Application of Self-Similar Kinetic Theory to the Solar Wind

Konstantinos Horaites¹, Stanislav Boldyrev¹, Chadi Salem², Stuart Bale^{2,3}, Marc Pulupa² ¹Physics Department, University of Wisconsin-Madison, ²Space Sciences Laboratory, University of California-Berkeley, ³Physics Department, University of California-Berkeley

Abstract

If the temperature Knudsen number $\gamma(x)$ = $\lambda_{mfp} \left| \frac{dlnT}{dx} \right|$ in a plasma is constant thoughout the system, the collisional kinetic equation for electrons admits self-similar solutions. These solutions have the novel property that the "shape" of the eVDF does not vary in space. Such a theory should be applicable in the solar wind, where the density and temperature are observed to vary as power laws with heliocentric distance r such that $\gamma(r) \sim \text{constant.}$ We present results of numerical simulations, where we find the steady-state eVDF for various γ . We then compare the predictions of the theory with satellite observations from the Helios and Wind missions. Overall, the theory exhibits remarkable consistency with a variety of electron measurements, and provides an intuitive context for understanding the steady-state solar wind eVDFs.

Introduction

Drift kinetic equation, ignoring $\mathbf{E} \times \mathbf{B}$ drifts:

$$\frac{\partial f}{\partial t} + \mathbf{V}_{\parallel} \hat{b} \cdot \nabla f + \left(\mu_B B \nabla \cdot \hat{b} + \frac{q_e E_{\parallel}}{m}\right) \frac{\partial f}{\partial \mathbf{V}_{\parallel}} = C(f) \quad (1)$$

If $\gamma = \frac{\lambda_{mfp}}{L_T}$ =constant, then for $v \equiv \frac{V}{V_{th}} >> 1$, eq. 1 reduces to equation 3, *independent of x*:

$$f \equiv \frac{NF(\mu, \xi, \tau)}{T(x)^{\alpha}}, \mu \equiv \cos \theta, \xi \equiv \left(\frac{V}{V_{th}}\right)^2, \tau = \nu t$$
$$\gamma \equiv \left|\frac{T^2(dlnT/dx)}{2\pi e^4 \Lambda n}\right|, \gamma_E \equiv \frac{eET}{2\pi e^4 \Lambda n}, \nu \equiv \frac{8\pi e^4 \Lambda n}{m^2 (V_{th})^3}$$
(2)

$$\frac{\partial F(\mu,\xi,\tau)}{\partial \tau} = \xi^{1/2} \left\{ -\gamma \left[\alpha \mu F + \frac{\partial F}{\partial \xi} + \frac{\alpha_B}{2} (\alpha + 1/2)(1 - \mu^2) \frac{\partial F}{\partial \mu} \right] + \frac{\partial F}{\partial \xi} + \frac{1 - \mu^2 \partial F}{2\xi \partial \mu} \right\}$$

$$\gamma_E \left[\mu \frac{\partial F}{\partial \xi} + \frac{1 - \mu^2 \partial F}{2\xi \partial \mu} \right] + \frac{\partial F}{2\xi^2 \partial \mu} (1 - \mu^2) \frac{\partial F}{\partial \mu} \right\}$$
(3)

Applicability

Equation 3 assumes power law variation along \hat{B} : $n \propto x^{\alpha_n}, T \propto x^{\alpha_T}, B \propto x^{\alpha_B}$. The power law indices α_n and α_T are such that γ is nearly constant as a function of heliocentric distance in the solar wind.

Figure 1: If $\gamma = constant$, equation 3 applies. Histogram of γ (columns normalized by peaks) 0.3-1 AU, Helios data.

Numerical Simulation

The steady state solution satisfies equation 3 with $\frac{\partial F}{\partial \tau} = 0$. To find this solution numerically, we use the *method of relaxation*. Starting with an initial guess for F, we simulate the evolution of F according to equation 3 using stochastic Langevin equations, until a steady state is reached.

Figure 2: Time evolution of \perp and \parallel cuts of F, for $\gamma = 0.05$. The simulation approaches a steady state.

Simulation/Data Comparison

Figure 3: Results from Langevin simulations (points) plotted over average eVDF cuts of Helios data (lines), for comparable γ

Figure 4: Comparison of heat flux obtained from Helios data (2D histogram with columns normalized by peaks), and Langevin simulations (points). A break is observed between the Spitzer-Härm ($\gamma << 1$) and collisionless ($\gamma \gtrsim 1$) limits at $\gamma \approx 0.3$

Conclusions

• In the solar wind $\gamma \approx \text{constant}$, allowing self-similar kinetic equation to be applied. • Average cuts of Helios data match the results of simulations for the core and strahl populations, but not for the isotropic halo.

• Transition from Spitzer-Härm to collisionless regimes is correctly predicted.

References

[1] S. I. Krasheninnikov and O. G. Bakunin.

Self-similar variables and the problem of nonlocal electron heat conductivity.

Technical report, October 1993.

[2] S. D. Bale, M. Pulupa, C. Salem, C. H. K. Chen, and E. Quataert.

Electron Heat Conduction in the Solar Wind: Transition from Spitzer-Härm to the Collisionless Limit. , 769:L22, June 2013.

Acknowledgements

This research was funded by US DoE award DE-SC0003888, DoE grant DE-SC0001794, and NSF grant PHY-0903872

Contact Information

• Website: http://home.physics.wisc.edu/~horaites/ Email: horaites@wisc.edu

SHINE 2014 Conference

Telluride, CO