The Solar Wind

SHINE 2014, June 22

The Solar wind is a Plasma

Typical solar wind parameters at 1 AU (Kivelson & Russell 1995)

Proton density Electron density He²⁺ density Speed Kinetic energy Proton temperature Electron temperature = 1.4×10^5 K Gas pressure Sound speed Alfvén speed Magnetic field

 $= 6.6 \times 10^{6} \text{ m}^{-3}$ $= 7.1 \times 10^{6} \text{ m}^{-3}$ $= 0.25 \times 10^{6} \text{ m}^{-3}$ = 450 km $= 6 \times 10^{-4} \frac{W}{m^2}$ $= 1.2 \times 10^{5} \text{ K}$ = 30 pPa $= 60 \, \mathrm{km}$ $= 40 \, \mathrm{km}$ $= 7 \times 10^{-9} \text{ T}$

Early Observations

- 1859 "Carrington Event": solar flare observed by Richard Carrington, followed by a geomagnetic storm
- Biermann (1951) observes that comet tails point radially from sun, suggesting that gas is streaming outward
- Chapman (1954) infers from coronal temperatures that the corona must extend far from sun, past the Earth

Parker (1958)

- Assumes steady-state, calculates density n(r) and temperature T(r) profiles
- These profiles give the pressure P(r) = nkT, which accelerates the wind
- Predicts "Parker spiral" B-field, from frozen-in flux condition for conducting plasma

Heliospheric Current Sheet

- \blacktriangleright Sun's dipole magnetic axis not aligned with rotational axis \rightarrow ripples in current sheet
- Magnetic field flips direction when crossing the sheet "sector boundaries"

Interaction with Magnetosphere

- Solar wind compresses and drags out Earth's magnetic field.
- Magnetopause: $\rho V_{sw}^2 \approx B^2/(2\mu_0)$

Aurora Borealis ("Northern Lights")

Astronomy picture of the day!

Fast and Slow solar wind (McComas 2003)

- ► Fast wind: $V_{sw} \approx 600 km/sec$, low density, high temperature, originates from coronal holes, typically seen near poles
- ▶ Slow wind: $V_{sw} \approx 400 km/sec$, high density, low temperature, originates from active regions, typically seen in ecliptic

lon composition

 $n_{\alpha}/n_{p}\approx 0.01.$ Other heavy elements and charge states can be detected (SOHO data)

Radial variation of 0.005-60 AU (Koehnlein, 1996)

▶
$$n \propto r^{-2}$$
, $V_{sw} = constant$

• $T \propto r^{-\alpha}$, $\alpha \approx 1/2$. Implies heating?

Distribution functions: ions

- Large temperature anisotropies $T_{p\perp} > T_{p\parallel}$
- Twin-peaked proton distributions (Marsch & Goldstein 1983)
- Distributions are "gyrotropic": symmetrical about \hat{B} direction
- $T_{\alpha} \approx 4T_p$? (Kasper 2008)

Distribution functions: electrons

- Maxwellian core: "thermal"
- "Suprathermal" populations: halo, strahl, superhalo

Steady-state: $\langle \mathbf{j}_{\parallel} \rangle = 0$ (Feldman, 1975)

Core drift balances the strahl: $n_c v_c \approx n_s v_s$

Steady-state: $\nabla \cdot \mathbf{Q} = 0$ (Marsch 1984)

- Energy flow is dominated by kinetic energy of ions
- Total power is constant with radius 0.3-1AU

Waves/Instabilities

Enhanced $|\delta B/B|$ at instability thresholds (Bale 2009)

Turbulence

Breaks in turbulence spectrum. Dissipation at electron scales? (Alexandrova 2009)

The future: Solar Orbiter and Solar Probe Plus

Many important questions still unsolved!

- The coronal heating problem (waves vs magnetic reconnection)
- How is the solar wind accelerated?
- What is the origin of non-thermal distribution functions?
- What heats the solar wind as it expands?

