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Electrons from the Inner Heliosphere to Mars

Overview



Kinetics: and Pitfalls

> finer physical » Kinetic information may
processes (heat flow, be unnecessary.
kinetic waves, » Small-scale forces may
instabilities, etc.) be unknown (e.g.

> larger scale quasilinear diffusion)
phenomena (fluid Eqs.) » Solving the kinetic

> in information problem may be

untractable or
computationally
expensive.



Kinetics: Research Program

Theory: equation for f(x,v,t)
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Electrons from the Inner Heliosphere to Mars

Field-aligned e~ (“strahl") in the solar wind



The solar wind

V [km s~
0000
Ulysses First Orbit Ulysses Second Orbit
:
'SWOOPS 000
)
o
w©
w0tt 1k
ocar oo erm vem Tows ed wmow oo ears erm rem oem eect 100
B[] T (K]
g
O
o
s 105
.
i
X
wk
109}
1077, - i
0 -
McComas et al., 2003 oo oaie Ter D et weagoo 0o ecer as eio0 iew rems 1o omooo
DISTANCE FROM THE SUN [AU] DISTANCE FROM THE SUN [AU]

Kohnlein, 1996

The solar wind is driven from a high pressure region in the corona.
Density, temperature, and magnetic field all decrease with distance
from the sun (as the solar wind expands).



Suprathermal electron populations

f(UJ_,UH) = fc+fh+fs

Core Halo Strahl
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Heat carried by electrons appears as a field-parallel skewness in the

distribution function—relevant to SW expansion (Parker, 1958).
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Thermal conductivity in the solar wind

o mean free path
= temp. variation scale
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Collisionless Predictions too narrow! (Bercic 2019)

(a) Low Bec (< 0.2)
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Strahl: Intuitive Explanation

» Electrons focus into a beam

Strahl
Field Aligned along B, as they try to c?)gserve
Beam their magnetic moment (3-)

\ » But, angular diffusion
(provided, e.g., by Coulomb
collisions with other particles)

broadens the distribution
somewhat.



Kinetic solution along a field line (Horaites et al., 2019)

Drift Kinetic Equation for f(x, M, v)), assuming [v| >> vg:

- MB(z)_ .0f A
b-V b—=C
b Vit TV by = ¢
advection magnetic focusing coulomb collisions
Variables: b = B/B, mag. moment M = v? /B(z)

The above equation can be solved with the appropriate change of
variables!



Kinetic solution along a field line (Horaites et al., 2019)

Drift Kinetic Equation for f(x, M, v)), assuming [v| >> vg:

; MB(x)o, ;0f _ -
b- b— =
’U” Vf + 9 V 81)” C(f)
advection magnetic focusing coulomb collisions
Variables: b = B/B, mag. moment M = v? /B(x)

The above equation can be solved with the appropriate change of
variables!

o0s @, r = heliocentric dist.

(16m45r45641\> = const., r45 ~1 AU.



Angular FWHM of Strahl

Recalling 11 = cos 8, and approximating sinf ~ 6, we see strahl has
Gaussian angular dependence:

f(0) o exp{—A(r,r45)n K262},
where K = mSTUQ

The full width at half maximum, (@pwmar), is given by the
formula:

(K N () NP k)
Orw i ~ 24 <100eV> <5cm—3> <1+r_2> - )

Note the scaling relations:

i For given n, Opw gy o< K1
i For given K, Opwmn < /1

Narrow strahl predicted! Need high angular resolution to detect it.



SWE Strahl Detector
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» Left: SWE strahl field of view
(Ogilvie, 2000)

» Top right: SWE strahl detector
(http://web.mit.edu)

» Bottom right: Wind spacecraft 1 AU
(https://wind.nasa.gov)




SWE Strahl Detector
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Least squares: strahl width (Horaites et al., 2018a)

1995-01-30/05:08:51 strahl, 193.417 eV
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Model /Data Comparison: vy, > 550 km/s

width (FWHM), measured

strahl width, v, > 550 km/sec
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Model /Data Comparison:

Vgw > 550 km/s, 3.5 < n < 4.5 cm™3

i For given n, Opw gy oc K1

1995-01-01 to 2001-05-30, n = 4cm >
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Model /Data Comparison: vy, > 550 km/s, K = 271 eV

i For given K, Opwmn < /1

1995-01-01 to 2001-05-30, 270eV
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Measuring energy dependence: Fj,,.

) — exp{_ ) (o )}

V1473 r?

» Want to measure the function
C(v?).

» But, f(v) measured by
SWE/strahl 1 energy at a time.

» Consider also that q, and by
extension the strahl, depends on
collisionality (7).

167TTL45 T45 €4A

10.0000

1.0000
.

0.1000

/%

0.0100 =

0.0010

Approach: construct averaged q%?g%

distribution Fj,. from all the strahl 9

data, sorted by 7. oo O'H))\,D/LT o
. T? A fp
1= 2met Anr Lt Bale et al., 2013




Fove, 2D fits (i, (v/ve1))
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Related work

> Boldyrev et al. (2019, 2020) incorporates turbulent diffusion
and large scale electric field.

» See Halekas (2020) for electrons/strahl in the Parker Solar
Probe data

> Horaites (2019b) discusses collisionless formation of the halo.
But halo is not well understood!



Electrons from the Inner Heliosphere to Mars

Electrons in the Mars's Magnetosheath: MAVEN Analysis



Motivations

» At Mars, only a handful of papers have considered the kinetics
of electrons in the magnetosheath.

» The MAVEN Orbiter had a full suite of plasma instruments,
including an e™ electrostatic analyzer.

» Electrons are very mobile. Magnetosheath electrons and can
act as a snapshot of the global conditions.

» Some disagreement exists in the literature on the role of
collisions in the Martian magnetosheath.



Electrons in the Martian Magnetosheath
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The electron distribution inflates at the shock (energization), and
then “erodes” at the "MPB" (de-energization).



eVDF Erosion at the MPB: Collisionless vs. Collisional

log(KE), cmA-3 (km/s)-3)

Crider et al., 2000

Ell Simulation results

In the original explanation, the MPB erosion is the result of
electron impact ionization (EIl) with neutral Hydrogen and Oxygen.

Requires e~ to remain in the sheath for 400 sec!!



Collisionless Kinetics

Ell too slow: can collisionless physics explain the eVDFs?
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Results of kinetic simulations,
Schwartz et al., 2019. (Anti-)Parallel
electrons enter the sheath from a
presumed solar wind distribution, and
resulting distribution is calculated
along a line intersecting the subsolar
point.

Results are encouraging—let's apply
collisionless kinetic theory to the
MAVEN data.



Collisionless Kinetics: Liouville’'s Theorem

From Vlasov Equation: the solution f(x,v,t) is constant along a
particle’s trajectory through phase space.

of (x,v, 1) of of
T—i_ 8_X+m_e(E+ B)-a—v—O
f(x,v), time 1
v f(x,v), time 2
- \"
K

If you know how particles move through phase space, you &n
predict the final eVDF!



Applying Liouville’'s Theorem: Particle Trajectories

But how to predict the particle motion? Assume energy and
magnetic moment (M) are conserved. For (anti-)parallel
propagating electrons, M=0:

f2||<v +&) S @) (2)

) = hate?) ©)

fu(

|| = parallel, | = anti-parallel

Note: above, all field-aligned electrons (regardless of energy) are
assumed to experience the same integrated electric field ®.
Particle drifts weaken this assumption somewhat.



Visualization: Energization may depend on trajectory

Tail lobe not
connected

Luhmann et al. 2015



Applying Liouville's Theorem: Parallel cuts
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Applying Liouville's Theorem: Anti-parallel cuts
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Applying Liouville’'s Theorem: Pitch Angle Mapping
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At fixed energy, can map the pitch angle distribution (PAD) from solar
wind to the sheath (mirror force, modified by electric field).

Confirms the assumption of collisionless behavior.



Isotropic Energization observed!
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Isotropic Energization observed!

Why is this interesting? Because in general @ and ® may be
expected to be different.

(By; By0=100eV), 0. =60° A®(8,; 8,=60° &_,=100eV)
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Left: Model of the cross-shock potential. Right: Predicted A®
Quantify the anisotropy:
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Global statistics: A®, z,,.. = 0 plane
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Implications
A® # 0. So what?

> A model in which electrons are only energized at the shock
(as has been previously assumed) does not work.

» What could cause isotropic energization? An electrostatic
potential.

The ~100eV acceleration provided by the electrons could be easily
provided by the ambipolar electric field:

VL

ene

Ep =

If the ambipolar field is a nearly potential field, this would explain
the observations!
This may be checked in future work..



Electrons from the Inner Heliosphere to Mars

Conclusions



Conclusions

» The strahl (runaway) electron population in the solar wind
can be effectively described by the steady-state drift kinetic
equation, which incorporates magnetic focusing and Coulomb
collisions.

> In Mars’'s magnetosheath, the parallel (¢ ) and anti-parallel
(®) energizations are very similar. This indicates that
electrons are energized continuously throughout the sheath,
not just at the shock front as is commonly assumed.

» The observation A® = 0 provides strong evidence that the
electrons are energized by a (nearly) potential electric field in
the sheath. This potential field is likely provided by the
ambipolar (pressure gradient) field.
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