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Thermal conductivity in the solar wind
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Wind data, r=1 AU (Bale, 2013)



Theory: Background

Drift Kinetic Equation (|V| >> V.u):
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Theory: Background

Drift Kinetic Equation (|V| >> V,):
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for Vlm >> 1, can reduce to an equation independent of x
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Theory: Background

Drift Kinetic Equation (|V| >> V.u):
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Intuitively...

» I is a normalized, dimensionless function that
characterizes the “shape” of the distribution
n(x)F(v/vy)
v ()
» Solving for F'(u, &) amounts to solving for
f(v,x) throughout the system.

function f. f(v,&) =

» & ~energy, pu ~angle (dimensionless).

» Self-similarity is simple! Consequence of
~ =constant.



Applicability (1): v =constant?

v versus r (a; = —0.6)
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Numerical solution: Langevin Equations

Self-similar kinetic equation with our linearized
collision operator is a 2nd order PDE of
Fokker-Planck type. Can be converted into an
equivalent set of stochastic differential equations:
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Langevin Simulations

W= g(p, &,7), = h(p,&,7)



eVDF Cuts

SVDF cut F* (unitless)
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» Comparison of
simulations (points) with

Helios eVDF cuts (lines),
ordered by ~y

» High level of agreement
in the core and strahl!

» Model response of the
detector: Convolution



Transition from Spitzer-Harm to Collisionless limit

Transition from SH to collisionless regimes
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Latest work: Collision Operator

How can we improve the accuracy of our model? Use linearized
collision operator, but don't assume £ >> 1. Nonlinear Landau
operator:
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Where u, = v, — v,,. Linearized operator (self-similar form):
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Conclusions

» In the solar wind v ~constant, allowing
self-similar kinetic equation to be applied

» Can order eVDF profiles by . Average Helios
cuts match the results of simulations for core
and strahl electron populations, but not for the
halo population.

» Transition from Spitzer to collisionless regimes is
predicted.
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