Abstract

The solar wind strahl is a narrow, field-aligned

population of high-energy electrons that originate
in the solar corona. The beam-like shape of the
strahl in velocity space is believed to come from
two competing factors: the mirror force tends to

narrow this population, while Coulomb collisions
and wave-particle interactions tend to broaden it.
Using data from the Wind satellite's strahl detec-
tor, we investigate the detailed shape of the strahl
and compare with predictions from a collisional
“self-similar” model. The potential influence of
wave-particle interactions is also discussed.

Background

As shown in [1], electron heat conduction in the solar
wind is well described by the predictions of a proposed

“self-similar” kinetic theory. This theory applies when
(AT /dz)

the temperature Knudsen number v(z) ~ £
nearly constant distance with distance x along the
flux tube (this condition was observed to hold 0.3-
1 AU). From this point of view 7, which character-
izes the importance of Coulomb collisions, is the cen-
tral parameter that determines the shape of the dis-
tribution function f(x, V). The self-similar kinetic
equation is the drift-kinetic equation written under a
change of variables (see “Definitions” below), under
the assumption (x) =const.:
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Asymptotic Solution

The theory predicts the shape of the “strahl” distri-
bution, which forms a beam along the magnetic field
direction. This corresponds to the regime © — 1,
& >> 1. In this limit, equation 1 has solutions for
the distribution F'(u, &) of the form:
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At a given energy &, the strahl varies exponentially
with (1 — p). The angle u ~ 1 — 6%/2 at which

this exponential falls off by a factor of 1/2 sets the

angular width of the strahl gy s
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The SWE Strahl Detector

The SWE strahl detector [2] was an electrostatic an-
alyzer on board the Wind satellite devoted solely to
observing the strahl. The detector measures electron
counts in a 14x12 angular grid, with a nominal reso-
lution of 3.5x4.5 degrees. With each rotation of the
spacecraft, a different energy is sampled, until after
32 rotations the process restarts.
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Figure: Example of an angular distribution (counts) measured
by the SWE strahl detector.
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Data Methods

For each strahl distribution, which is measured at
fixed energy, we calculate a “"Measured Oy s by
fitting the angular distribution to a model function
(equation 3).

1999-07-25/00:06:36 fit, 77.0 eV electrons, width = 13.20 degrees
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Figure: The full width at half-maximum of the strahl (green)
at constant energy is found by fitting the data in the vicinity of

the strahl peak to the function y = mx, where z = (1 — )
and y = In(F/ Fpear).

Results

Given -y, equation 4 predicts the angular width of the
strahl at a fixed energy. The Knudsen number 7 is
measured separately using SWE electron data to find
an "Expected Oy s, and then compared with the
“Measured Oy as from the strahl sensor.
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Figure: Expected strahl widths (FWHM, in degrees) from
equation 3, plotted versus measured widths. The parameter ¢/,
which depends on the density and temperature profiles in the
self-similar model, determines the slope of the data above.
Setting o/ = —3 gives very good agreement for this day of
data.

Wave-Particle Scattering

Wave-particle scattering is another mechanism that
has been proposed to account for the width of the
strahl. |f for certain regimes of plasma parameters,
strahl widths are broader than expected, it may be
an indication that wave-particle scattering is also at

work.

Conclusions

= The asymptotic solution (3) correctly predicts the
angular FWHM of the strahl distribution, for 1 day
of data.

« More data is required to test the generality of this
result.
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