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Thermal conductivity in the solar wind

γ = λmfp
d lnT
dx

∝ TdT/dx
n

◮ γ << 1: q = −κ∇T
(collisional)

◮ γ >> 1 : q ∼ nTvth
(collisionless)

◮ 0.01 . γ . 1 : q = ???

(weakly collisional)

Wind data, r=1 AU (Bale, 2013)
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Intuitively...

◮ F is a normalized, dimensionless function that

characterizes the “shape” of the distribution

function f . f(v, x) =
n(x)F (v/vth)

vth(x)3
.

◮ Solving for F (µ, ξ) amounts to solving for
f(v, x) throughout the system.

◮ ξ ∼energy, µ ∼angle (dimensionless).

◮ Self-similarity is simple! Consequence of
γ =constant.



Applicability (1): γ =constant?

γ ∝ T (dT/dr)
n plotted versus heliocentric distance 0.3 < r < 1 AU,

Helios data. (Horaites et al., 2015)



Numerical solution: Langevin Equations

Self-similar kinetic equation with our linearized
collision operator is a 2nd order PDE of
Fokker-Planck type. Can be converted into an
equivalent set of stochastic differential equations:

dξ

dτ
= γµξ3/2 − γEµ

√
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ξ
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√
2
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Langevin Simulations

dµ
dτ = g(µ, ξ, τ ), dξ

dτ = h(µ, ξ, τ )



eVDF Cuts

◮ Comparison of

simulations (points) with
Helios eVDF cuts (lines),

ordered by γ

◮ High level of agreement

in the core and strahl!

◮ Model response of the
detector: Convolution



Transition from Spitzer-Härm to Collisionless limit



Latest work: Collision Operator

How can we improve the accuracy of our model? Use linearized
collision operator, but don’t assume ξ >> 1. Nonlinear Landau
operator:

(∂fα
∂t

)

coll
∼ ∂

∂vα

∫
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)

Where uα = vα − v′α. Linearized operator (self-similar form):
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Where ψ(x) ≡ 2√
π

∫ x
0

√
te−tdt.



Conclusions

◮ In the solar wind γ ≈constant, allowing

self-similar kinetic equation to be applied

◮ Can order eVDF profiles by γ. Average Helios

cuts match the results of simulations for core
and strahl electron populations, but not for the

halo population.

◮ Transition from Spitzer to collisionless regimes is
predicted.


	Introduction
	Simulations/Data Comparison
	Conclusions

