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Ambipolar Potential
● Electrons (lower 

mass) tend to 
escape corona 
faster than protons 

● A net positive 
charge is left 
behind

● In equilibirum, an 
electrostatic 
potential is 
established

 

 

  

+
+

+
+

+



Ambipolar Potential

Boldyrev et al., (2020)

● Ambipolar potential 
forms trapped and 
runaway electron 
populations.

● The trapped 
population is bound 
by two processes: 
– Electrostatic 

reflection             
(at large r)

– Magnetic mirroring 
(at small r)



Electron VDFs

Image: Marc Pulupa

● Core (trapped)
● Halo
● Strahl 

(runaway)



Core Deficit

Halekas et al. (2021)



Core Deficit

Bercic et al. (2021)

Measurement of the core deficit (and 
breakpoint energy) provides estimate of 
ambipolar potential        20 R_s < r < 80 R_s



Halo VDFs

Image: Marc Pulupa

Halo population:
● Suprathermal 

(100-1000 eV)
● Quasi-isotropic
● non-Maxwellian



Halo VDFs
● A model of the halo needs to explain:

– Energy spectrum
– Isotropy
– Evolution with distance

Stverak (2009)



Halo Origin
● Conventionally, the halo is formed from local 

wave-particle scattering of the strahl electrons
● Whistler waves

– Kinetic Instabilities
– Sub-proton scale turbulence



Whistler waves
● Instabilities

– eVDF stable to Fast-magnetosonic/whistler waves
Jeong et al. (2022)

– No whistlers detected <28 solar radii (and intermittent 
elsewehere)

Cattell et al. (2022)



Whistler waves
● Turbulence

– Tang (2022)
● Applied quasilinear diffusion

tensor to eVDFs
– Critique: halo becomes less

prominent with distance in the
simulations

– Boldyrev & Horaites (2019)
● Whistler turbulence (if it exists)

should be more relevant 

in the outer heliosphere

● Both these models require 
significant assumptions

(e.g. spectral index)



Scatter-Free Halo
● Halo observations have not yet been matched to a 

theory based on local scattering
● However, theory and observations agree there is a 

spatially-varying ambipolar potential (100-1000 eV)
– Potential should dramatically affect the collisionless halo 

electrons (also 100-1000 eV).
● Neglect scattering. Such a model can explain:

– Energy spectrum
– Isotropy
– Evolution with distance



Collisionless model

θ

A
B

sun

φ(r )> φ(rB)

B(r )> B(rB)

● Assume sunward-propagating halo originates in the 
outer heliosphere

● Evolves collisionlessly in the inner heliosphere
● Consider eVDF

evolution in the

large scale fields
● Main effects:

– Electric field
– Magnetic mirroring



Liouville’s theorem

f(x,v), time 1
f(x,v), time 2
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Phase space density is conserved along particle trajectories in the absence 
of diffusion.



Liouville’s theorem
In solar wind, collisionless electrons should conserve their total 

energy εand magnetic moment M:

As a consequence of Liouville’s 
Theorem, steady-state distribution 
is simply a function of these 
conserved quantities:

Horaites et al. (2019)



PSP SPAN-E Data
● Level 3 electron data

– 2D Pitch angle distributions    (32 energies, 16 angles)

Whittlesey et al.  (2020) CDAWeb PADs



Liouville’s Theorem
Change variables (ignore time dependence):
     K   kinetic energy
     θ   pitch angle

Boundary condition

“mapping” formula



Liouville Mapping
● Mapping formula depends on phase space 

variables  r, K, θ, and the physical parameters 
B(r), φ(r).

● Matching a function f(r, K, θ) consistent with 
Liouville’s Theorem provides a measurement of 
the potential  φ(r). 



SPAN-E PADs

Total DEF (CDAWeb)

Heliocentric Distance (CDAWeb)

● Want an overall picture of 
the eVDF evolution

● But data are sampled 
intermittently, at varying 
cadences

● To reduce bias, average:
– In four hour intervals 

(decorrelation time)
– By heliocentric distance (r)

● Time range: 
– 10/31/2018 to 12/31/2020
– 0.2 AU < r <0.8 AU 
–   >2 years around solar 

minimum, quiet conditions
– Remove CMEs, CIRs, SIRs



SPAN-E PADs (examples)
4-hour avergage, 2019-08-25/13:41:02
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Distance Average
avg. halo cuts fk(K)
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avg. sunward eVDF cuts
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Sunward-propagating (θ=15 deg.) cuts vs. distance



Liouville Mapping (1D)
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1D mapping formula 
(Special case θ=0 deg.)



Liouville Mapping (1D)
Results: 250 eV difference between 
0.18 and 0.79 AU!



Liouville Mapping (2D)
Assume a boundary condition can be 
matched to a 2D polynomial in θ, K:



Liouville Mapping (2D)
● Fitting to the 2D 

function matches 
data at all 
observed 
distances

● Confirms that 
Liouville’s theorem 
applies to the data

● Similar potentials 
as 1D method



Validation (Strahl)
● Liouville’s theorem can’t match arbitrary data
● Liouville mapping the strahl fails
● Scattering must affect the strahl, but halo may be scatter-free 

Strahl 
data:



Solar wind acceleration
Proton Bulk Speed
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● Faraday cup data 
(fit to radial 
velocity 
component)

● 4-hour averages
● Protons 

accelerate from 
290 km/sec to 
360 km/sec

(230 eV increase 
in kinetic energy)



Ambipolar Potential

Energy Change w.r.t. r=r1
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● Correct total proton 
energy by gravity

(~40 eV correction)
● Both measurements of 

potential agree 
(electrons and protons)

● The same potential 
must be responsible for 
the observed electron 
and proton signatures



Conclusions
● Evolution of sunward-propagating halo is 

consistent with Liouville’s theorem 
● Scatter-free assumption allows calculation of the 

ambipolar potential
● Inferred potential consistent with the observed 

proton acceleration
● Evolution of the halo in the inner heliosphere fully 

explained
– *Still require a source of sunward-propagating halo 

electrons in the outer heliosphere
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