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Thermal conductivity in weakly collisional plasma

Knudsen number:

γ = λmfp
d lnT
dx ∝ TdT/dx

n

heat flux:

q ≡ me

2

∫

vv2f(v)d3v

◮ γ << 1: q = −κ∇T

(collisional)

◮ γ >> 1 : q ∼ nTvth
(collisionless)

◮ 0.01 . γ . 1 : q = ???

(weakly collisional)
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Wind data, r=1 AU (Bale, 2013)



Self-similar Kinetic Theory

Drift Kinetic Equation (|~V | >> Vsw):
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Applicability

Three things to check before applying self-similar
theory:

◮ γ(x) = constant?

◮ n, T, B, q, vary as power laws?

◮ Do electron distributions actually exhibit
self-similarity?



Applicability (1): γ =constant?

γ ∝ T (dT/dr)
n plotted versus heliocentric distance 0.3 < r < 1 AU.

(Helios electron data)



Applicability (2): Power Laws X ∝ rαX

Köhnlein, 1996



Applicability (3): Self-similarity F (~v/vth) = f(~v)
v3
th

n

0.3 < r < 1 AU 0.01 < γ < 5



Numerical Solution: Langevin Equations

Self-similar kinetic equation with our linearized
collision operator is a 2nd order PDE of
Fokker-Planck type. Can be converted into an
equivalent set of stochastic differential equations:

dξ
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= γµξ3/2 − γEµ
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+
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Langevin Simulations

dµ
dt = g(µ, ξ, t), dξdt = h(µ, ξ, t)



eVDF Cuts

◮ Comparison of

simulations (points) with
Helios eVDF cuts (lines),

ordered by γ

◮ High level of agreement

in the core and strahl!

◮ Model response of the
detector: Convolution



Transition from Spitzer-Härm to Collisionless limit



Conclusions

◮ In the solar wind γ ≈constant, allowing

self-similar kinetic equation to be applied

◮ Can order eVDF profiles by γ. Average Helios

cuts match the results of simulations for core
and strahl electron populations, but not for the

halo population.

◮ Transition from Spitzer to collisionless regimes is
predicted.
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