Application of Self-Similar Kinetic Theory to the Solar Wind: Data and Simulations

Konstantinos Horaites¹, Stanislav Boldyrev¹, S. Krasheninnikov², Chadi Salem³, Stuart Bale^{3,4}, Marc Pulupa³ ¹Physics Department, University of Wisconsin-Madison, ²Mechanical and Aerospace Engineering Department, University of California-San Diego, ³Space Sciences Laboratory, University of California-Berkeley, ⁴Physics Department, University of California-Berkeley

APS-DPP Meeting, October 29

Theory: Background

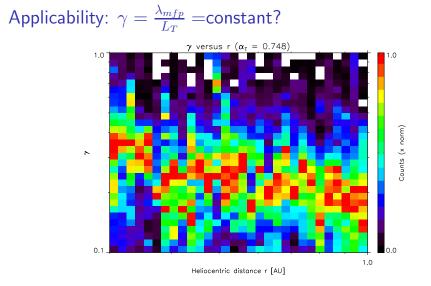
Drift Kinetic Equation (ignore $\mathbf{E} \times \mathbf{B}$ drifts):

$$\frac{\partial f}{\partial t} + \mathsf{V}_{\parallel} \hat{b} \cdot \nabla f + \left(\mu_B B \nabla \cdot \hat{b} + \frac{q_e E_{\parallel}}{m}\right) \frac{\partial f}{\partial \mathsf{V}_{\parallel}} = C(f) \qquad (1)$$

If Knudsen number (usually denoted Kn) $\gamma \sim \frac{\lambda_{mfp}}{L_T} = \text{constant}$, then for $v \equiv \frac{V}{V_{th}} >> 1$, reduces to an equation *independent of* \mathbf{x}

$$f(\mathbf{x}, \mathbf{V}, t) \equiv \frac{NF(\mu, \xi, t)}{T(\mathbf{x})^{\alpha}}, \mu \equiv \cos\theta, \xi \equiv \left(\frac{\mathsf{V}}{\mathsf{V}_{th}}\right)^2$$
(2)

$$\frac{\partial F(\mu,\xi,t)}{\partial t} = \nu \xi^{1/2} \Big\{ \gamma \Big[-\alpha \mu F - \mu \xi \frac{\partial F}{\partial \xi} + \frac{-\alpha_B}{2} (\alpha + 1/2) (1 - \mu^2) \frac{\partial F}{\partial \mu} \Big] + \gamma_E \Big[\mu \frac{\partial F}{\partial \xi} + \frac{1 - \mu^2}{2\xi} \frac{\partial F}{\partial \mu} \Big] + \frac{1}{\xi} \Big[\frac{\partial F}{\partial \xi} + \frac{\partial^2 F}{\partial \xi^2} \Big] + \frac{\beta}{2\xi^2} \frac{\partial}{\partial \mu} (1 - \mu^2) \frac{\partial F}{\partial \mu} \Big\}$$
(3)



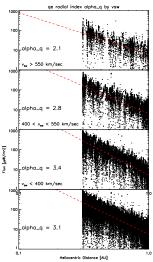
 $\gamma \propto \frac{T(dT/dr)}{n}$ plotted versus heliocentric distance 0.3 < r < 1 AU. (Helios electron data)

Applicability: Power Laws $X \propto r^{\alpha_X}$

n, T, q, B go as power laws in solar wind. Choose α_n and α_T , α_q are specified.

-	$lpha_{model}$	$\alpha_{observed}$
n	$lpha_n$	-2.2
Т	$(\alpha_n + 1)/2$	-0.7
q	$(5\alpha_n-1)/4$	-3.1
В	any	-1.6

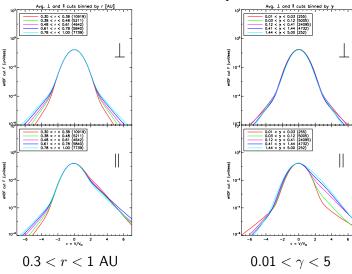
Theory matches well! "Observed" values taken from fits to Helios data 0.3 < r < 1 AU.



Note: power law index may depend on wind speed! Above: measurement of α_q

Applicability: Helios fits

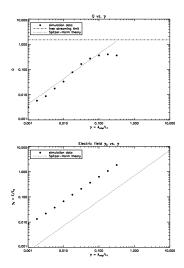
Normalize Helios fits by $F \equiv \frac{f(\mathbf{x}, \mathbf{V})T(\mathbf{x})^{\alpha}}{N}$ to get self-similar distribution function F. Self-similarity realized for core and strahl.



Langevin Simulations

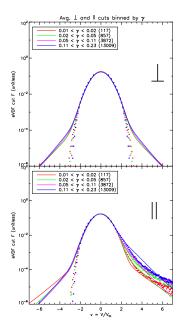
Simulate time-dependent kinetic equation, by deriving stochastic Langevin equations. Populate phase space (μ, ξ) with N_p particles, and as $N_p
ightarrow \infty$, exact solution is obtained. Below: cuts versus time, $\gamma = 0.05$, $N_p = 1e7$, $\alpha_n = -1.8$, $\alpha_T = -0.4$, $\alpha_B = -2$. perp cuts of F par cuts of F 100 10-1 10-1 10^{-2} 10^{-2} 10-3 V V VIIII 11111 10-4 10-4 + time = 0.00 time = 0.00time = time = 3.34 time = 6.66 10-5 10-5 time = 10.0 13.3 time = 16.6 time = 16.6 time = 20.0 + time = 20.0 10-6 10 -10 -5 5 10 -10-5 5 10

Comparison with Spitzer theory



- $\blacktriangleright~Q \equiv \int F {\bf v}_{\parallel} {\bf v}^2 d^3 {\bf v}$
- ▶ Follows Spitzer-Härm relation $Q_{SH} \propto \gamma$ for $\gamma << 1$
- \blacktriangleright Transitions to collisionless heat flux at $\gamma \approx 0.1$
- Magnitude of Q depends on choice of v_{max}
- ► Electric field follows Spitzer-Härm scaling $\frac{E}{E_D} \propto \gamma$ in both regimes
- Can simulations be made to match theory exactly?

eVDF Cuts



- Comparison of simulations (points) with Helios eVDF cuts (lines) averaged into bins ordered by γ
- \blacktriangleright γ are logarithmically spaced
- High level of agreement in the core and strahl!
- Less agreement in the halo... not enough points in simulation?
- Convolute results of Langevin simulation with a function that represents the response of the detector, which measures over finite angle

Transition from Spitzer-Härm to Collisionless limit



- Histogram of ^{q_{||}}/_{q₀}, where q₀ ≡ ³/₂nV_{th}T, vs. γ (see Bale, 2013)
- Langevin simulations (dots) match the data well
- Departure from expected form for γ > 1, probably because our collision operator doesn't apply for strongly non-Maxwellian core

Conclusions

- \blacktriangleright In the solar wind $\gamma \approx {\rm constant},$ allowing self-similar kinetic equation to be applied
- Can order eVDF profiles by γ. Average Helios cuts match the results of simulations for core and strahl electron populations, but not for the halo population.
- ▶ Transition from Spitzer to collisionless regimes is predicted. However, trouble running simulations for $\gamma \gtrsim 1$.