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Solar Wind



Suprathermal electron populations

fm(v⊥, v‖) = fc + fh + fs

Illustration: M. Pulupa



Angular FWHM of Strahl—Steady-state kinetic theory
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Solution: f(r0, v, θ) ∼ g(v) exp
(

−Cv4θ2

n

)

.

Strahl width: θFWHM ∝
√
n/v2.

Good news experimentally! n and v2 known

to high accuracy (10% and 3%, respectively)

Narrow strahl predicted... need high-res!



SWE Strahl Detector

Strahl electron counts measured at 3.5x4.5 degree
resolution (Ogilvie et al., 1995, 2000)



Fave, 2D fits

Solution:
f(r0, v, θ) ∼ g(v) exp

(

−Cv4θ2

n

)

.

Horaites et al., 2018a

Fits well to eVDF! But is it stable?

=

Horaites et al., 2018c (ArXiv)



Anomalous Scattering of the Strahl

Some models propose that the strahl is scattered by wave-particle
interactions.
Candidate waves:

◮ Whistler (e.g., Vocks et al., 2005, pictured)

◮ Langmuir (e.g., Seough et al., 2015)

without whistlers with whistlers



Whistler Heat Flux Instability

Gary et al., (1994) proposed a model, where the electrons are
described by 2 drifting Maxwellians.

Core drift vc follows from current balance:

∑

σ

Jσ = 0 → vc = −Js/nc

How will stability analysis change if we model the strahl more
realistically?



Core-strahl model (Horaites et al., 2018b)

Model distribution function as sum of core and strahl components:

f = fc + fs

Core distribution:

fc(µ, v) =
nc

π3/2v3th
exp

(−v2 + 2µvvc − v2c
v2th

)

.

Strahl distribution:

fs(µ, v) = C0 A(v)
nc

v3th

( v

vth

)2ǫ
exp[γ̃Ω(v/vth)

4(1− µ)],

where we define a truncation function A(v), with a = 10,
b = 2ǫ− 4:

A(v) =
( 1

1 + a(v/vth)b

)

.



Require J‖ =
∫

fv‖d
3v = 0



Dispersion Relation Solver

We use the kinetic dispersion relation solver, LEOPARD (Astfalk et
al., 2017).

◮ solves kinetic equation for linear waves in magnetized plasma

◮ allows for arbitrary (gyrotropic) distribution functions

◮ can solve for modes with arbitrary propagation angle

◮ requires an initial guess for ω(k) → search magnetosonic,
kinetic Alfven, Langmuir, and whistler branches

Code computes ǫij(ω,k) and solves for dispersion relation ω(k)
from:

{

k2δij − kikj −
w2

c2
ǫij(ω,k)

}

Ej = 0.



KAW Instability

Im(ω)↑ as C0 ↑. Max. growth rate at θ ≈ 63◦.



Magnetosonic Instability

Im(ω)↑ as C0 ↑. Max. growth rate at θ ≈ 60◦.



Isotropic halo damps growth

with halo (dashed), without (solid)

Illustration: M. Pulupa



Variation with βe

KAW: as βe ↑, Im(ω) reaches a

maximum then stabilizes.

MS: as βe ↑, Im(ω) ↑.

βe is larger near the sun than at 1 AU, so MS instability may be
more important at small heliocentric distances.



Conclusions and future work

◮ An asymptotic model for the strahl distribution

matches the data well at 1 AU.

◮ Linear analysis shows two growing modes at 1

AU: kinetic alfven and magnetosonic. Modes
resonate with sunward-travelling core electrons.

◮ No whistler instability found!

◮ Kinetic alfven waves can interact non-linearly
and produce whistler waves. May produce a

whistler cascade at smaller scales that can then
interact with the strahl electrons.
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