

Connecting the geoelectric field to its magnetospheric sources in a global hybrid-Vlasov simulation

Konstantinos Horaites and the Vlasiator Team

Talk outline

- 1. Vlasiator description and recent results
- 2. Current study: Flux Transfer
 Events (FTEs) and the geoelectric
 field
- 3. Future perspectives

Vlasiator Simulations

0.5

0.0

-0.5

-1.0'

-1.5

 $1.0^{-1.0^{-0.5^{-0.0^{-1.0}}}}$

2D3V (pre-2021)

- Hybrid-Vlasov
 - kinetic p+
 - Vlasov equation
 - fluid e-
 - γ = 5/3

For details:

• M. Palmroth et al., (2018)

"Vlasov methods in space physics and astrophysics"

3D Vlasiator Simulations

- 3D box (side length $\sim 100 R_{E}$)
- Inner boundary: r=4.8 R_E
- Adaptive mesh

For details:

• U. Ganse, et al. (2023)

"Enabling technology for global **3D** + **3V** hybrid-Vlasov simulations of near-Earth space." PoP

Magnetopause Identification

Magnetopause is an isocontour of the β* parameter (S. Xu et al. 2016).

P_d: dynamic pressure P_{th}: thermal pressure B: Magnetic field

- Freeman et al., 1998 (cyan) predicts the magnetopause is pushed to its mininum standoff distance too rapidly.
- GENERALIZE: allow time-dependent mass loading *c(t)* and solar wind density *η(t)*, evaluated directly from Pulse run.

Field-Aligned Currents (FACs)

- Ionospheric signatures, before and after a pressure pulse.
- Region 1 FACs compare well with pyAMPS model (panels c-d)
- Region 2 currents not consistently observed.

FAC closure

- Region 1 and 2
 FACs are connected by Pedersen currents.
- Ignored in original 3D3V Vlasiator inner boundary condition (at r~5R_E).

Birkeland (1908) 8

NEW! lonosphere (Ganse et al., submitted to GMD)

unpublished)

al.,

et

(Ganse

$$\left(\begin{array}{ccccc}
\Sigma_P & \Sigma_H & 0 \\
-\Sigma_H & \Sigma_P & 0 \\
0 & 0 & \Sigma_{\parallel}
\end{array}\right)$$

- Ionosphere ↔ magnetosphere
- Height-integrated conductivity Σ modeled, input FACs (J_{II}) used to solve for ionospheric potential Φ @100 km altitude.
- E-field maps to magnetosphere (field lines are equipotentials)

$$\nabla \cdot \left[\mathbf{\Sigma} \cdot \left(-\nabla \Phi \right) \right] = -J_{\parallel}$$

lonospheric mesh refinement

lonosphere-coupled run

- Right: Plasma pressure
- Regions of enhanced pressure observed near magnetopause
- Structures migrate towards the cusps

Solar wind driving:

В	[0, 0, -5] nT
V _{sw}	750 km/s
n	1 cm ⁻³

Flux Transfer Events (FTEs)

Cusp FTE at ~(6.76, 0, 8.20) R_E

Maps to ionosphere: \sim (0.19, 0, 0.98) R_E (79 deg. north)

Also, equatorial FTE at ~(10.67, 0, 0.52) R_E

Study motivation: Demonstrate the connection between **Flux Transfer Events (FTEs)** and Geomagnetically Induced Currents **(GICs)**

BIRKELAND CURRENT

Alfvenic FAC signal

Glassmeier & Stellmacher, 1995

Convection pattern

IONOSPHERIC FLOW

*Southwood, 1987*₁₂

Recent progress: MagPIE simulations (Paul et al, 2023)

- MagPIE: resistive MHD in magnetosphere (PLUTO code), with electrostatic ionosphere
 - Similar to Vlasiator's ionosphere-coupling scheme
- FTEs (pictured) advect poleward around magnetopause

- X-line observed in \sim (-x)-z plane
- v_x reversal: reconnection outflows? (---- region)
- Right: $J_{||}(t) J_{||}(t-15s)$, strong cusp signal
- Magnetospheric FACs travel at Alfven speed (not shown)

Open Questions

Following Paul et al., this study considers FTEs' space weather impacts:

- Do the FACs from the cusp-FTE interaction generate a significant geoelectric field?
- What geographical regions are affected?

We utilize recent technical developments:

- Vlasiator ionosphere
- Automated FTE identification

FTE (O-line) identification

Classification of magnetic null lines (Where B=0) In LMN coordinate system:

- "O-lines": $dB_N/dL < 0$
- "X-lines": $dB_N/dL > 0$

17

FTE Identification

Ground magnetic field

Ground magnetic field **B(r)** from Biot-Savart law:

$$\mathbf{B}(\mathbf{r}) = rac{\mu_0}{4\pi} \iiint_V \; rac{(\mathbf{J} \, dV) imes \mathbf{r}'}{\left|\mathbf{r}'
ight|^3}$$

Integrate over 3 domains:

- Magnetosphere $(r > 5R_E)$
- **FACs** $(1R_{E} < r < 5R_{E})$
- **lonosphere** (r $\sim 1R_E$)

\rightarrow as Welling et al. (2020)

→ ignore finite wave speeds

Geoelectric Field

Time series of the magnetospheric (outer), FACs (inner), and ionospheric contributions:

• 76° N, MLT=12hr, run "FHA" (weak driving)

Ionospheric contribution dominates

Outer magnetosphere negligible

Virtual Magnetometers

Geoelectric Field (E)

E_y(t) can be calculated as (Cagniard, 1953):

$$E_y(t) = -\frac{1}{\sqrt{\pi\mu_0\sigma}} \int_0^\infty \frac{dB_x(t-t')}{dt'} \frac{1}{\sqrt{t'}} dt'$$

- And similarly $E_x(t)$ can be calculated from integral of dB_y/dt
- Assume constant conductivity $\sigma = 10^{-3}$ S/m

```
Note: given E, Geomagnetically Induced Currents (J_{GIC}) can be calculated as:
J_{GIC} = \sigma E
```

22

Geoelectric Field

Geoelectric Field

DB: ionosphere_gic_FHA_0001142.vlsv

 $\mathsf{E}_{\mathsf{east}}$

 $\mathsf{E}_{\mathsf{north}}$

1400

1200

1000

800

20

Time [s]

- 0.

- 0.

- 0.

- FTEs correlate w/ ionosphere FACs.
- Wave pulse transmitted along B-field.

40 60 80 100 120 140 Point along cut

$FTES \leftrightarrow FACS$

- FTEs correlate closely with FACs,
- Similar, but weaker correlation observed for E_{north}.

Region of correlated FACs

- Pictured: crosscorrelation of FACs wrt the marked cusp footpoint.
- FTE-generated
 FACs sweep out a broad MLT region on Earth's dayside.

Future work

- We would like to use Vlasiator to study intense CMEs, on the scale of the Carrington event of 1859.
- Magnetopause standoff: R ~ 2-3R_E
- First global hybrid-kinetic simulation of such events.
- Driving conditions best informed by observations!

CONCLUSIONS

- Vlasiator's new ionosphere improves physical realism and enables the study of space weather.
- FTEs are a significant driver of Earth's geoelectric field at the footpoints of dayside cusp field lines (near auroral latitudes).

Paper in preparation

