Kinetic Theory and Fast Wind Observations of the Electron Strahl

Konstantinos Horaites¹, Stanislav Boldyrev^{1,2}, Lynn B. Wilson III³, Adolfo F. Viñas³, Jan Merka^{3,4} ¹Department of Physics, University of Wisconsin – Madison, ²Space Science Institute, ³NASA Goddard Space Flight Center, ⁴Goddard Planetary Heliophysics Institute

SHINE Conference 2017, Saint-Sauveur, Quebec, Canada

Asymptotic solution (Horaites et al., 2017)

Scaling relations

$$\theta_{FWHM} \approx 951 \sqrt{\frac{nx}{|\Omega| \mathcal{E}^2}} deg.$$
(1)

For given n, $\theta_{FWHM} \propto \mathcal{E}^{-1}$

For given \mathcal{E} , $\theta_{FWHM} \propto \sqrt{n}$

Scaling with distance

Assuming $\Omega = \text{const.}$, $n(x) \propto x^{-2}$, our theory predicts:

- $\theta_{FWHM} \propto x^{-1/2}$ (fixed \mathcal{E})
- strahl amplitude $\propto x^{\alpha_s}$ $(\alpha_s > 0!)$

Hammond et al., 1996

Conclusions

- Asymptotic solution to self-similar kinetic equation can effectively model the strahl distribution.
- Model correctly predicts how θ_{FWHM} depends on density and energy.
- Model appears to contradict measurements of how strahl amplitude and \(\theta_{FWHM}\) vary with distance.
- Model may need to be improved by accounting for other physical effects, such as wave-particle interactions.