Self-Similar Distribution Functions in the Solar Wind

Konstantinos Horaites* Stanislav Boldyrev*
*University of Wisconsin-Madison

Background: Solar Wind Electrons

- Non-thermal electron velocity distribution functions (eVDFs) (Wang 2012)

- Spitzer Conductivity \rightarrow free streaming (Bale 2013)

Temperature Knudsen number (Kn)

$\mathrm{Kn} \sim(\mathrm{dlnT} / \mathrm{dr})^{*} \mathrm{~L}_{\mathrm{mfp}} \mid \mathrm{Kn} \rightarrow 0$: highly collisional Constant on average! $\mathrm{Kn} \sim 1$ weakly collisional

$$
\begin{aligned}
& \text { Self-Similar eVDFs } \\
& \text { (Krasheninnikov 1988) }
\end{aligned}
$$

$$
\frac{\partial F}{\partial t}=A \xi^{1 / 2}\left[-\gamma \mu\left(\alpha F+\xi \frac{\partial F}{\partial \xi}\right)<\quad\right. \text { Advection }
$$

$$
+\delta\left(\mu \frac{\partial F}{\partial \xi}+\frac{\left(1-\mu^{2}\right)}{2 \xi} \frac{\partial F}{\partial \mu}\right)
$$

$$
+\frac{1}{\xi}\left(\frac{\partial F}{\partial \xi}+\frac{\partial^{2} F}{\partial \xi^{2}}\right)
$$

e-e energy exchange

$$
\left.+\frac{1}{2 \xi^{2}} \frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial F}{\partial \mu}\right]
$$

-pitch angle scattering
If the Knudsen number (~gamma) = constant, then the kinetic equation can be written in a spatially independent form!

Account for magnetic field geometry!

$$
\frac{\partial f_{0}}{\partial t}+\left(\boldsymbol{U}_{\boldsymbol{d}}+v_{\|} \boldsymbol{b}\right) \cdot \boldsymbol{\nabla} f_{0}-\left(\boldsymbol{b} \cdot \frac{D \boldsymbol{U}_{\boldsymbol{d}}}{D t}-\mu B \boldsymbol{\nabla} \cdot \boldsymbol{b}-\frac{e}{m} E_{\|}\right) \frac{\partial f_{0}}{\partial v_{\|}}=0
$$

Diverging magnetic field direction leads to collimation

Extend theory by starting from drift kinetic equation, which accounts for a spatially varying magnetic field

Applicable to solar wind? YES

- Non-thermal eVDFs
- Power laws: $\mathrm{n}(\mathrm{r}) \sim \mathrm{r}^{-2}$

$$
T(r) \sim r^{-1 / 2}
$$

$$
\mathrm{Kn} \sim(\mathrm{~T} d \mathrm{~T} / \mathrm{dr}) / \mathrm{n}
$$

$\longrightarrow \mathrm{Kn}=$ constant!
Predicts $q(r) \sim r^{-11 / 4}$ (nearly r^{-3})

- Spitzer Conductivity \rightarrow free streaming
- Parker Spiral

Also Verify Self-Similarity Directly (Averaged Helios 1 eVDFs: 0.5-1 AU)

Normalize
$\mathrm{F}\left(\mathrm{x}, \mathrm{v} / \mathrm{v}_{\mathrm{th}}\right) \sim \mathrm{F}_{0}\left(\mathrm{v} / \mathrm{v}_{\mathrm{th}}\right)$

Test case with no magnetic field. Heat flux (from skewness of distribution) develops in time

Simulations

Conclusions

Knudsen number in solar wind is constant as a function of radial distance

Theory of self-similar kinetic equation is consistent with measured properties of solar wind. Measured eVDF profiles indicate self-similarity

Hope to explain solar wind eVDFs with simulations

