

• Average cuts of Helios data match the results of
simulations for the core and strahl populations,
but not for the isotropic halo.

• Transition from Spitzer-Härm to collisionless
regimes is correctly predicted.
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