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Abstract

In this thesis, I develop a kinetic theory that describes the population of thermal runaway

electrons observed ubiquitously in the solar wind, which is commonly known as the

“strahl”. I solve the drift kinetic equation in the high-energy, magnetic field-aligned

regime that is relevant to the strahl, to find the form of this electron population’s

gyrotropic distribution function. I then compare the model with direct measurements of

the distribution function in the fast solar wind, sampled in the ecliptic at 1 AU by the

Wind satellite’s SWE strahl detector. This instrument’s high angular resolution allowed

it to characterize the angular width of the narrow strahl distribution. I demonstrate

that the model accurately predicts the angular width of the strahl, in particular its

dependence on the particle energy and background density. In this model, the angular

diffusion experienced by the strahl is attributed entirely to Coulomb collisions, neglecting

other diffusive mechanisms such as wave-particle interactions that may also impact the

strahl distribution. Finally, I assess the kinetic stability of the model; I present a linear

stability analysis of a distribution comprised of the model strahl function and a drifting

Maxwellian “core” population. The stability analysis is performed numerically using the

LEOPARD solver (3). Surprisingly, I find that the modeled core-strahl distribution is

stable with respect to the whistler wave mode. The whistler mode is often invoked as a

source of “anomalous scattering” of the strahl, as these waves may interact with strahl

electrons via the cyclotron resonance. The analysis, however, does yield two growing

modes which exhibit a Landau resonance with the thermal core electrons: namely, the

kinetic Alfvén and magnetosonic modes.
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Chapter 1

Introduction

1.1 Heat Flow, Plasmas, and Collisions

It is well-known that when two bodies of unequal temperature come into contact, heat

flows from the hotter body to the colder one. This phenomenon, which is called “thermal

conduction”, arises generally in the presence of a temperature gradient in all phases of

matter: solids, liquids, gases, and plasmas. Thermal conduction is the result of many

microscopic interactions among the constituent particles in the system; a region of high

temperature contains particles that possess more energy on average than the particles

in regions of low temperature, and heat is preferentially transferred to the cooler regions

as particles collide and exchange energy. In some systems, it is possible for individual

particles to transfer energy in the system simply by migrating into other regions (carrying

their energy with them), with negligible interaction with other particles. These are

known as “runaway” particles in the context of plasma physics, and they will be of

central interest in this thesis. Specifically, we will be examining “thermal runaway” (26)

electrons that are emitted by the sun, that are observed to flow through the plasma

found in interplanetary space known as the solar wind.

A plasma is an ionized gas, in which electrons are dissociated from atomic nuclei.

Electrons and ions are then free to move independently, and because all these particles
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are charged, they exert electromagnetic forces on each other. In particular, a particle’s

motion is altered by the electric Coulomb force that it feels from the many surrounding

particles. These interactions are known as Coulomb “collisions”, even though a signifi-

cant effect comes from the cumulative collisions that happen over a very large range—on

the order of the electron Debye length, which is in practice many orders of magnitude

larger than the typical atomic size. This picture should be contrasted with that of a neu-

tral gas, where the neutral atoms will only interact if they approach each other within

an atomic radius or so.

The process of particle scattering due to Coulomb collisions in a plasma is highly

dependent on the energy of the scattered particle; it turns out that more energetic

particles are scattered much less effectively. It is a common introductory problem in

plasma physics to show that the frequency of large-angle collisions—i.e., collisions be-

tween charged particles that would deflect the incoming particle’s velocity by 90 degrees

or more—scales with the particle speed (v) as v−3. The same speed (or energy) de-

pendence holds true for the occurrence rate of the many diffusive small-angle collisions

described above, which have a greater impact overall than the large-angle collisions.

In order to fully understand the processes by which energy is transferred between

different regions in a plasma, one must apply a theory that can resolve these microphys-

ical effects—namely, the advection of energy-carrying particles, and the electrostatic

Coulomb interactions that mediate their trajectories. Although these processes natu-

rally involve the motions of individual particles, it is not practical to treat the (many)

particles individually and to solve for their trajectories from the classical equations of

motion. Rather, one averages over the many possible realizations of the system, and
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assumes that a particle has only some probability of being found with any particular ve-

locity at any particular location; the “equations of motion” instead govern the evolution

of these probabilities with time. This approach is known in plasma physics as kinetic

theory.

1.2 Kinetic Theory

Kinetic theory provides a detailed description of plasma dynamics, by characterizing

the classical motion of charged particles in terms of a “distribution function” f(x,v, t).

Loosely speaking, the function represents the relative probability that at time t, an

individual particle will be found at a given position x with a given velocity v.1 Formally,

the distribution function is a strictly non-negative scalar function of a seven-dimensional

phase space—three spatial and velocity dimensions, plus time. At any given instant

(neglecting the independent variable t), the distribution function is normalized to the

volume density of particles, ns(x):

∫

fs(x,v)d
3v = ns(x). (1.1)

Here, as throughout the chapter, the subscript s denotes the particle species.

The kinetic equation, which governs the time-evolution of fs(x,v, t) for a particle

species with charge qs and mass ms, has the well-known form:

∂fs
∂t

= −v · ∂fs
∂x

− qs
ms

[

E(x, t) + v ×B(x, t)
]

· ∂fs
∂v

+ Ĉ(fs), (1.2)

1The function f is analogous to a probability density function; the quantity f(x,v, t)d3xd3v repre-
sents the expected number of particles (at time t) found within an infinitesimal phase space volume
d3xd3v, centered at position x and velocity v.



4

where E(x, t) and B(x, t) denote the spatially and temporally varying electric and mag-

netic fields, respectively. The time-evolution of the distribution function, ∂fs
∂t
, depends

on the three terms on the right-hand side of eq. 1.2, here listed from left to right: 1) the

advection of particles through space, 2) the Lorentz force qs(E + v × B) which alters

particle velocities, and 3) Coulomb collisions. Here the operator Ĉ(fs), the “Coulomb

collision operator”, represents the cumulative effect of electrostatic scattering events,

which stochastically deflect particle velocities. These Coulomb collisions occur over spa-

tial scales equal to or less than the Debye length. The Coulomb collision operator and

its various approximations are well-studied topics in plasma physics. For background on

the collision operator see section C.2, where relevant derivations on the operator’s form

(as it appears in this work) can be found. Here we will simply note that the diffusive

Coulomb collisions tend to drive the distribution towards a Maxwellian (i.e. Gaussian)

function of velocity, a consequence of Boltzmann’s famous “H-theorem” (e.g., 10).

In a magnetized plasma—i.e., a plasma in which the typical Larmor radius (or “gy-

roradius”) rL is much smaller than the scale of the system—charged particles move in

circular orbits around the local magnetic field B. An individual particle’s spiral motion

around the field can be described in terms of its parallel and perpendicular velocity

components, i.e., the field-perpendicular and -parallel components of the velocity, v⊥

and v‖:

v‖ ≡ v ·B/B (1.3)

v⊥ =
√

v2 − v2‖ (1.4)

In this context, when the distribution is averaged over timescales on the order of the
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particle gyroperiod, the function f(v) will appear symmetrical under rotations around

the unit vector B/B—i.e., the distribution is said to be “gyrotropic”. It is then su-

perfluous to treat f as a function of three independent velocity variables (vx, vy, vz),

since the gyromotion effectively reduces the number of velocity degrees of freedom from

3 to 2. Rather, for many applications it is appropriate to apply the drift kinetic equa-

tion (37), which we may think of as a reduced version of equation (1.2), to analyze

the kinetic properties of the system. The drift kinetic equation only has 2 independent

velocity variables—e.g., v⊥ and v‖, or some equivalent set of variables—a consequence

of the equation’s derivation, which begins with eq. 1.2 and averages over the particle

gyromotion.

The solar wind, the principal system considered in this thesis, is a highly magnetized

plasma. These magnetic fields are generated by the solar dynamo (plasma motions in

the sun that convert kinetic energy into magnetic energy), and ultimately dragged out

into interplanetary space with the solar wind as it moves away from the sun. In the

space environment just outside the Earth’s magnetosphere, the Larmor radii of typical

(“thermal”) electrons and protons are about 2 and 80 kilometers, respectively (80); very

small compared to the scale of Earth-Sun distance of 1.5 × 108 kilometers. The body

of this thesis will concern electrons in the solar wind; our analytical modeling of the

(steady-state) electron distribution will be derived from the drift kinetic equation (see

section C.1 for details).
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1.3 The Solar Wind

The solar wind is a plasma continuously emanated by the sun in all directions, that is

accelerated to supersonic speeds by strong pressure gradients present in the region of

the sun’s atmosphere known as the solar corona. The first theoretical model of the solar

wind was developed by Eugene Parker in 1958 (51), and satellite observations would

soon confirm the existence of this fast-moving plasma directly. We will here review this

system’s basic properties.

The solar wind flow can be roughly approximated as a constant-speed, isotropic,

radial outflow from the sun. Magnetic fields that are present in the coronal plasma are

carried outwards with the solar wind flow—a consequence of the frozen-in flux theorem of

ideal magnetohydrodynamics (MHD), which accurately describes the highly conductive

heliospheric environment. Because the sun is rotating, the magnetic field in the plane of

the sun’s equator is drawn into a spiral pattern2. The field lines of this so-called “Parker

spiral” are pictured schematically Figure 1; this field line configuration is very similar

to that which is observed in the ecliptic (the plane defined by Earth’s orbit around the

Sun), because the sun’s equatorial plane is nearly aligned with the ecliptic plane.

Of course, the picture shown in Figure 1 is only an idealization of a more complex sys-

tem. Measurements by the Ulysses satellite (46) revealed, for instance, that the average

speed vsw of the solar wind depends on the heliographic latitude; the solar wind emitted

near the sun’s equator is typified by the so-called “slow” wind (vsw ∼ 400 km/sec), while

observations above the sun’s poles usually exhibit a “fast” wind (vsw & 700 km/sec).

2In particular, the line conservation property of ideal MHD, which states that two regions that are
connected in space by a field line will stay so connected, can be used to derive the form of the Parker
spiral.
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The solar wind velocity is known to also vary with distance from the sun; upcoming

observations of the inner heliosphere are expected to bound the region over which this

acceleration occurs, and to reveal the physical mechanism behind the anomalous heating

of the solar wind (e.g., 79). Besides these large-scale trends, the solar wind changes

dynamically at any given location—for instance, coronal mass ejections (CMEs), which

are large explosions of particles (with higher density than the background plasma) orig-

inating near the Sun, are observed to pass by Earth on an almost weekly basis (e.g.,

58). Even within solar wind streams left unperturbed by a passing CME, the flows are

ubiquitously observed to exhibit strong turbulent fluctuations; the magnetic field vector

and bulk velocity fluctuate stochastically about their mean values. The turbulence is

believed to be driven by large-scale motion—say, the motion of magnetic “footpoints”

near the sun’s surface (e.g., 12)—that develops into a spectrum of fluctuations at smaller

scales through a forward cascade.

The vector vsw, as depicted in Figure 1, can be understood as the bulk flow of the

solar wind ions. By “ions”, we here basically refer to the proton population; the solar

wind ions are comprised mostly of protons, with .5% relative abundance of Helium

nuclei (see, e.g., 1) and only trace representation (.1% abundance total) of the other

“minor” ions. The electrons are observed to move with the same bulk (average) speed as

the ions (17). However, it should be noted that while the ion distribution fi(v) is highly

concentrated around vsw (i.e., the ions all move away from the sun with roughly the same

speed), the electron distribution fe(v) is much more spread out in phase space. Many

electrons are moving away from the sun with speeds significantly (at least a factor of 2)

greater than vsw, and many electrons are observed to actually be moving towards the sun.

This difference is due to the fact that while the electrons and protons are observed to
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Figure 1: Schematic of the solar wind expansion and spiral magnetic field lines (blue) in
the Sun’s equatorial plane (if Earth were pictured in the diagram, the South pole would
be visible). The sun is here pictured to rotate with angular frequency ωs, while the solar
wind expands isotropically with constant speed vsw.

have similar temperatures (within an order of magnitude), the electrons naturally have

a much lower mass. We will review the structure of the solar wind electron distribution

fe(v), in preparation for later analysis, in detail in the next section.

1.4 Solar Wind Electron Populations—Core, Halo,

and Strahl

The solar wind electron distribution fe(v) can be directly sampled by satellite instru-

ments. Typical plasma densities are quite low (around 10 cm−3 at 1 AU), so it is in fact

practical to develop detectors that measure the motion of particles by counting them one
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at a time. This of course would be impossible to achieve in a laboratory plasma, where

densities are many orders of magnitude higher (presenting, in many cases, a hazard to

instruments are exposed to the hot gas). In this sense, the solar wind can be thought of

as a unique laboratory for studying kinetic physics.

Direct measurements of the electron distribution will be presented in chapter 3 of

this thesis, making use of an instrument known as an “electrostatic analyzer”. The

principle behind these devices is fairly simple: electrostatic analyzers are essentially a

pair of closely-spaced, curved parallel plates that are set to have a voltage difference

between them. Incoming particles (whose charge is of the correct sign), are guided in a

circular path as they are accelerated by the electric field suffusing the space between the

plates, and are counted at one end—but the particles can only be admitted if they have

a particular energy, which is set by the plate voltage. Altering the plate voltage thus

allows the spacecraft to sample different parts of phase space, and electrostatic analyzers

are typically operated by stepping through voltages one at a time, until a broad range

of energies are sampled. Particles with different incoming directions of motion may also

be sampled, say, by utilizing the spin of the spacecraft (spacecraft are often spinning

around some axis as a method of stabilization).

The distribution fe(v) measured in the solar wind is typically subdivided into 3 main

populations: the core, halo, and strahl. Most of the electron density (& 90%) can be

attributed to the Mawellian “core” of the distribution. At higher energies (e.g., between3

approximately 10 eV and 1 keV at 1 AU) the distribution exhibits two “suprathermal”

3At even higher energies, the distribution exhibits another break, into an isotropic power-law tail
known as the “superhalo” (42)
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populations: a field-aligned beam known as the “strahl”4, and a nearly-isotropic compo-

nent known as the “halo” (e.g., 17; 55). Due to their relatively high energies, the strahl

and halo electron populations are less affected by Coulomb collisions than the electron

core, and particles in these populations can travel over heliospheric scales without com-

ing into thermal equilibrium with the ambient plasma (e.g., 66). A schematic diagram,

depicting these three electron populations, is shown in Figure 2. In the next section, we

will explain the known features of the electron strahl in some detail, so let us first make

a few remarks about the core and halo.

The core electrons are well-described by a Maxwellian distribution, with a few

caveats. First, the core distribution drifts slightly relative to the ions in its field-parallel

motion, so the peak of the core lags behind the ions by about 50 km/sec or so. This

effect may be mediated by the solar wind collisionality (see, e.g., 56). The exact nature

of this drift, particularly the shape of the electron distribution in this region of phase

space (v ≈ vsw), is very difficult to measure due to the effect of spacecraft charging (e.g.,

64): electrons are removed from the spacecraft surface as they are hit by photons from

the sun (the photoelectric effect), and this loss of charge means that the spacecraft sits

at some floating positive potential, typically around ∼2-3 eV. The measured electron

distribution must then be corrected for this potential (which is not known a priori),

which is on the order of the thermal energy of the core (∼ 10 eV). The similarity of

these energies presents a significant limitation on our understanding of the exact shape

of core around this population’s peak.

The halo distribution is usually modeled by a “kappa” distribution (e.g., 43). At

very low energies, kappa distributions can be approximated as a Maxwellian in velocity

4The term “strahl” literally translates to “beam” in German.
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space—however, this regime is not crucial to model because it is already occupied by

the core distribution (which can be fit to a Maxwellian of its own). At high energies,

kappa distributions approximate a power law (indexed by the value of a parameter κ).

On average, the halo is found to be nearly isotropic in velocity space (54). However, it

does exhibit temperature anisotropy at times, which may provide a source of free energy

to fuel kinetic instabilities (e.g., 77). Not much about the origin of the halo distribution

is known. Many theories posit that the halo may originate from the strahl particles

(since these populations occupy similar energy regimes), say, through the action of some

non-Coulomb scattering process that could isotropize the anti-sunward-moving strahl

(e.g., 76).

1.4.1 The Strahl Electron Population

The strahl is a narrow, magnetic field-aligned population of suprathermal electrons (59)

routinely observed in the ambient solar wind. The strahl is comprised of “thermal

runaway” electrons (26). Because high energy particles are relatively insensitive to

Coulomb collisions (νcoll ∼ v−3), electrons of sufficiently high energy can stream over

large distances without coming into local thermal equilibrium (66). The strahl electrons

generally move anti-sunward, because the relatively hot inner regions of the heliosphere

act as a source of high-energy particles. However, in some instances—notably, during

the transit of interplanetary coronal mass ejections—“counterstreaming” strahls (e.g.,

23; 2), which are directed towards the sun, are also observed. When it is prominent, the

strahl can provide the dominant contribution to the electron heat flux (55), which is an

important source of heating of the solar wind during its non-adiabatic expansion (e.g.,
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Figure 2: Schematic showing the core, halo, and strahl subpopulations of the electron
distribution, and the regions of phase space they occupy (illustration courtesy of Marc
Pulupa). The plots are shown in the solar wind frame (the peak of the ion distribution
would appear at v ≈ 0 in this picture). The upper panels (roughly) show contours of
the distribution in v⊥ − v‖ space. The lower panels show field-parallel cuts (v⊥ = 0) of
these subpopulations, in physical units, as they might typically appear at 1 AU. Note
that the separation of the distribution into subpopulations is only an abstraction; a real
observed distribution in the solar wind would appear as a superposition of these three
populations.
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78). The parallel electric current, on the other hand, is typically observed to be near

zero regardless of the strahl amplitude (17).

The beam-like shape of the strahl in velocity space is believed to come from the

competition of two physical processes: the mirror force and pitch angle scattering. The

mirror force narrows this population, so that electron velocities run nearly parallel to

the local magnetic field. The runaway electrons see a weakening field as they travel to

larger heliocentric distances, which converts the particles’ perpendicular velocity into

parallel velocity. The observed strahls, however, are not as narrow as one would expect

from conservation of the first adiabatic invariant (∼ v2⊥/B). It is therefore inferred that

a scattering process provides some diffusion that broadens the distribution.

This pitch angle scattering is usually attributed to either Coulomb collisions or wave-

particle interactions, and interest in the latter has been partially motivated by the per-

ceived failure of the former. In particular, measurements conducted by (39) showed the

strahl to be even broader than would be predicted by incorporating Coulomb collisions

into exospheric theory, and it was suggested that a source of “anomalous diffusion” in

the form of wave-particle interactions may be scattering the strahl particles.

Nonetheless, there is a wealth of evidence indicating that on average, characteristics

of the strahl can be strongly correlated with the Coulomb collisionality of the back-

ground solar wind. We here refer to “collisionality” in terms of the Knudsen number

γ(x = const.) ∝ T 2/n, which parameterizes the ratio between advective and Coulomb

scattering terms in the kinetic equation (see section 1.5 for more details). Prominent,

narrow strahls have long been associated with the fast solar wind (e.g., 16; 55; 2). The

fast wind is less collisional on average, since typically n is lower and T higher than in the

slow wind. (49) specifically noted that prominent, narrow strahls can be seen when the
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fast solar wind has very low density. (65) showed that the solar wind heat flux q, which

comes from the skewness of f(v) owing partially to the strahl, is correlated with γ. In

(31), average field-parallel cuts of the electron distribution computed from Helios data

were shown to vary with γ as predicted by a “self-similar” kinetic theory, with strahl

amplitude increasing with γ. The fact that the solar wind data are so well-ordered by

γ is a strong indication that Coulomb collisions play a central role in the physics that

shapes the electron strahl.

Most wave-particle theories of strahl scattering have considered the effect of whistler

waves (e.g., 82; 83; 61). These waves can resonate with the cyclotron motion of strahl

electrons, scattering the particles and broadening their distribution. A variation on this

mechanism was suggested by (67), in which anti-sunward halo particles not scattered

by whistlers can be focused by the magnetic field into the strahl. Whistlers may be

generated by the electron heat flux instability (e.g., 20; 22); this view has been sup-

ported by studies of whistler wave events (e.g, 84; 72). Whistlers may also be excited

by the temperature anisotropy of the strahl population (e.g., 81), or may help comprise

the small-scale interplanetary turbulence (e.g., 50; 6). Recently, the first direct ob-

servations of long-lived (lasting longer than 5 minutes) whistler waves were made (38),

using data from the Cluster spacecraft mission. A subsequent study (35) demonstrated

that the presence of whistler waves is correlated with broader strahl widths. However,

the authors emphasized that whistler waves were detected infrequently by Cluster in

the “pristine” (unperturbed by transient structures) fast wind: only 37 time intervals

sustaining whistlers for a minute or longer were observed in a 10-year period. Looking

beyond whistler waves, (53) proposed that strahl distributions focused by the mirror

force should generate Langmuir oscillations. In their numerical simulations, quasilinear
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oscillations continually scatter the strahl electrons, developing a steady state in which

scattering balances magnetic focusing.

The detailed shape of the strahl distribution, which carries information about the

physics that formed it, has been characterized in multiple observational studies. Using

data from the Imp 6, 7, and 8 satellites, (16) found that the angular breadth of the strahl

distribution decreases monotonically with energy in the fast wind. This is consistent with

the predictions of Coulomb scattering models (see e.g., 61; 15) and some wave scattering

models (e.g., 53). This picture is not always observed in the data, however; (2) reported

that the strahl width can either increase or decrease with energy. Some instances where

the strahl broadens with energy have been associated with rare transient events, such

as solar electron bursts (13) and periods of increased wave activity (50). Counter to the

notion that the magnetic field continuously focuses the strahl as the particles travel away

from the sun, (27) found that the strahl width (at a given energy) actually increases

with heliocentric distance r for Ulysses data r >1 AU (see also (25)).

1.5 Spitzer Conductivity and the Knudsen Number

The strahl is of particular interest in solar wind studies because it introduces a field-

parallel skewness in the distribution, that can significantly impact the so-called “heat

flux” q. The heat flux is computed from the 3rd order moment of the distribution5:

q(x) =
me

2

∫

v2vf(x,v)d3v, (1.5)

5We will only consider electrons here, and drop the species subscript by default.
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where me is the electron mass. Equation 1.5 describes the net flow of kinetic energy

(mev
2/2) carried by electrons at a given location, in an inertial frame where the ions are

at rest. The heat flux is of interest in fluid models of plasmas, as the divergence of this

quantity appears in the time-dependent energy equation. As the distribution f(x,v) is

not known a priori nor is it derivable from fluid theory, it is often convenient to develop

a “closure”—an additional equation that prescribes the form of q—in terms of other

macroscopic plasma parameters (e.g., density, temperature).

In studies of the solar wind, the heat flux is often prescribed as a step in obtaining

profiles for the solar wind speed (51; 7), as a player in the steady-state global energy

balance (45), and as a source of free energy that drives instabilities (22).

Perhaps the most well-known closure in plasma physics is due to Spitzer & Härm (71),

who solved the kinetic equation for f(v) in the presence of a temperature gradient (in

a plasma with constant density). They assumed that collisions between particles were

frequent enough that f(v) should be Maxwellian (a.k.a. Gaussian) to zeroth order, and

solved for the first order perturbation δf(v). Calculating the 3rd order moment of this

perturbation yielded an expression for the heat flux in the absence of a net electric

current:

qsh = −κ‖∇‖T. (1.6)

Here κ‖ ∝ T 5/2 is the thermal conductivity parallel to the magnetic field.

The Spitzer-Härm relation applies for collisional plasmas, where the collisional mean

free path λmfp is sufficiently small. The degree of collisionality is parametrized by the

temperature Knudsen number:
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γ = −T 2(d lnT/dx)/(2πe4Λn) ∼ λmfp/LT , (1.7)

where LT = |d lnT/dx|−1 is the temperature scale height, Λ is the electron Coulomb

logarithm, and x is the direction of the temperature variation. If γ ≪ 1, the plasma

is collisional and equation (1.6) applies, otherwise it is weakly collisional or collisionless

and the description of q becomes more complicated. In particular, the Spitzer-Härm

expansion is formally valid for γ . 0.01, while for larger values a population of “thermal

runaway” electrons may contribute to the heat flux (e.g., 26; 36). Thus in a plasma with

a temperature gradient, a population of electrons is locally detected that originated from

distant, hotter regions. In the limiting case γ & 1 the collisionless or “free-streaming”

heat flux q0 is given by the thermal energy density advected at the thermal speed, q0 ∼

nvthT (52; 26).

Recent measurements of the electron distribution function made by the Wind satel-

lite’s electrostatic analyzers EESA-L and EESA-H, presented by (4), have shed light on

how Coulomb collisionality mediates the electron heat flux. The authors demonstrated

in a broad statistical study of Wind data that the solar wind heat flux in fact scales

with γ exactly as predicted by classical theory (71) in the collisional regime γ ≪ 1;

see Fig. 3, which is borrowed from the original paper. In the regime γ & 1, the heat

flux was observed to “saturate” at the collisionless value q ∼ nvthT . This saturation

may owe to the onset of various plasma instabilities (e.g, 11). These results suggest

that γ is the fundamental parameter needed to predict the heat flux and the electron

distribution function in the weakly collisional solar wind—indeed, we will use γ as an

ordering parameter, for the observations of fe(v) presented in section 3.5.
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Figure 3: Figure from (4)—The field-parallel electron heat flux q‖, normalized by the
free-streaming heat flux q0 ∼ nvthT , is plotted versus the temperature Knudsen number
(γ ∼ λmfp/LT ) as a joint normalized distribution. The plot displays about 4 years of
slow solar wind data measured by Wind’s 3DP instrument (an electrostatic analyzer).
The black line shows the Spitzer-Härm relation, eq. (1.6), under the assumption that the
temperature scales with distance as T ∝ r−2/7. The lower panel displays a histrogram of
the total number of measurements at each Knudsen number. We see from the plot that
the heat flux scales as predicted by Spitzer-Härm in the collisional regime γ ≪ 1, and
then approaches the free-streaming collisionless limit at lower collisionalities (γ ∼ 0.3 in
this plot).
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Chapter 2

The Strahl—Asymptotic Solution

2.1 Introduction

The goal of this chapter is to develop an analytical model for the electron strahl popula-

tion in the solar wind. The accurate analytic derivation of the full electron distribution

function is a very complicated task since it requires one to solve the electron kinetic

equation in an expanding background, subject to the boundary conditions at the base

of the solar wind and at infinity. The analytical treatment of the strahl presented here

was published in (32). Our model improves upon previous work on the subject (31; 33),

by assuming the solar wind magnetic field evolves with distance according to the Parker

spiral model. We additionally relax one of the assumptions made in those works, namely,

that plasma parameters (e.g., density, temperature) should scale as power laws of the

heliocentric distance. Rather, our solution for the strahl is cast in the most general

terms, and such assumptions about solar wind structure may be applied afterwards (as

we will do for the density, e.g., in section 3.4). Our model does not allow us to determine

the solution uniquely, which reflects the fact that we do not solve a full boundary value

problem, and, therefore, do not have enough information to fully describe the fast elec-

trons that stream from the hot solar surface. We however demonstrate in chapter 3 that

the remaining arbitrariness can be removed very efficiently by matching our analytic
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solution with the observations.

2.2 Kinetic Equation and Solution

We will describe the electron distribution function1 f in terms of the distance along a

magnetic flux tube x, the velocity magnitude v, and cosine of the pitch angle µ:

µ ≡ B̂ · v/v, (2.1)

where the unit vector B̂ points along the (Parker spiral) magnetic field, in the anti-

sunward direction. The steady-state drift kinetic equation for the distribution function

f(v, µ, x) then takes the following form (e.g., 37, see section C.1 of this thesis for detail):

µv
∂f

∂x
− 1

2

d lnB

dx
v(1− µ2)

∂f

∂µ
−

− eE‖

m

[

1− µ2

v

∂f

∂µ
+ µ

∂f

∂v

]

= Ĉ(f), (2.2)

where E‖ is the electric field parallel to the magnetic field line. In Equation (2.2) we

have neglected the E×B drift. This equation describes the evolution of the (gyrotropic)

electron distribution function for the electron population whose speed is much greater

than the speed of the solar wind, v ≫ vsw. The magnetic fields lines are advected with

the solar wind, and, therefore, the magnetic field can be assumed stationary for such

electrons.2 If we further assume that the energies of these electrons significantly exceed

the thermal energy of the core particles, we may use the linearized form of the collision

1By default throughout the rest of this document, we will drop the subscript e when referring to the
electron distribution.

2We treat the suprathermal electrons in an Eulerian frame.
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integral for such electrons (e.g., 28, see section C.2 of this thesis for detail):

Ĉ(f) =
4πne4Λ

m2
e

[

β

v3
∂

∂µ
(1− µ2)

∂f

∂µ

+
1

v2
∂f

∂v
+

v2th
2v2

(

− 1

v2
∂f

∂v
+

1

v

∂2f

∂v2

)]

, (2.3)

where Λ is the Coulomb logarithm, β = (1+Zeff)/2, Zeff =
∑

i niZ
2
i /ne is the effective

ion charge, and n ≈ ne and vth are respectively the density and thermal speed of the

core electron population. As is typical for the fast solar wind vsw > 550 km/sec, we

will assume that the abundance of He2+ is 5% of the H+ abundance (85), and neglect

the minor ions. For a quasi-neutral plasma with this composition, we find Zeff ≈ 1.1

and β ≈ 1.05. The first term in the collision integral (2.3) describes the pitch-angle

scattering of the fast electrons by the slow ions and electrons of the core population,

while the remaining terms describe the energy exchange with the core electrons. If we

are interested in the evolution of the fast electrons forming a narrow electron strahl with

v‖ ≫ v⊥, one can demonstrate that the energy-exchange term is negligible in comparison

to the scattering term. In what follows, we therefore keep only the first term in Eq. (2.3).

We simplify the analysis by introducing new variables, proportional to the electron

energy, E = v2+(2/me)eφ(x), and the magnetic moment, M = (1−µ2)v2/B(x). In these

expressions, e < 0 is the electron charge, and φ(x) is the electric potential measured with

respect to x = ∞. In these variables, the drift-kinetic equation (2.2) for the electron

distribution function f(E,M, x) takes a simple form:

∂f

∂x
=

16πe4Λβn(x)

m2
eE(E, x)B(x)

∂

∂M
M

√

1− MB(x)

E(E, x)

∂f

∂M
, (2.4)

where E(E, x) = E − (2/me)eφ(x). For the runaway strahl electrons that we consider,

E ≈ E, and since v‖ ≫ v⊥ we have MB(x)/E(E, x) ≪ 1. Equation (2.4) can then be
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simplified as:

∂f

∂x
=

16πe4Λβn(x)

m2
eEB(x)

∂

∂M
M

∂f

∂M
. (2.5)

We can now introduce a new spatial variable y from the condition

dy =

(

16πe4Λβ

m2
eE

)(

n(x)

B(x)

)

dx, (2.6)

where dx is the length element along the magnetic field line. We now notice that in ideal

MHD, which is the basis for the Parker model, the vector B(x)/n(x) is frozen into the

plasma flow, which means that this vector changes proportionally to the magnetic-line

element dx when advected by the flow (e.g., 5; 73). This allows us to write:

dx/dx45 =

(

B(x)

n(x)

)

/

(

B(x45)

n(x45)

)

, (2.7)

where x45 is some fixed position, which we will choose, for definiteness, as the point

where the magnetic field line is directed at 45◦ with respect to the radial direction.3 For

simplicity we will assume an axisymmetric Parker spiral model for the magnetic field.

For the Parker spiral, the heliospheric distance r45 corresponding to the point x45 is

given by the formula:

r45 = vsw/ωs, (2.8)

where ωs is the model angular velocity of the sun and vsw is the (constant) speed of

the solar wind. In practice, the heliospheric distance r45 corresponding to the point x45

turns out to be approximately 1 AU.

3The frozen-in condition is elementarily related to flux conservation. Consider a radially expanding
slab of solar wind plasma, with fixed thickness dr and small cross-sectional area A(r). The frozen-flux
condition dictates that B(r)x̂ · r̂A(r) = const., while particle conservation within the expanding parcel
can be expressed as n(r)A(r)dr = const. Dividing the former equation by the latter, and noting that
x̂ · r̂dx = dr, we find that the quantity n(r)dx/B(r) is constant at all distances for the expanding
parcel. In our azimuthally symmetric steady-state model, this identity holds throughout a single flux
tube, which leads to Eq. (2.7).
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Figure 4: Sketch (drawn not to scale) of the magnetic field lines forming an azimuthally-
symmetric Parker spiral. If the solar wind velocity, vsw, is constant, the radial element
dr does not change as the magnetic-field lines are advected with the solar wind, while
the corresponding length element dx along a magnetic field line changes according to
Eq. (2.9).
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Since the lines are frozen into the radial solar-wind flow whose velocity, vsw, is nearly

constant, the radial displacement dr corresponding to the field-line element dx does

not change as this element is advected with the flow, see Fig. (4). We therefore have

dx45 = dr45
√
2 = dr

√
2. From Eq. (2.7) we therefore have

dx = dr
√
2

(

B(x)

n(x)

)

/

(

B(x45)

n(x45)

)

, (2.9)

which, after substitution into Eq. (2.6) gives

dy =

(

16
√
2πe4Λβn(x45)

m2
eEB(x45)

)

dr. (2.10)

Quite remarkably, we derive that the variable y is equal (up to a constant) to the

heliospheric distance r. Parenthetically, we note that Eq. (2.10) would change if the

solar wind velocity were not assumed to be constant.

Finally, conducting an additional change of variable ζ =
√
M , we cast Eq. (2.5) in

the form of a standard 2D radial diffusion equation describing f(E, ζ, y):

∂f

∂y
=

1

4

1

ζ

∂

∂ζ
ζ
∂f

∂ζ
. (2.11)

This equation can be solved if the distribution of the strahl electrons is known at some

initial position yin. We assume that this distribution is narrow, that is, concentrated

at v‖ ≫ v⊥. Then at larger distances y ≫ yin it can be approximated by the standard

solution of the 2D diffusion equation:

f(E,M, y) =
C(E)

y
exp

(

−ζ2

y

)

=
C(E)

y
exp

(

−M

y

)

, (2.12)

where C(E) is an arbitrary function that may be related to the distribution of fast

electrons at the base of the solar wind. This supports similar conclusions drawn by,

e.g., (69), about the coronal origins of the strahl electrons. We need not relate function
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C(E) to the thermal distribution of the core electrons at a given distance, a priori, since

the strahl is not in thermal equilibrium with them.

In the Parker-spiral model, the magnetic field strength changes with the heliospheric

distance as B(r) = B(r45)(r45/r)
√

1 + r245/r
2/
√
2, where r45 is the heliospheric distance

corresponding to the field-line position x45, as described by Eq. (2.8). We can now

re-write the obtained solution (2.12) for the electron-strahl distribution function (again

assuming E ≈ v2) using the variables v, µ, r:

f(v, µ, r) =
C(v2)

r
exp

{

− v4(1− µ2)
√

1 + r245/r
2

(

m2
e

16πn45r45e4Λβ

)

}

, (2.13)

where we have denoted n45 = n(r45). This completes our solution for the strahl compo-

nent of the electron distribution function. Except for the undetermined isotropic velocity

function C(v2), this solution does not contain free parameters.

The width of the obtained strahl distribution function at a given energy can be

found directly from this solution. From the exponential factor of Eq. (2.13), we find the

so-called strahl full width at half maximum, θFWHM :4

θFWHM = 2 sin−1

{

16πn45r45e
4Λβ

√

1 + r245/r
2 ln(2)

m2
ev

4

}1/2

. (2.14)

Expressions (2.13) and (2.14) are the main predictions of our theory for the electron

strahl.

A simpler expression can be derived using the small angle approximation sin−1 θ ≈ θ.

By assuming the typical values for the parameters5 Λ ≈ 30, β ≈ 1.05, and r45 ≈ 1 AU,

4The full width at half maximum is twice as large as the corresponding half-maximum pitch angle
θ.

5The Coulomb logarithm is estimated as Λ ≈ 24 − ln(n1/2/T ), where n (cm−3) is the density
of the particles and T (eV) is their temperature (34). For the estimate, one needs to consider the
particles whose thermal velocity is larger than the relative velocity between the scattered (strahl)
and scattering (core) particles. We, therefore, substitute here the temperature of the strahl and halo
particles, T ∼ 100 eV, and their combined density n ∼ 0.5 cm−3, which is about 5 − 10% of the core
density (e.g., 76).
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Eq. (2.14) can be approximated as:

θFWHM ≈ 24◦
(

K

100 eV

)−1
( n45

5 cm−3

)1/2
(

1 +
r245
r2

)1/4

, (2.15)

where the variable K denotes the kinetic energy:

K ≡ mev
2

2
. (2.16)

As will be discussed in more detail in chapter 3, we note that the strahl width predicted

by Eq. 2.15 varies as the square root of the density, and varies inversely with the energy.

Two important observations should be made about this solution. First, the width of

the electron strahl is independent of the overall strength of the magnetic field, as e.g.,

the term B(r45) is absent from Eq. (2.14). The width only depends on the way the

magnetic field varies with distance in the Parker spiral. Second, at lower heliospheric

distances, r2 ≪ r245 the focusing effects dominate and the width of the strahl decreases

with the distance. At higher distances, r2 ≫ r245, however, the strahl width saturates and

becomes independent of distance. The angular width of the saturated strahl, θFWHM,s,

at these distances then follows immediately from Eq. 2.15:

θFWHM,s ≈ 24◦
(

K

100 eV

)−1
( n45

5 cm−3

)1/2

. (2.17)

Equation 2.17 may be interpreted to mean, for example, that the angular width of

the 100 eV strahl electrons will saturate at a value on the order of 24◦ in the outer

heliosphere.

The saturation of the strahl width may seem counterintuitive if one considers that

at r2 ≫ r245 the magnetic-field strength still declines rather rapidly with the heliospheric
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distance, with the scaling B(r) ∝ 1/r, and the magnetic focusing effects may be expected

to dominate in a nearly collisionless plasma. The resolution to this paradox is that for

r2 ≫ r245 the magnetic field lines are nearly azimuthal in the Parker spiral, in which

case the magnetic-field strength declines rather slowly along the magnetic field line. An

electron following a magnetic field line has to travel an increasingly large distance along

a rather slowly declining magnetic field, before considerable focusing can take place.

This enhances the effects of collisional broadening relative to the effects of magnetic

focusing, leading to the establishment of a universal strahl width in the regime r2 ≫ r245,

as seen from Eq. (2.14).

Our strahl model takes into account the defocusing effects caused only by electron

Coulomb collisions. Our results thus present a lower boundary on the width of the

strahl. They are however in good agreement with the set of observational data at 1 AU

that we analyze in the next chapter. In chapter 3, we will show that our formula (2.14)

underestimates the width of the strahl in those measurements by only about 15− 20%,

indicating that Coulomb collisions provide a dominant contribution to the strahl broad-

ening. In practice, the strahl electrons may also be scattered by plasma turbulence that

is ubiquitous in the solar wind, which could further enhance the strahl broadening.
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Chapter 3

Comparison with Wind Data

3.1 Introduction

In this chapter, we will test our theoretical predictions for the shape of the strahl dis-

tribution, which were developed in chapter 2. The material presented here is adapted

from our published work (33; 32), and is augmented by additional (or updated) figures.

To test our theory, we examine high resolution measurements of the strahl distri-

bution made by the Wind satellite, whose Solar Wind Experiment (SWE) had an elec-

trostatic analyzer dedicated to measuring the strahl distribution (48). Wind’s strahl

detector had very fine (∼4.5◦) angular resolution, making it ideal for measuring the

shape of the strahl distribution. Following previous observational papers (e.g. 49), we

will characterize the breadth of the distribution in terms of the angular full width at

half maximum (FWHM). We will demonstrate in section 3.4 that the strahl widths are

accurately described by our theory, as it correctly predicts how the width decreases with

particle energy and increases with background density.

The angular breadth of the solar wind strahl distribution has been the object of study

for some time. As mentioned in section 1.4.1, a seminal work on this topic (39) devel-

oped a model of strahl broadening based solely on Coulomb collisions. Their theoretical

approach was quite different from that presented in chapter 2 of this thesis; for instance,
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the authors of that work did not base their derivation not on the drift kinetic equation,

nor did they account for the Parker spiral structure of the magnetic field (instead assum-

ing B(r) ∝ r−2 throughout the heliosphere). The observational data presented in this

chapter will lead us to a different conclusion than that of (39), in that we will find the

strahl-widths to in fact be well-described by our collisional model. We therefore must

differ with their inference that “another mechanism, for instance wave-particle interac-

tions, scatter(s) these electrons”. At least for the energy regimes investigated here1, our

observations indicate that Coulomb collisions are the primary source of diffusion for the

strahl electrons.

It bears mentioning that prior to the publishing of our recent works, the SWE strahl

detector data had fallen into disuse. Besides a few publications dating to the late 1990s

and early 2000s, this data set was virtually absent from the solar wind literature. It

required significant effort to revitalize this data set—to read the raw data files, apply

the appropriate calibrations, and to remove experimental artifacts. This was made

possible in large part due to help from current and past members of the Wind team at

NASA’s Goddard Space Flight Center (see the “Acknowledgments” section). For those

interested, the strahl detector data have recently been made available for download via

NASA/GSFC’s Space Physics Data Facility’s CDAWeb service.

1Even with the high angular resolution of the SWE strahl detector, at very high energies our model
predicts that the strahl should be even narrower than the detector can resolve. We will thus limit our
attempts to match our model with the data, to cases where observed strahl width is broader than the
minimum detector resolution, i.e. when the strahl width is & 10◦.
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3.2 SWE Strahl Detector

The Wind satellite’s strahl detector is a toroidal electrostatic analyzer (48), which di-

rectly sampled the solar wind electron velocity distribution function (eVDF) at a helio-

centric distance r =1 AU. The instrument’s 12 anodes are set in a vertical pattern in

a plane that contains the spacecraft spin axis, spanning a field of view ±28◦ centered

around the ecliptic. Wind’s spin axis is set at a right angle with the ecliptic plane,

allowing different azimuthal angles to be sampled as the spacecraft spins (3 sec spin

period). These azimuthal bins have a fixed separation of 3.53◦. Each strahl distribution

measured by the spacecraft consists of a 14x12 angular grid of electron counts, that was

measured at a fixed energy during a single spacecraft spin. Counts can be converted

into physical units of f(v) (e.g., cm−6s3) in the standard fashion by accounting for the

detector efficiency and geometric factor2. Accompanying each strahl measurement is

an analogous 14x12 measurement of the “antistrahl”, made at a clock angle 180◦ with

respect to the strahl measurement. The detector voltage was set to a different value each

spin, so that 32 energies from 19.34 to 1238 eV would be sampled in as many rotations.

In the original mode of operation, each measurement grid was centered on the nom-

inal average Parker spiral (in the ecliptic plane, 45◦ offset from the radial direction r̂).

In practice, however, the local magnetic field only fell within the field of view of the

detector about half the time. This prompted a revision of the instrument software in

February 1999 (49), which matched the clock angle of the strahl measurement with the

2The discrete number of particles counted with given velocity v, which we here denote as Cv, is
related to the observed magnitude of the distribution at that velocity f(v). The quantities are related
via the proportionality f(v) ∝ Cv × v−4. The “geometric factor” is a constant factor that depends
on the geometry of the electrostatic analyzer (e.g. its physical size and admittance angle), that sets
this proportionality. Note: the factor of 4 in the speed exponent comes from the fact that the phase
space volume sampled by the detector scales with the incoming particle speed as v3, while rate at which
particles impact the detector should also of course scale with their speed, v.
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instantaneous measurement of the magnetic field provided by Wind’s Magnetic Field

Investigation (MFI).

Our data set ranges from January 1, 1995 to May 30, 2001, which nearly covers

the operational lifetime of the strahl instrument. The strahl detector was reconfigured

shortly after this period to serve as a replacement for SWE’s Vector Electron/Ion Spec-

trometer (VEIS), whose power supply had recently failed.

3.3 Strahl Data

The data studied here are derived primarily from Wind’s SWE strahl detector, sup-

plemented by plasma data from SWE/VEIS and vector magnetic field data from MFI

(48; 40). The background electron density n is taken from the VEIS measurement of

proton density np, which is a reasonable estimate for the quasineutral, proton-dominated

solar wind. This is more reliable than direct measurement of n with the electron instru-

ment since measurements of the proton distribution are less susceptible to spacecraft

charging effects (see, e.g., 14; 55). The temperature is calculated from the second-order

moment of the eVDF measured by VEIS. We note that this measurement overestimates

the core temperature T by a small factor (10-20%), since the suprathermal populations

are included in the calculation. Plasma parameters (which are used to calculate ξ, γ,

etc.) from other instruments are associated with each strahl measurement by matching

to the nearest measurement time. If plasma data are not available within 5 minutes of

the strahl measurement, then the data are excluded from our analysis. We also exclude

data for which the B̂ direction, as measured by the MFI instrument, is outside of the

strahl detector’s field of view.
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Figure 5: Schematic of the SWE strahl detectors 14×12 angular field of view, from (49).
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Each measurement made by the SWE strahl detector is a composition of signals from

the strahl, halo, and (at low energies) core components of the electron distribution (e.g.,

55). In order to conduct a statistical study of the fast wind strahl, we developed an

automated procedure for isolating the strahl signal from the background formed by the

other populations. The procedure is as follows:

1. Find the strahl—For each 14x12 strahl distribution fs (measured at a single en-

ergy), find the bin where the distribution is at a maximum, and designate the

nominal velocity direction of electrons measured in that bin as the “peak direc-

tion”.

2. Remove the halo—Let the maxima of the measured strahl and associated anti-

strahl distributions be designated fs,max, fa,max respectively. Zero out (ignore

in future analysis) the bins of the strahl distribution where the criterion fs <

Max{fa,max × 3/2, fs,max/5} is satisfied.

3. Clean up residual noise—Calculate the pitch angle θ, relative to the peak direction,

of every bin in the 14x12 grid. Find the minimum pitch angle θmin = Min{θ}

among the bins zeroed out in the previous step. Zero out every bin in the strahl

distribution fs that satisfies θ > θmin. From this point forward, “fs” will refer to

the cleaned strahl distribution resulting from the above procedure.

This cleaning procedure leads to a very clearly defined strahl, an example of which is

shown in figure 6.
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For strahl distributions measured after the February 1999 software revision, anoma-

lously high count rates were observed when the sun was in the detector’s view (R. J.

Fitzenreiter 2016, personal communication). These spurious counts were caused by pho-

toelectrons, and should be removed from our analysis. As a simple correction, we zero

out (prior to step “Find the strahl” above) data from all 12 anodes at a given azimuthal

angle, if one of these anodes pointed within 10◦ of the sun’s position.

3.4 Measurement of the Strahl Width

We now compare the SWE strahl detector data with our model. We will only consider

the fast solar wind, i.e. when the solar wind bulk velocity vsw exceeded 550 km/sec. The

strahl detector measures each distribution at fixed energy K and position r = 1AU. The

measurements take place over an interval of a few seconds, so that the bulk density n

and speed vsw (from which n45 and r45 are respectively inferred) can be taken as constant

as well. For the small angles (θ ≈ 0, µ ≈ 1) relevant to the strahl, we can approximate

(1 − µ2) ≈ 2(1 − µ) via the Taylor expansion. This implies that the measured angular

distribution function f(µ) should fall off exponentially with (1 − µ), as it follows from

equation 2.13:

f(µ) ∝ exp{−A(r, r45)n
−1K2(1− µ)}. (3.1)

The form of A(r, r45), a shorthand that we use here for simplicity, can be found imme-

diately from equation 2.13:

A(r, r45) ≡
{

2πre4Λβ

√

( r

r45

)2

+ 1
}−1

. (3.2)

In obtaining equation 3.2, as throughout this chapter, we assumed that the density n
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Figure 6: An example strahl spectrum fs (linear z-axis scale), after applying an auto-
mated procedure for removing the halo population. This plot can be compared with
figure 3, (18), which shows the “raw” spectrum. The variables θS, φS are spherical
(GSE) coordinates that describe the velocity direction of the measured electrons. The
angle θS = 0 corresponds with the ecliptic. Note that the detector’s 12 anodes are not
evenly spaced in θS. The magnetic field direction B̂ is determined through the process of
nonlinear fitting described in section 3.4, and is shown in this example by a “+” symbol.



36

varies with heliocentric distance as n(r) ∝ r−2. This satisfies the continuity equation of

fluid mechanics in a constant-speed solar wind.

Let us express equation 3.1 in terms of the pitch angle with respect to the magnetic

field, θ ≡ cos−1(µ). Still assuming small angles, we can approximate µ ≈ 1 − θ2/2,

implying f should fall off as a Gaussian with θ:

f(θ) ∼ exp
{−A(r, r45)K

2θ2

2n

}

. (3.3)

This prediction agrees with previous attempts to model the strahl; functions of the form

f(θ) ∝ exp(−cθ2), where c is some constant, have been used to fit measured strahl

distributions at fixed energy (27; 2). The exact expression for the full width at half

maximum of this nearly-Gaussian strahl, θFWHM , is given already by equation 2.14. An

approximate expression is given in equation 2.15. From this latter equation we obtain

the following scaling relations for fixed r and r45(vsw):

i For given n, θFWHM ∝ K−1

ii For given K, θFWHM ∝ √
n

The local quantities n and K, which determine the breadth of the strahl in our model,

are known to high accuracy. Measurements of these parameters have relative errors 10%

and 3% for n and K, respectively (48). We note also that our prediction for θFWHM is

independent of T .

To test our prediction for θFWHM , we must first calculate the observed strahl widths

from the angular distributions. We fit each strahl distribution fs to our model (3.1).

Let us define the following variables:
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z ≡ ln(fs/fs,max) (3.4)

y ≡ (1− µ) (3.5)

m ≡ −A(r, r45)n
−1K2 (3.6)

and write equation 3.1 as:

z(y) = my + Z, (3.7)

where m and Z are constants.

Since our model (3.7) is linear when expressed in these variables, it would seem

natural to employ the weighted ordinary least squares (OLS) technique to find the

parameters m, Z for each distribution. This could be accomplished by fitting to the

data zi comprising the distribution, which is measured at independent coordinates yi

(“i” indexes the bins of fs). However, it turns out that there is considerable error in

our determination of the magnetic field direction B̂ which must be corrected for. If our

measurement of B̂ (as determined by the MFI instrument) is off by even a few degrees,

errors in yi will lead to significant inaccuracies in the determination of the strahl width.

This effect is most problematic when the angular error of the B̂ direction is on the order

of θFWHM , which can occur for narrow strahls.

We therefore conduct a weighted nonlinear least squares fit to the distribution func-

tion (z), in which the direction B̂ is determined by the fitting procedure. Our fits are

generated using the MPFIT software (44), which implements the Levenberg-Marquardt

algorithm. We fit to the (2D) model function:
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z(φS , θS) = my(φS, θS;φB, θB) + Z. (3.8)

Here we introduced the function y(φ, θ;φ′, θ′),

y(φ, θ;φ′, θ′) = 1− Û(φ, θ) · Û(φ′, θ′), (3.9)

and Û(φ, θ) is a function that produces a unit vector pointing in the direction specified

by φ, θ (azimuth and altitude, in GSE coordinates).

Equation (3.8) is the same as the OLS function (3.7) described above, with some

nuance. Now there are two independent coordinates, φS and θS, which represent azimuth

and altitude in spherical (GSE) coordinates. The model (eq. 3.8) has four fit parameters:

m, φB, θB, and Z. The parameters m and Z are as above. The direction B̂ is specified

by the fit parameters φB and θB, i.e. B̂ = Û(φB, θB). The yi data are interpreted as

above, but now yi = 1 − µi depends on the φi, θi identified with the nominal velocity

direction of electrons measured in the ith bin, as well as on the fit parameters φB and

θB. Namely, yi = y(φi, θi;φB, θB).

Our weighted fit requires an estimate of the standard error of the zi measurements,

which we denote as σi. This can be estimated by assuming the strahl detector obeys

Poisson (“counting”) statistics. We assume the raw number of counts ζi registered by

the detector in the ith bin is sufficiently large, so that we can approximate the error of ζi

as Gaussian-distributed, with standard deviation
√
ζi. Then, we find σi ≈ 1/

√
ζi from

straightforward error propagation (noting fs is proportional to counts).

Our fitting procedure minimizes the chi-squared statistic:
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Figure 7: An illustration of our fitting method: the 2D angular distribution fs (from
Figure 6) is displayed above as what we may loosely call a “pitch angle” distribution
z(y), where y = (1−µ) and z = ln(fs/fs,max). The data in the vicinity of the strahl peak
is fit to the function z = my + Z, see Eqs. 3.1, 3.7. Our method of fitting, a nonlinear
least squares fit that allows the B̂ direction to vary, is a weighted fit that accounts for
the uncertainties σi of the zi measurements. The estimated uncertainties σi are shown
above as error bars. The full width at half-maximum of the strahl (green dot), θFWHM ,
is calculated from m according to equation 3.12.
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χ2 =

N
∑

i=1

(zi − zi)
2/σ2

i . (3.10)

Here, (zi − zi) represents the difference between our model function (z) and the data

(z), for the ith bin of the distribution. N is the number of non-zero data points3 in

the 12×14 strahl distribution fs; we only conduct a fit if there are at least 6 points left

after applying the cleaning procedure (section 3.3), so 6 ≤ N ≤ 168. Figure 7 shows an

example of our fitting procedure, applied to the data appearing in figure 6.

The normalized chi-squared statistic χ2/DOF can be used to test goodness of fit.

Here DOF = N−4 represents the degrees of freedom of our 4-parameter model function

(3.8). If our model accurately describes the data and if the errors σi are properly char-

acterized, the quantity χ2 is predicted (86) to have the following statistical distribution

P (χ2):

P (χ2) =
(χ2)(DOF−2) exp(−χ2/2)

2(DOF/2)Γ(DOF/2)
, (3.11)

where Γ denotes the gamma function. According to (3.11), the average (“expected”)

value of χ2 is equal to the number of degrees of freedom, i.e.
∫∞

0
P (χ2)χ2d(χ2) = DOF .

We may therefore use the quantity χ2/DOF , calculated for each of our fits to the strahl

angular spectra, as a test of goodness of fit. For each of our fits to the fast wind data, we

calculate χ2/DOF , according to Eq. (3.11). We then calculate the average value of this

quantity, 〈χ2〉, among the >100,000 fits in our analysis. We find 〈χ2/DOF 〉 = 1.12 for

our data set. To calculate this average, we excluded outlier fits for which χ2/DOF > 10,

which constituted only 1% of the completed fits. Since 〈χ2/DOF 〉 ≈ 1, we conclude

that equation 3.1 accurately describes the strahl data.

3By inspection, we see that N = 31 for the example spectrum plotted in Fig. 6.
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Figure 8: Comparison of calculated χ2/DOF of fast wind data (black) with the expected
(red) statistical distribution P (χ2), see Eq. (3.11) and the following discussion. We
present this plot to establish the goodness of fit of our model function, Eq. 3.8. To
make this plot, we computed a histogram of values of χ2/DOF with a fixed bin width
∆(χ2/DOF ) ≈ 0.1, for our fits to the cleaned strahl spectra with N = 65 fit points
(DOF = 61).
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We may conduct a more detailed analysis of goodness-of-fit, by comparing the ob-

served distribution of χ2/DOF among our fits with the theoretical distribution (3.11).

In Fig. (8) we plot a histogram of the obtained values of χ2/DOF (black line), for our

fits to the cleaned strahl spectra that each contained N = 65 data points (DOF = 61).

This histogram has a fixed bin width ∆(χ2/DOF ) ≈ 0.1. For comparison, we plot as

a histogram the theoretical curve χ2/DOF (red line), which we obtain from Eq. (3.11),

setting DOF = 61. For the theoretical curve, we predict the number of “counts” that

would fall into a bin of width ∆(χ2/DOF ) from Eq. 3.11; first, we integrate this equa-

tion over the corresponding interval of width ∆χ2 (which yields the relative probability

that a measurement will fall in this interval), and then multiply the result by the total

number of strahl spectra with N = 65 points. We observe that our synthetically pro-

duced distribution of χ2/DOF only deviates from the observed distribution by . 10%;

similar agreement was seen in analogous plots for other values of N .

3.4.1 Comparison with Strahl Model

Having fit for the slope m (Eq. 3.8) for each strahl distribution fs, we calculate the

distribution’s “measured θFWHM”:

θFWHM = 2 cos−1{1− log(1/2)/m}. (3.12)

This formula follows from equation (3.7), utilizing the definitions of y and z. For com-

pleteness, we note a selection criterion: a distribution fs was only retained for study if

the fit for the slope m (eq. 3.8) yielded a “measured θFWHM” (eq. 3.12) that was less

than twice the maximum pitch angle among the bins of fs. This avoids extrapolation
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errors in our determination of θFWHM .

The strahl widths measured by this procedure are compared with the analytical

prediction given by Eq. (2.14), in Fig. (9). The (peak-normalized) joint probability dis-

tribution shown, which compares the “expected” and “measured” θFWHM , is comprised

of 100,000 width measurements of the fast wind (vsw > 550 km/sec) strahl. To calculate

the “expected” θFWHM from the data, we must extrapolate to find the values of n45

and r45 from the local parameters. The value of r45 is calculated according to Eq. (2.8),

using the solar wind speed vsw as derived from the proton bulk speed measured by

Wind/SWE, and assuming ωS = 2π/24.47 days−1 (70). We assume that the density n

varies with heliocentric distance as n(r) ∝ r−2, so that the density n45 = n(r45) can be

extrapolated straightforwardly from the local density measured by Wind. Assuming as

before that the alpha particle density is 5% of the proton density np, we find that n45

can be estimated by the formula:

n45 = 1.1np

( r45
1AU

)−2

. (3.13)

Empirically, the value np in Eq. (3.13) is the local proton density as observed by SWE’s

Faraday cup at r =1 AU.

We see from Fig. (9) that our analytic formula (2.14) shows a reasonably good agree-

ment with the observed strahl broadening, although it slightly underestimates the width,

by about 15–20%. There may be several sources for the systematic error in our deriva-

tion. The discrepancy may result from the approximations that we used when we simpli-

fied Eqs. (2.3) and (2.4), from our evaluation of the parameter y in Eq. (2.10) where we

assumed that the solar wind speed is constant (see appendix B), or from our idealized as-

sumptions about the Parker spiral that do not take into account large-scale magnetic and
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density fluctuations (e.g., due to large-amplitude Alfvén waves, corotating interaction

regions, magnetic discontinuities, shocks, etc.). Importantly, however, the discrepancy

may also result from the fact that Coulomb collisions may not be the only mechanism

that provides the electron pitch-angle scattering. In the latter case, wave-particle in-

teractions with ambient turbulence may possibly explain extra strahl broadening. Our

analysis indicates that Coulomb collisions provide the primary scattering mechanism,

however, as the strahl widths would be fully accounted for by an artificial increase of

only 30-40% in the diffusion coefficient (noting that θFWHM scales as a square root of

the diffusion coefficient).

Our model predicts that θFWHM depends on both the electron density n and the

detector energy K, through scaling relations (i) and (ii). These dependencies cannot

be discriminated in figure 9, so we will now examine them individually. In figure 10

we demonstrate (i): the strahl width is inversely proportional to the energy, for fixed

density. To make this figure, we consider only fast wind data for which the background

electron density falls within a narrow range, 3.6 < n < 4.4 cm−3. For this data, which is

effectively a subset of the data shown in figure 9, we plot the measured θFWHM versus the

detector energy K. The column-normalized 2D histogram nicely matches the predicted

trend (equation 2.15), which is shown as a solid line for n = 4 cm−3. To produce this line,

we set r45/r = 1.2—which follows from assuming representative values for our fast wind

data set: vsw = 550 km/sec and ωs = 2π/24.47 days−1 (eq. 2.8). Similar predictions for

n = 3.6, 4.4 cm−3 are shown as dotted lines.

We now verify scaling relation (ii), in a similar manner. The SWE strahl detector

only sampled the distribution function at discrete energies; in figure 11, we only show

fast wind data measured at energy K = 270 eV. Here we plot a column-normalized
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Figure 9: The electron-strahl width measured in the fast solar wind intervals (y-axis),
as described in (33), compared with the analytic prediction (x-axis) given by Eq. (2.14).
Here we present the joint probability distribution of the “measured” and “expected”
values of θFWHM , normalizing each column of the distribution by that column’s peak
value. The most probable observed widths nearly agree with the predicted values, to
within 15-20%—the data would agree exactly if it fell on the solid diagonal line, shown
for reference. As mentioned in the text, θFWHM can only be resolved to a minimum of
about ∼5–10◦, which helps explain the relatively large deviation seen between theory
and experiment at very small widths.
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Figure 10: Experimental verification of scaling relation (i): θFWHM ∝ K−1 at fixed n.
Data shown fall in the range of densities 3.6 < n < 4.4cm−3.
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2D histogram of the measured θFWHM versus the electron density n. For comparison,

we show our model’s prediction for the strahl width at this energy, as a solid line.

Predictions resulting from varying K by ±3% (energy range admitted by the detector),

are shown as dotted lines.

In figures 9, 10, and 11, strahl widths are only shown for the regime θFWHM < 50◦.

This is because the asymptotic formula for the strahl, equation 2.13, was derived under

the assumption µ ≈ 1. Including data with pitch angles less than 25◦ corresponds with

the regime µ > 0.9, so our assumption is well-satisfied.

Our 100,000 fits represent only about 1% of the distributions (fs) measured by the

SWE strahl detector. Despite this low proportion, we believe our data are representative

of the fast wind strahl. We note our cleaning procedure (section 3.3) and selection criteria

make only a small proportion of the observed fs suitable for our study. That is, we only

consider fast wind strahls that are prominent and resolved by the detector. This tends to

exclude high-energy measurements. For example, SWE/strahl measured fs at energies

> 500 eV about 38% of the time; only 5% of our retained fits are at these energies.

The data presented in this study include some measurements made during transient

events, such as shocks and coronal mass ejections (CMEs). During such events, the

eVDF can exhibit properties that are not representative of the ambient fast wind; e.g.

“counterstreaming” strahls associated with CMEs. Due to the complexity of the task

of sorting our data for all events that could potentially exhibit anomalous anti-sunward

strahls, we assume such events to be infrequent enough as to not appreciably bias our

data. To justify this assumption, we have conducted a preliminary study, in which

we repeated the analysis presented in this section, but excluded data measured during

times when a CME passed the Earth (as tabulated in (58)). This exclusion had minimal
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Figure 11: Experimental verification of scaling relation (ii): θFWHM ∝ √
n at fixed

K. Data shown at detector energy 270 eV (specified by the detector with accuracy
∆K/K ≈ 3%).
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effect on the plots presented in figures 9, 10, and 11. We note also that of the eVDF

measurements used for fitting here, that took place after May 27, 1996 (the date of the

first CME in the index), only 16% were measured during the transit of a near-Earth

CME.

3.5 Fitting to Fave

The results of section 3.4 demonstrate that our model accurately captures the strahl

width’s dependence on density and energy. However, we have not yet analyzed the overall

amplitude of the strahl, which is captured by the arbitrary function C(v2) appearing

in Eq. (2.13). A previous study (49) computed the strahl amplitude fs,max, which at

a given energy occurs along the magnetic field direction (θ = 0). They found that the

amplitude varies as an exponential function of the energy K (Eq. 2.16): fs,max(K) ∼

exp(−K/Tstrahl), where the observed values Tstrahl ∼100 eV are reminiscent of coronal

temperatures. Only a few test cases were presented in (49), however, and we would like

to study this problem more broadly and with improved statistics. In this section, we

will conduct a similar analysis—originally presented in (33)—assuming that the strahl

peak varies as a power law with energy: fs,max(K) ∼ Kǫ, where ǫ is a constant to be

determined by fitting to the data.

We would like to fit the observed distributions directly to our model function,

Eq. (2.13), in order to empirically determine the functional variation of fs,max(K) that is

representative of the fast wind. Approaching this problem for our data set (which spans

more than 6 years) is no small task, so we will attempt to reduce the problem by com-

bining the observed spectra into an averaged distribution, that we will call Fave(µ, ξ).
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The reader should note the capitalization of the distribution Fave, and the introduction

of a new independent variable ξ—let us here discuss this notation.

The electron distributions measured in the fast wind at 1 AU show significant vari-

ation across our data set; for instance, the observed densities span roughly an order of

magnitude 1 cm−3 . n . 10 cm−3 (see Fig. 10). Let us consider a Maxwellian core

distribution, which is usually modeled with the form:

fc(v) =
nc

π3/2v3th
exp

(−v2

v2th

)

, (3.14)

where nc denotes the core density vth is the core thermal speed, which is related to

the core temperature Tc via the formula vth =
√

2Tc/me. Even if the densities of the

core distributions are the same across two different measurements, the distributions will

appear quite different if they have different temperatures (the observed temperatures also

vary significantly across our data set). In order to analyze the shape of the distribution

(including the suprathermal populations), it then is appropriate to normalize (as in,

e.g., 76) the amplitude of f to the core amplitude, and to scale speeds to the core

thermal speed vth =
√

2Tc/me. Let us then introduce the (dimensionless) normalized

distribution F (v/vth), which can be computed from the physical distribution f(v) from

the following formula:

F (v/vth) =
v3thf(v)

nc
. (3.15)

Now, introducing the independent variable ξ,

ξ ≡ v2

v2th
, (3.16)
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we see that eq. (3.14), which describes the core distribution fc, reduces to the form:

Fc ≡
v3thfc
nc

=
exp(−ξ)

π3/2
. (3.17)

We see the utility of the normalization (3.15): the core distribution appears the same

regardless of the temperature and density. Normalizing the whole distribution in this

fashion will allow us to study the strahl distribution, as it appears relative to the core.

3.5.1 Analysis

Having analyzed the angular variation of the strahl in detail in section 3.4, we now

conduct a new comparison between the data and equation 2.13, with 2D fits that describe

the variation of the eVDF with both angle and energy. We will assume the function

C(v2) appearing in equation 2.13 is a power law, and write the distribution in terms

of independent variables µ, ξ. As in chapter 2, we will assume small angles, so we can

approximate 1 − µ2 ≈ 2(1 − µ). We will assume that the density varies as the inverse

square of the distance, n ∝ r−2, and set the distance to r =1 AU (the location of the

Wind satellite). Normalizing the distribution to the core population, as described by

Eq. (3.15), our strahl model (2.13) can then be expressed in the form:

F (µ, ξ) = C0ξ
ǫ exp

{

γ̃Ωξ2(1− µ)
}

, (3.18)

In (3.18) we have introduced the notation γ̃ for the so-called temperature Knudsen

number. The Knudsen number parametrizes the collisionality of the system, literally

the ratio4 between the mean free path λmfp = (T 2/2πe4Λn) and the system scale size r:

4The Knudsen number is usually represented as the ratio between λmfp and the temperature scale
height LT ≡ (d lnT/dr)−1. As LT ∼ 1 in the solar wind, we will simply refer to γ̃ as the Knudsen



52

γ̃ ≡ T 2/(2πe4Λnr). (3.19)

In (3.18) we also introduced the parameter Ω:

Ω ≡ − 1

β
√

1 + (r/r45)2
. (3.20)

Note that the parameters C0, ǫ, and Ω appearing in equation 3.18 are constants to be

determined via the fitting procedure.

Since each angular distribution fs was measured at a single energy by the SWE strahl

detector, for the purpose of filling out the µ-ξ space with data we must develop a method

of combining multiple measurements. We choose to do this by computing an average

distribution Fave(µ, ξ) from the data, which will be used for our 2D fits. Fave(µ, ξ) is

composed from data that are measured in principle at many different times within our

>6 year period of study, and may be associated with many different flux tubes. Since

we expect the prevalence of the strahl to vary significantly with collisionality γ̃ (see

section 1.5), we will only average together distributions that fall within a narrow range

of Knudsen numbers.

For each cleaned angular distribution fs, the associated normalized distribution Fs

is calculated according to equation 3.15 using the local plasma parameters n, vth. The

angular bins of Fs are assigned coordinates5 µ and ξ, which are then sorted into a µ-ξ

grid with resolution ∆µ = 0.0005, ∆ξ = 1. All of the strahl data from our >100,000 fits

are sorted in this way and averaged by µ-ξ bin to construct the distribution Fave(µ, ξ).

number, for convenience.
5The energy ξ = K/T is calculated from the detector energy K and local temperature T , while µ

depends on each angular bin and on the B̂ direction that was determined during the angular fitting
procedure (section 3.4).
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As mentioned, we expect the distribution to depend on the Knudsen number, so we only

average together data with similar values of γ̃ (calculated from the locally observed n

and T ) when computing Fave. We bin by γ̃ logarithmically, covering the range 0.365 <

γ̃ < 3.651 in 8 bins. This range contains ∼90% of our fast wind strahl measurements.

Cuts of Fave, for these 8 Knudsen numbers, are shown as points in Figure 12. The error

bars displayed are the nominal standard deviation of the mean that is computed during

the averaging process.

Once the average distribution Fave(µ, ξ) is constructed, we fit the data to our model

function, equation 3.18. The parameters C0, ǫ, and Ω are determined by a nonlinear

least squares fit. For the purpose of fitting, γ̃ is set to a fixed value, the geometric mean

of the maximum and minimum γ̃ that were used to bin Fave. A comparison between

Fave and our fitted model function is shown in figure 12. In the interest of presenting the

data clearly, we choose to fit along only along a few cuts of Fave. Namely, we fit to data

along the cuts µ = 0.9995, 0.9960, 0.9850, 0.9660, 0.9395, 0.9065, which corresponds

with roughly 5◦ spacing in pitch angle. These cuts of our fit function are shown as lines

in the figure.

Some cuts in figure 12 span a larger energy range than others, because the data must

satisfy multiple selection criteria to be included in the fit. Two of these selection criteria

are based on the expected width of the strahl at each energy ξ. In terms of Ω, we can

write the strahl full width at half maximum, θFWHM , as (see Eq. 3.18):

θFWHM = 2 cos−1
{

1 +
ln(2)

γ̃Ωξ2

}

. (3.21)

We predict θFWHM by assuming Ω = −0.34 (this assumption is seen to be reasonable a

posteriori, see Table 1). Our selection criteria are then as follows: first, if the expected
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Figure 12: The 2D strahl distributions Fave(µ, ξ) are constructed from averaging pitch
angle distributions measured by the SWE strahl detector, from fast wind data where
γ̃ falls within a given range. Data are selected only where the strahl amplitude is
sufficiently above the background, and where the strahl is expected to be resolved (see
section 3.5). Cuts of Fave are shown as points. Fits to a Coulomb scattering model
(Fmodel), given by equation 3.18, are plotted as lines. Parameters of the fits are displayed
in Table 1.
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γ̃ range (Fave) nominal γ̃ (Fmodel) C0 ǫ Ω

— — model: F (µ, ξ) = C0ξ
ǫ exp{γ̃Ωξ2(1− µ)}

0.365 < γ̃ < 0.486 γ̃ = 0.421 0.157± 0.011 −2.13± 0.031 −0.38± 0.013
0.486 < γ̃ < 0.649 γ̃ = 0.562 0.191± 0.014 −2.14± 0.033 −0.35± 0.013
0.649 < γ̃ < 0.865 γ̃ = 0.749 0.234± 0.019 −2.14± 0.035 −0.30± 0.012
0.865 < γ̃ < 1.154 γ̃ = 1.000 0.264± 0.020 −2.13± 0.033 −0.28± 0.011
1.154 < γ̃ < 1.539 γ̃ = 1.333 0.306± 0.025 −2.13± 0.036 −0.27± 0.010
1.539 < γ̃ < 2.053 γ̃ = 1.778 0.401± 0.040 −2.19± 0.045 −0.25± 0.011
2.053 < γ̃ < 2.738 γ̃ = 2.371 0.485± 0.053 −2.08± 0.050 −0.28± 0.010
2.738 < γ̃ < 3.651 γ̃ = 3.162 0.669± 0.065 −2.02± 0.046 −0.28± 0.009

Table 1: Model parameters C0, ǫ, Ω corresponding with fits displayed in figure 12. The
range of γ̃ listed in each row represents the Knudsen numbers spanned by the data used
to create Fave. The column “nominal γ̃” shows the Knudsen number used for the fit.

θFWHM (3.21) at a given energy is less than 10◦, these data are not included; this is to

ensure that the measured strahl is resolved by the detector. Secondly, if F at a given

angle is expected to be less than 1/5 the peak (µ = 0) value at that same energy, then

the data are not included in the fit; this is to prevent any accidental contamination by

the halo.6

Additionally, we only include data that falls in the energy range ξ > 5, because our

model equation was derived under the assumption ξ ≫ 1 (see chapter 2).

The results of our fits, for various Knudsen numbers, are summarized in table 1. We

note that the overall amplitude of the strahl (relative to the core), C0, increases with γ̃.

This is as expected, since more runaway electrons should be observed as collisionality

decreases. The fit parameter ǫ, which dictates the energy dependence of the strahl

amplitude, seems fairly independent of γ̃, with ǫ ≈ −2.1 for all 8 fits. The fit parameter

Ω is also fairly constant, with Ω ≈ −0.3 describing most fits well.

6See also step “Remove the halo” of our data cleaning procedure, section 3.3.
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An important caveat should be kept in mind when interpreting the data in Table 1:

in order to calculate γ̃ (used in both the model function and when binning Fave by

Knudsen number), we assumed γ̃ = 25.5. This is the appropriate value for the Coulomb

logarithm, when considering scattering of the core population (e.g., 65). Indeed, the

exposition in chapter 2 assumes the value Λ = 30, which is a more appropriate value

for treating the strahl; see section 2.2. We have displayed the results of our fits as they

appeared in the original reference (33). The reason is in part because the correction is

fairly small—to correct for this error the values of γ̃ (Table 1) should to be divided by

a factor of 30/25.5 ≈ 1.2, and the values of Ω should be multiplied by this same factor.

As these terms enter our model (3.18) only as a product (γ̃Ω), we do not believe this

error seriously affects our results. Nonetheless, we note that the next chapter refers to

the results of Table 1, to develop a stability analysis of a model core-strahl distribution,

where it is implicitly assumed Λ = 25.5. As mentioned in the introduction to this section,

the analysis of Fave was primarily focused on obtaining an estimate for the energy-scaling

of the strahl peak (ǫ ≈ −2.1), which is basically unaffected by these considerations.
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Chapter 4

Electron Kinetic Stability

4.1 Introduction

The results of chapter 3 demonstrate that the solar wind data are effectively described

by our model of the electron strahl (introduced in chapter 2). However, this analysis

did not address the question: are the electron distributions stable? That is, are there

any growing wave modes in the solar wind plasma that may resonate with the strahl

electrons and perturb their motion, and therefore affect their distribution in velocity

space? Motivating this question, we note for instance that our collisional model of

strahl broadening slightly underestimated the observed strahl widths that were presented

in chapter 3; wave-particle interactions, as would be generated in the presence of a

kinetically unstable electron distribution, may account for the small amount of additional

diffusion required to explain the strahl widths.

In this chapter, we perform a numerical linear stability analysis using the LEOPARD

solver (3), which allows for arbitrary gyrotropic distribution functions in a magnetized

plasma. This work was originally published in (30). In contrast with previous reports,

we do not find evidence for a whistler instability directly associated with the electron

strahl. This may be related to the more realistic shape of the electron strahl distribution

function adopted in our work, as compared to previous studies. We however find that
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for typical solar wind conditions, the core-strahl distribution is unstable to the kinetic

Alfvén and magnetosonic modes, which are in resonance with the core electrons. The

maximum growth rates for these instabilities occur at wavenumbers kdi . 1 (where di

is the ion inertial length), at moderately oblique angles of propagation, thus providing

a potential source of kinetic-scale turbulence. We therefore suggest that if the whistler

modes are invoked to explain anomalous scattering of strahl particles, these modes may

appear as a result of nonlinear mode coupling. Speculatively, these whistlers could then

develop into a turbulent cascade at scales kdi . 1.

4.2 Background

The suprathermal electron populations observed in the solar wind carry free energy that

may drive kinetic instabilities. We remind the reader (see section 1.4) that at 1 AU,

suprathermal electrons with energies between ∼10 eV and ∼1 keV are typically divided

into two components: the halo and strahl (e.g., 55). The halo component is relatively

isotropic, and is often modeled in velocity space as a kappa distribution (e.g., 43). The

strahl, which we attempted to model in chapter 2, forms a narrow beam in velocity space

that is aligned with the local magnetic field B, and flows anti-sunward.

The field-parallel skewness of solar wind eVDFs, and the heat flux associated with it,

has spurred the study of so-called “heat flux instabilities” (e.g., 19; 20). In these models,

the field-parallel bulk velocity of the core population drifts slightly sunward relative to

the ions. This drift offsets the anti-sunward flow of the heat flux-carrying particles so

that the net parallel current is nearly zero. If the model parameters are adjusted so that

the heat flux and associated core drift amplitude both increase, eventually an instability
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threshold may be reached for a particular wave mode. (20) modeled the eVDF as a

combination of two drifting Maxwellians, which respectively represented the core and

halo populations. They found these core-halo distributions to be unstable to Alfvén,

magnetosonic, and whistler mode fluctuations, with instability regimes depending on

the wavenumber. Empirically, it has been shown that the electron heat flux q may

be constrained by thresholds imposed by the whistler as well as the kinetic Alfvén

(21; 84; 75) heat flux instabilities; these thresholds are derived assuming a core-halo

model eVDF. We note that the core drift and heat flux appear to also be mediated by

the Coulomb collisionality of the solar wind, as was shown in large statistical studies of

Wind satellite data (4; 56).

Kinetic instabilities have garnered particular interest in studies of the strahl popu-

lation, as they may provide a source of scattering of the strahl beam. Such a source

was called for by (39), who incorporated Coulomb collisions into a collisionless model of

strahl formation. After comparing with data from the IMP 8 satellite, it was claimed

that pitch-angle scattering by Coulomb collisions alone could not account for the ob-

served angular width of the strahl. Following e.g., (55), we refer to the non-Coulombic

scattering that is sometimes invoked to explain the strahl width as “anomalous diffusion”

or “anomalous scattering”. Recently, (24) inferred the presence of a strahl-scattering

process that occurs over distance, by showing that for 1 AU data measured near SEP

(Solar Energetic Particle) events, the angular width of the strahl population is corre-

lated with the length of the interplanetary magnetic field lines that stretch back to the

coronal base. Beyond anomalous diffusion, wave-particle scattering of the strahl has

been suggested by some authors to be a potential source of the nearly-isotropic halo dis-

tribution. For instance, (43) and (76) found that the relative densities of the strahl and
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halo populations vary inversely with heliocentric distance, providing indirect evidence

that the halo population may be formed from scattered strahl particles.

A new analytical model for the strahl distribution was developed in (32)—see chap-

ter 2—by deriving exact solutions to the collisional kinetic equation in the asymptotic

high-energy regime relevant to the strahl. This model was compared to eVDF data mea-

sured by the Wind satellite’s SWE strahl detector at 1 AU, with remarkable agreement

(chapter 3). In particular, it was shown that the model can predict how the angular

width of this population scales with particle energy and background density. The model

also predicts, in accordance with (39), that at a given energy the strahl should become

narrower with heliocentric distance, before eventually “saturating” at a fixed width at

distances r ≫ 1 AU. By contrast, some authors have reported that the strahl width

actually increases (27; 25) with distance in the outer heliosphere. Despite the successes

of collisional model proposed in (32), it may require improvement through the inclusion

of additional physical processes.

Examples of such processes are the kinetic instabilities that can be triggered by a non-

Maxwellian electron distribution function. In this work we revisit the question of kinetic

instabilites in the solar wind plasma, for an eVDF that is composed of parallel-drifting

core and strahl components. For the first time we conduct the stability analysis using

a realistic distribution function (developed chapters 2 and 3) for the strahl component,

derived from the electron kinetic equation. The strahl distribution function is rather

nontrivial and, therefore, its stability analysis has to be conducted numerically. For this

purpose, we employ the LEOPARD solver (3), which has been recently developed to

analyze the stability of arbitrary gyrotropic distributions in a magnetized plasma.

We search for unstable modes that one may expect to be most relevant to a core-strahl
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eVDF: the Alfvén, magnetosonic, and whistler modes. These modes have been shown

to be unstable for model distributions composed of drifting core and halo components.

For our core-strahl model, we indeed find that the distributions are unstable to the

Alfvén and magnetosonic modes with wavenumbers kdi . 1. The ion inertial length di

is defined:

di = vA/Ωi, (4.1)

where Ωi ≡ eB/mp is the ion cyclotron frequency and vA is the Alfvén speed. However,

we have not been able to identify the whistler modes that would be directly excited by a

Cherenkov resonance with the strahl particles; such modes appear to be damped overall.

We therefore speculate that for the strahl particles to be scattered by the whistler modes

(as in, e.g. 83; 61), such modes may be generated not by the strahl electrons but rather

transferred to small scales as a result of a turbulent cascade, say originating from the

core-drift instabilities at kdi . 1. This result provides a source for whistler waves

that is different and complementary to the previously discussed mechanism of whistler

instabilities (e.g., 19; 20; 60).

The effect of whistler waves on the eVDF has been investigated in Particle-in-Cell

(PIC) simulations. For instance, (62) demonstrated that a broadband spectrum of par-

allel propagating whistlers could significantly broaden the strahl population. We note

though that in PIC simulations of whistler turbulence, e.g., (63) and (8), the parallel

temperature of the eVDF increases with time more quickly than the perpendicular tem-

perature. This calls into question the effectiveness of whistler turbulence as a source

of electron pitch-angle (perpendicular) scattering; at least insofar as one might try to

explain the presence of the nearly-isotropic halo through direct strahl scattering, as
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suggested by (76). However, these turbulent simulations did not include a strahl com-

ponent, so the impact of the turbulence on this component has not to our knowledge

been directly studied.

We note that our model core-strahl eVDF omits the halo component; this choice is

based on practical and theoretical considerations. First of all, halo-driven instabilities

are already a well-studied topic that need not be rehashed here, as it is well known

for instance that halo temperature anisotropy and core-halo drift can lead to linear

instabilities. Furthermore, the inclusion of a halo component would complicate our

model by introducing additional free parameters, such as halo anisotropy and relative

density, which would needlessly expand the parameter space we wish to explore. We

might reasonably try to simplify such a core-halo-strahl model by assuming a strictly

isotropic (and monotonic with energy) halo, which would be consistent with the average

properties of this component (54). But isotropic, monotonic distributions are always

linearly stable (e.g., 9), so the inclusion of a tenuous isotropic halo can be expected to

have only a slight stabilizing effect, and should not introduce any new instabilities beyond

those found with the more straightforward core-strahl model. For empirical support of

this claim, see section 4.5, in which we present a preliminary stability analysis of a

fiducial core-halo-strahl eVDF.

4.3 Core-Strahl Distribution Function

In order to conduct a stability analysis, we will model the electron velocity distribution

function f(µ, v) as a core-strahl system. Since the distributions are assumed to be

gyrotropic, we use as independent variables the velocity magnitude v, and cosine of the
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pitch angle µ:

µ ≡ B̂ · v/v, (4.2)

where the unit vector B̂ points along the (Parker spiral) magnetic field, in the anti-

sunward orientation.

Let us designate our core and strahl model functions as fc(µ, v), fs(µ, v), respectively.

The total distribution is then f = fc + fs, and the total density n is given by:

∫

f(v)d3v = 2π

∫ ∞

0

∫ 1

−1

f(µ, v)v2dµdv = n. (4.3)

The core Maxwellian distribution fc(µ, v) is allowed to drift (sunward) at parallel velocity

vd relative to the protons. This distribution has the form:

fc(µ, v) =
nc

π3/2v3th
exp

(−v2 + 2µvvd − v2d
v2th

)

, (4.4)

where nc, vth represent the electron core density and thermal speed, respectively.

Our model for the strahl distribution, fs(µ, v), comes from Eq. 3.18:

fs(µ, v) = C0A(v)
nc

v3th

(

v

vth

)2ǫ

exp
[

γ̃Ω(v/vth)
4(1− µ)

]

. (4.5)

In this expression we use the “effective” Knudsen number, Eq. 4.6, which we repeat here

for convenience:

γ̃(r) =
T 2

2πe4Λncr
, (4.6)

where T (x) = mev
2
th/2 is the core electron temperature, Λ is the Coulomb logarithm,

and r is the heliospheric distance. We let the parameters ǫ and Ω be given by empirical

measurements (Table 1, from (33)), representative of the typical (γ̃ = 0.75) fast wind:

ǫ ≡ −2.14, Ω ≡ −0.3. A summary of these constants, that do not vary throughout
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γ̃ 0.75
Ω -0.3
ǫ -2.14
a 10
b 2 ǫ - 4 = -8.28

Table 2: Constants used in Eq. (4.5), that are not altered throughout our analysis.

our analysis, are given in Table 2. The analytic derivation of the strahl shape (4.5)

does not however allow one to obtain the overall strahl amplitude. In section 3.5 the

constant C0 in the strahl distribution was therefore estimated from matching with the

observational data. In our current consideration it is kept as a free parameter, and the

stability analysis is performed for a range of possible strahl amplitudes C0.

In Eq. (4.5) we also introduced a truncation function A(v), to ensure that fs → 0 as

v → 0:

A(v) =
1

1 + a(v/vth)b
, (4.7)

where we defined constants a ≡ 10, b ≡ 2ǫ− 4. The form of this low-energy truncation

function is somewhat arbitrary, but its introduction is necessary since Eq. (4.5) was

derived assuming (v/vth)
2 ≫ 1. The function A(v) artificially modifies the strahl only

at v < vth, where the distribution function is anyway dominated by the core component.

As an input to the kinetic solver, we will assume a steady state where the parallel

current J‖ is zero. That is, we require:

J‖ ≡
∫

v‖f(v)d
3v = 2π

∫ ∞

0

∫ 1

−1

f(µ, v)v3µdµdv = 0. (4.8)

We can decompose total parallel current into contributions from the core and strahl,

that is:

J‖ = J‖,c + J‖,s. (4.9)
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The analytic form of the core contribution J‖,c follows from Eq. (4.4):

J‖,c = ncvd, (4.10)

and we can therefore write a simple expression for the core drift vd that ensures J‖ = 0:

vd = −J‖,s/nc. (4.11)

Eq. (4.11) suggests a simple procedure for finding the core drift vd that ensures J‖ = 0.

First, the strahl distribution fs(µ, v) is integrated numerically to find J‖,s, and this value

is substituted into Eq. (4.11) to find vd (nc is given).

In the analysis presented in section 4.4, we will assume a set of plasma parameters

that are representative of the fast wind at 1 AU, that we will use as a baseline. These

fiducial plasma parameters—the core density nc, core temperature T , magnetic field

strength B—are presented in table 3. These parameters are consistent with a γ̃ = 0.75,

βe = 0.307 plasma, where γ̃ is defined in Eq. (4.6) and the electron beta, βe, is defined:

βe ≡ 8πncT/B
2. (4.12)

The strahl amplitude C0, typical of the γ̃ = 0.75 solar wind (33), is also presented in

the table.

4.4 Stability Analysis

We analyze the linear stability of the eVDF using the LEOPARD solver (3), which can

calculate the dispersion relation ω(k) for an arbitrary gyrotropic electron distribution.

The imaginary part of our solutions determines the stability of the particular wavemode:

stable for Im(ω) ≤ 0 and unstable for Im(ω) > 0. We will assume that the large-scale



66

nc (≈ n) 4 cm−3

T 12.21 eV
B 8 nT
C0 0.234

Table 3: The set of physical constants presented in this table are used as a baseline for
our model. These constants are consistent with a βe = 0.307, γ̃ = 0.75 plasma. When
we investigate the effect of βe on stability, a different set of nc, T , B will be used (see
section 4.4). The strahl amplitude C0 reported here is a typical value that was measured
in the γ̃ = 0.75 fast wind, see Table 1. The parameter C0 will be varied to investigate
its effect on stability, to produce Figs. 13 and 17.

variation in any plasma parameters (density, temperature, E- and B-fields) is slow enough

that it can be neglected on the spatial scale of the waves. For simplicity, we assume the

background electric field is zero.

The final solution ω(k) is found through an iterative scheme, that converges most

efficiently when the initial guesses for ω, k are near an actual solution. As a starting

point for our analysis, we use fully kinetic dispersion relations of the kinetic Alfvén,

fast magnetosonic, and whistler branches1 in a Maxwellian plasma given in, e.g., (74).

By smoothly varying the parameters in our model, we can then scan through different

propagation angles and parameter regimes to explore the stability of the branches with

respect to our core-strahl distribution.

For each branch, we scanned through the propagation angles 0◦ < θ < 89◦, with

1◦ resolution. At these angles, we varied the strahl amplitude across the values C0 =

0.000, 0.050, 0.100, 0.200 while holding βe = 0.307 fixed. Holding C0 = 0.234 fixed and

scanning through these same angles, we varied beta across the values βe = 0.307, 0.500, 0.700.

We completed these scans for wavenumbers 0.1 < kdi < 1.0 for the magnetosonic mode

and 0.1 < kdi < 4.0 for the KAW mode. We conducted a similar analysis over the

1These modes are all stable (damped) if the background distributions are Maxwellian, but may be
unstable for non-Maxwellian plasmas.
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range of wavenumbers 1 < kdi < 40 for the whistler mode; however, we investigated

only angles 0 < θ < 79◦ and θ = 180◦.

In Fig. 13, we show our numerical results for the kinetic Alfvén (KAW) mode in the

range of wavenumbers 0 . kdi . 0.7. In all figures, frequencies and growth rates are

normalized to the ion cyclotron frequency Ωi and wavenumbers are normalized to the

ion inertial length di (Eq. 4.1). We solve for the dispersion relation for different strahl

amplitudes C0 (Eq. 4.5), represented as different lines in Fig. 13. Note that adjusting C0

also requires adjustment of the core drift vd according to Eq. (4.11). All other physical

parameters and constants are as listed in tables 2 and 3. The propagation angle is set

to θ = 63◦. We see that the distribution becomes unstable if the strahl amplitude is

sufficiently large, i.e. in the regime C0 & 0.20. We also note that since Re(ω < 0), the

waves propagate with a sunward parallel phase speed.

The growth rate of the KAW instability appears particularly sensitive to the propa-

gation angle θ; see Fig. 14. Here we hold the strahl amplitude C0 constant, and instead

vary the propagation angle θ. We see the distribution is only unstable in a range of

moderately oblique angles 55◦ . θ . 69◦, and is maximally unstable at θ ≈ 63◦.

In Fig. 15, we investigate the KAW instability’s dependence on the electron beta.

Each line in the figure shows the dispersion relation for a different βe. The line corre-

sponding with βe = 0.307 is generated using the physical parameters given in Table 3.

The other lines, representing different βe, require at least one of the parameters nc, T ,

B to be adjusted. Let the fiducial parameters listed in table 3 be written as nc,0, T0, B0,

and let βe,0 ≡ 0.307. To investigate a different plasma beta, βe = αβe,0 (where α 6= 1),
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we choose nc, T , B in the following manner:

T = αT0, (4.13)

nc = α2nc,0, (4.14)

B = αB. (4.15)

This scheme allows us to scale βe while holding γ̃ and the Alfvén speed vA constant.

Holding γ̃ constant enables ready comparison to the fits to the distribution that were

conducted in section 3.5, while holding vA constant follows the precedent set by (22).

We see in Fig. 15 that the distribution is unstable in the range 0.2 . βe . 0.6, and is

maximally unstable at βe ≈ 0.4.

The distribution also exhibits a second KAW instability; the unstable regime falls

in the range of wavenumbers 1 . kdi . 4, see figure 16. The unstable waves are more

oblique here, with propagation angles falling in the range 78◦ . θ . 87◦. Although the

waves here possess growth rates that are about an order of magnitude larger than the

growth rates of the less oblique KAW waves (figure 14), their obliquity makes them less

able to couple to whistler waves, and therefore these waves are less relevant to generating

whistler turbulence that may scatter the strahl (see section 4.6).

Our core-strahl model function is also unstable to the magnetosonic mode, as shown

in Figs. 17, 18, 19. These plots are analogous to Figs. 13, 14, 15 respectively, but for the

magnetosonic mode instead of the KAW mode. In figure 17, we see that the function is

unstable for the baseline parameters shown in Table 3. We see in Fig. 17 that for the

magnetosonic mode, as with the KAWmode, the distribution is unstable when the strahl

amplitude is sufficiently large, i.e. in the regime C0 & 0.20. Fig. 18 demonstrates that

the largest growth rate occurs at θ ≈ 60◦, a moderately oblique angle. As with the KAW
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Figure 13: KAW—Less oblique. Real (upper) and imaginary (lower) parts of the KAW
dispersion relation, shown for different strahl amplitudes C0. We set θ = 63◦ and
βe = 0.307 for all calculations, but vary the strahl amplitude C0 (and the core drift vd,
by Eq. (4.11)). The distribution becomes unstable for C0 & 0.20.
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Figure 14: KAW—Less oblique. Real (upper) and imaginary (lower) parts of the KAW
dispersion relation, shown for different propagation angles θ. We set βe = 0.307 and
C0 = 0.234 for all calculations, but vary the propagation angle θ. The distribution is
unstable in the range 55◦ . θ . 69◦, and is maximally unstable at θ ≈ 63◦.
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Figure 15: KAW—Less oblique. Real (upper) and imaginary (lower) parts of the KAW
dispersion relation, shown for different electron betas (βe). We set θ = 63◦ and C0 =
0.234 for all calculations, but vary the electron beta βe. The distribution is unstable in
the range 0.2 . βe . 0.6, and is maximally unstable at βe ≈ 0.4.
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Figure 16: KAW—More oblique. Real (upper) and imaginary (lower) parts of the KAW
dispersion relation, shown for different propagation angles θ. We set βe = 0.307 and
C0 = 0.234 for all calculations, but vary the propagation angle θ. Here we see an
instability in the range of wavenumbers 1 . kdi . 4. The distribution is unstable in the
range 78◦ . θ . 87◦, and is maximally unstable at θ ≈ 85◦.
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mode, the instability occurs for Re(ω) < 0; i.e., the waves propagate toward the sun.

Fig. 19 displays the instability’s dependence on βe; here we see that the distribution

is unstable in the range 0.3 . βe . 0.7, with monotonically increasing growth as βe

increases in this range. The parameter βe was adjusted by varying nc, T , B in the

scheme described by Eqs. (4.13-4.15) and the preceding paragraph.

Finally, we note that no instabilities were found for the whistler mode. Although we

did observe a whistler mode, all solutions were damped (Im(ω) < 0). In addition to

searching through the angles 0◦-79◦, we checked the stability of antiparallel-propagating

(θ = 180◦) waves as well. We note that the whistler waves observed recently observed

by (72), which were attributed to the presence of a heat flux instability, exhibited only

parallel and anti-parallel propagation angles. For brevity, we do not show a plot of the

whistler results, but note only that the absence of a whistler instability is in contrast

with the results of (22), who use a core-halo electron model to show linear theory growth

of the whistler heat flux instability.

4.5 Further Analysis: Comparison with a Core-Halo-

Strahl Model

In the preceding analysis, we have ignored the halo component, which appears ubiqui-

tously in solar wind eVDFs. Our reasons for omitting this component were described

in section 2.13. In particular, we argued that if we were to assume an isotropic halo, its

presence would likely have only a slight stabilizing effect on the distribution. In order

to test this claim, we here add a halo component to our model eVDF, and compare the
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Figure 17: Magnesotonic. Real (upper) and imaginary (lower) parts of the magnetosonic
dispersion relation, shown for different strahl amplitudes C0. We set θ = 60◦ and
βe = 0.307 for all calculations, but vary the strahl amplitude C0 (and the core drift vd,
by Eq. (4.11)). The distribution becomes unstable for C0 & 0.20.
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Figure 18: Magnetosonic. Real (upper) and imaginary (lower) parts of the magnetosonic
dispersion relation, shown for different electron betas (βe). We set βe = 0.307 and
C0 = 0.234 for all calculations, but vary the propagation angle θ. The distribution is
unstable in the range 58◦ . θ . 63◦, and is maximally unstable at θ ≈ 60◦.
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Figure 19: Magnetosonic. Real (upper) and imaginary (lower) parts of the magnetosonic
dispersion relation, shown for different electron betas βe. We set θ = 60◦ and C0 = 0.234
for all calculations, but vary the electron beta βe. The distribution is unstable in the
range 0.3 . βe . 0.7, with monotonically increasing growth as βe increases in this range.
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dispersion relations derived from the core-halo-strahl function with those of the fore-

going core-strahl model. Rather than conduct an in-depth analysis, we assume some

representative halo function with fixed parameters, so as not to introduce any new free

parameters to our model.

We will represent the core and strahl distributions by Eqs. 4.4 and 4.5, as elsewhere

in this paper. Let us then model the halo distribution fh(µ, v) as an isotropic kappa

function (e.g., 43; 76):

fh(µ, v) = Ah

[

1 +
mev

2

(2κ− 3)Th

](−κ−1)

, (4.16)

where me is the electron mass, and Ah is defined:

Ah = nh

[ me

π(2κ− 3)Th

](3/2) Γ(κ+ 1)

Γ(κ− 1/2)
, (4.17)

where Γ() is the gamma function. Table 4 lists our fiducial values for the density nh,

temperature Th, and kappa parameter κ that appear in Eqs. 4.16 and 4.17.

In Figs. 20-23, we compare the dispersion relations for the core-strahl model (solid

lines) with those found for the core-halo-strahl model (dashed lines). In all plots, we

see that Re(ω) for the wavemodes is not changed significantly, while the Im(ω) is made

slightly more negative due to the damping introduced by the halo.

For the KAW mode, as plotted in Figs. 20, 21, the character of the instabilities are

not significantly altered by the inclusion of the halo. Naturally, the extra damping in

the core-halo-strahl case slightly narrows the range of angles over which the instability
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nh nc/10
Th 61.05 eV
κ 5

Table 4: Here we present the set of physical constants, that appear in Eqs. 4.16 and
4.17, that specify our halo model.

exists.

Inclusion of the halo component has a more noticeable effect on the magnetosonic

mode in a βe = 0.307 plasma, see Fig. 22. We see that the damping introduced by

the halo is significant enough to stabilize this mode at this particular βe. However, the

magnetosonic instability still exists at higher βe (i.e. at βe & 0.5), as we can see from

Fig. 23. The halo damping thus has the effect of pushing the instability to a slightly

different regime in βe.

As for the core-strahl case, we find that the whistler mode is stable for our core-halo-

strahl eVDF.

4.6 Discussion and Conclusions

We here summarize our main results:

1. We analyzed the kinetic stability of a core-strahl eVDF, using a realistic distribu-

tion function that is representative of the typical fast solar wind at 1 AU. In agreement

with (20), we observe the eVDF is unstable to the magnetosonic and KAW modes in

the range of wavenumbers kdi . 1. These modes are driven by the Landau resonance

with the core electrons, i.e. at parallel velocities v‖ = Re(ω)/k‖ ∼ (−vA). The negative

sign here indicates that the resonant electrons are traveling slightly sunward, relative to

the proton bulk flow. In fact, this resonant velocity falls somewhere between the peaks
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Figure 20: KAW—Less oblique. Dispersion relations for the original core-strahl model
(solid lines, from Fig. 14) and the core-halo-strahl model (dashed lines) described in this
section.
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Figure 21: KAW—More oblique. Dispersion relations for the original core-strahl model
(solid lines, from Fig. 16) and the core-halo-strahl model (dashed lines) described in this
section.
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Figure 22: Magnetosonic. Dispersion relations for the original core-strahl model (solid
lines, from Fig. 18) and the core-halo-strahl model (dashed lines) described in this sec-
tion.
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Figure 23: Magnetosonic. Dispersion relations for the original core-strahl model (solid
lines, from Fig. 19) and the core-halo-strahl model (dashed lines) described in this sec-
tion.
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of the electron and ion VDFs. These results may be fairly insensitive to the particular

model used for the core distribution—we note that (19) found similar waves and reso-

nances for a core distribution that was non-Maxwellian, i.e. a Maxwellian distorted by

a Spitzer-Härm electric field (71).

2. Our linear theory analysis does not yield a whistler instability. This begs compar-

ison with the results of (22), in which a whistler heat flux instability could be excited

by a skewed non-thermal eVDF. The difference is likely due to the fact that our model

describes a core-strahl rather than a core-halo distribution. That is, the suprather-

mal heat-flux carrying electrons are modeled by Eq. (4.5), rather than by a drifting

Maxwellian (or other function that is isotropic in its own frame).

The cases where the direct observation of whistler waves has been associated with a

large electron heat flux appear to be limited to the slow wind, where the strahl tends

to be less prominent (see figures 5 and 9, 38). We propose that further investigation

of these events could reveal the presence of a drifting halo; however, to our knowledge

such a study has not yet been undertaken.

In the cases where the heat flux is mostly accounted for by the electron strahl, on the

other hand, our present work suggests that a large electron heat flux does not necessarily

trigger a whistler instability. As a large heat flux is typically associated with a prominent

strahl (e.g., 55), caution must be used when parametrizing the stability of the eVDF in

terms of the heat flux, so that the physics of core-halo and core-strahl distributions are

not confounded.

3. Remarkably, the observed instability thresholds at C0 ∼ 0.2 appear very close to

the average strahl amplitude C0 = 0.234 observed (Table 1), for the γ̃ = 0.75 fast wind.

This indicates that the strahl amplitude may be regulated by the instabilities, as has
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been suggested by other authors. We note that the peak growth rates of the instabilities

detected here, with Im(ω)/Ωi > 10−4, are just fast enough to be relevant for the solar

wind strahl. That is, a typical strahl particle traveling as speed 104 km/sec at 1 AU,

where the local ion cyclotron frequency is Ωi ∼ 1 Hz, traverses a typical scale height (∼1

AU) in a time ∼ 104/Ωi. However, since the observed magnetosonic and KAW modes

do not resonate directly with the strahl, we must assume that they could only regulate

the strahl amplitude by some indirect mechanism (see also, 75).

When strong turbulence of moderately oblique kinetic Alfvén and magnetosonic

modes is generated at scales kdi . 1, it can produce whistler fluctuations at the

scale kdi ∼ 1. These nonlinear fluctuations could then cascade into moderately oblique

whistlers at even smaller scales, where they can interact with the strahl electrons, provid-

ing their “anomalous” scattering via the cyclotron resonance. This mechanism may also

provide an explanation for the moderately oblique whistler-like fluctuations observed in

the solar wind by (47).
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Appendix A

Glossary

• Anomalous Diffusion: The idea that an additional physical effect, beyond

Coulomb collisions, may contribute significant pitch angle scattering to the strahl

population.

• AU: Astronomical Unit. The Earth and Sun are separated by a distance of exactly

1 AU.

• Ecliptic: The plane that contains Earth’s orbital path around the Sun.

• Electrostatic Analyzer (ESA): An instrument that directly samples the dis-

tribution function in a plasma by counting particles one at a time. An ESA uses

electrostatic forces to admit only particles that have a specified energy to the

instrument’s detector.

• eVDF: Electron Velocity Distribution Function. This typically refers to a direct

measurement of the electron distribution f(v) in the solar wind.

• Geocentric Solar Ecliptic (GSE) Coordinates: A Cartesian coordinate sys-

tem where the x̂ direction points from the Earth to the Sun, ẑ points perpendicular

to the ecliptic (roughly aligned with the North Pole), and ŷ = ẑ×x̂. GSE spherical

coordinates may be defined accordingly.
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• Heliosphere: A bubble-like region that is carved out of interstellar space, where

the solar wind has a significant influence. The “inner heliosphere” refers to helio-

spheric distances less than 1 AU, while the “outer heliosphere” refers to distances

greater than 1 AU.

• Suprathermal: This phrase is used to refer to particles that are not part of the

thermal (core) part of the distribution—in the solar wind, the main suprathermal

electron populations are the halo and strahl.

• SWE: Solar Wind Experiment. This refers to a suite of instruments onboard

the Wind satellite that measured the solar wind’s properties at 1 AU. The strahl

detector, an electrostatic analyzer used widely in chapter 3, was part of this suite.
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Appendix B

Definitions and Identities

B.1 Variables and Parameters

µ = cos θ =
v · B̂
v

(B.1)

K =
mev

2

2
(B.2)

ξ =
v2

v2th
(B.3)

M(µ, v, x) =
(1− µ2)v2

B(x)
(B.4)

E(v, x) = v2 +
2eφ(x)

me
(B.5)

vth =

√

2T

me
(B.6)

F (v/vth) =
v3thf(v)

n
. (B.7)

λmfp =
T 2

2πe4Λn
(B.8)
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γ̃ =
T 2

2πe4Λnr
=

λmfp

r
(B.9)

β =
1 + Zeff

2
≈ 1.05 (B.10)

βe =
8πnT

B2
(B.11)

Ω = − 1

β
√

1 + (r/r45)2
. (B.12)

Ωi =
eB

mpc
(B.13)

vA =
B

√

4πnmp

(B.14)

di =
vA
Ωi

(B.15)
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B.2 Moments

n ≡
∫

f(v)d3v (B.16)

J ≡
∫

vf(v)d3v (B.17)

T ≡ me

3n

∫

v2f(v)d3v (B.18)

q ≡ me

2

∫

vv2f(v)d3v (B.19)
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Appendix C

Derivations

C.1 Drift Kinetic Equation

In magnetized plasmas, as are frequently observed in astrophysical systems, the charged

particles are constrained to spiral around the local magnetic field. This cyclotron motion

reduces the effective number of velocity degrees of freedom, as compared to an unmag-

netized plasma. It these circumstances, one can average over the particles’ cyclotron

motion to derive the so-called “drift kinetic equation” (37). The velocity space can be

parametrized in terms of the speed v and magnetic moment µB, so that the drift kinetic

equation describing f(x, µB, v, t) can be expressed in the form:

∂f

∂t
+ (Ud + v‖b̂) · ∇f −

(

b̂ · DUd

Dt
− µBB∇ · b̂− qe

m
E‖

) ∂f

∂v‖
= Ĉ(f) (C.1)

Here µB is the magnetic moment, defined as:

µB ≡ v⊥
2

2B
, (C.2)

and Ud represents the E×B drift,

Ud ≡ cE×B

B2
, (C.3)
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and D
Dt

is a shorthand for the expression,

D

Dt
≡ ∂

∂t
+ (Ud + b̂v‖) · ∇. (C.4)

The Coulomb collision operator, which is often neglected under the assumption of a

collisionless plasma, is included on the RHS of equation C.1. We note that although the

collision operator is derived for the kinetic equation describing an unmagnetized plasma,

the same operator can be applied to the drift kinetic equation for magnetized plasmas, as

long as the particle gyrorbits can be well approximated by straight-line trajectories over

the scale of a Debye sphere. This condition amounts to the requirement that the electron

Larmor radius be much larger than the Debye length. This condition is well-satisfied in

the solar wind, where at 1 AU the typical Debye sphere measures a few meters across

and the thermal electron gyroradius is on the order of kilometers.

We will consider the drift kinetic equation for electron motion: m = me, qe = −e.

When the drifts can be ignored (|v‖| ≫ |Ud|), equation C.1 reduces to the form:

∂f

∂t
+ v‖b̂ · ∇f +

(

µBB∇ · b̂− eE‖

m

) ∂f

∂v‖
= Ĉ(f). (C.5)

Note that because all gradients enter into equation C.1 as b̂ ·∇, the only relevant spatial

dimension is the distance along a field line, and we denote this distance as x. The drift

kinetic equation for the distribution function f(x, µB, v‖, t) can be expressed as:

∂f

∂t
+ v‖

∂f

∂x
+
(

− µBB
d lnB

dx
− eE‖

m

) ∂f

∂v‖
= Ĉ(f). (C.6)

However, it is more convenient for us to adopt the speed v and cosine of the pitch

angle µ = v‖/v as velocity space variables. Let us then rewrite the distribution function
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as f ∗(x, µ, v, t) = f(x, µB, v‖, t), where µ = µ(x, µB, v‖) and v = v(x, µB, v‖). The new

independent variables v, and µ are related to the previous set of variables as follows:

v(x, µB, v‖) = [2B(x)µB + v2‖]
1/2 (C.7)

µ(x, µB, v‖) = v‖[2B(x)µB + v2‖ ]
−1/2 (C.8)

To change variables, we substitute f ∗ into equation C.6 and apply the chain rule.

This requires us to evaluate the derivatives df ∗/dx and df ∗/dv‖:

df ∗

dx
=

∂f ∗

∂x
+

∂v

∂x

∂f ∗

∂v
+

∂µ

∂x

∂f ∗

∂µ

=
∂f ∗

∂x
+

B′(x)µB

[2B(x)µB + v2‖]
1/2

∂f ∗

∂v
− B′(x)µBv‖

[2B(x)µB + v2‖]
3/2

∂f ∗

∂µ

=
∂f ∗

∂x
+

v(1− µ2)

2

d lnB

dx

∂f ∗

∂v
− µ(1− µ2)

2

d lnB

dx

∂f ∗

∂µ

(C.9)

df ∗

dv‖
=

∂v

∂v‖

∂f ∗

∂v
+

∂µ

∂v‖

∂f ∗

∂µ

=
v‖

[2B(x)µB + v2‖]
1/2

∂f ∗

∂v
+
{

[2B(x)µB + v2‖]
−1/2 −

v2‖
[2B(x)µB + v2‖]

3/2

}∂f ∗

∂µ

= µ
∂f ∗

∂v
+

(1− µ2)

v

∂f ∗

∂µ

(C.10)

Substituting equations C.9 and C.10 into equation C.6 and simplifying, we arrive

at the drift kinetic equation for electron distribution f(x, µ, v, t) (dropping the ∗ super-

script):

∂f

∂t
+ µv

∂f

∂x
− 1

2

d lnB

dx
v(1− µ2)

∂f

∂µ
− eE‖

m

[1− µ2

v

∂f

∂µ
+ µ

∂f

∂v

]

= Ĉ(f) (2.2)
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C.2 The Coulomb Collision Operator

Let us denote as Ĉ(fα) the kinetic operator that encompasses the combined effect of

Coulomb collisions on the population α:

Ĉ(fα) =
∑

β

Ĉ(fα, fβ). (C.11)

In equation C.11, the sum is conducted over all particle populations (indexed by β),

and includes a self-collision term (β = α). In equation C.11, we introduce the notation

Ĉ(fα, fβ), which represents the effect of Coulomb collisions on a test particle population

fα as it interacts with a field population fβ.

We will adopt the results of classical kinetic theory, in which the collision operator

Ĉ(fα, fβ) is a non-linear integro-differential operator, that describes velocity-space dif-

fusion that arises from many small-angle collisions. Large-angle collisions, which occur

between particles that approach each other with very small impact parameter, may be

ignored to first forder (41). The collision operator has many equivalent representationsm,

including the well-known Landau form, which is shown here for its relative compactness:

Ĉ(fα, fβ) ≡
2πq2αq

2
βΛαβ

mα

∂

∂vj

∫

{ 1

mα
fβ(v

′)
∂fα(v)

∂vi
− 1

mβ
fα(v)

∂fβ(v
′)

∂v′i

}δiju
2 − uiuj

u3
d3v′.

(C.12)

In equation C.12, the charges and masses of the test and field populations are denoted

by qα, qβ and mα, mβ, respectively. The velocity u is defined as:

u ≡ v − v′, (C.13)
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and Λαβ is the well-known “Coulomb logarithm” (34). We will treat the Coulomb

logarithm as a constant, that is approximately the same for e-e and e-i collisions:

Λee,Λei ≈ Λ ≡ const. (C.14)

C.2.1 Linearized Collision Operator

The linearized form of Ĉ(fα, fβ) can be obtained by decomposing the particle distribu-

tions for two species α and β into Maxwellian and non-Maxwellian parts: fα = fαM+δfα,

fβ = fβM + δfβ. Here it is assumed that the deviations δfα and δfβ are tenuous rela-

tive to the background Maxwellians. Substituting these expressions into equation C.12

leads to the following expansion of Ĉ(fα, fβ), which follows from the “bilinearity” of the

collision operator C.12:

Ĉ(fα, fβ) = Ĉ(fαM , fβM) + Ĉ(δfα, fβM) + Ĉ(fαM , δfβ) + Ĉ(δfα, δfβ). (C.15)

In the physical scenario where δfα represents a tenuous beam of particles that is

well-separated from the background Maxwellian(s), we may approximate the collision

integral in the velocity regime where the beam dominates (where fα ≈ δfα) by the

leading term Ĉ(δfα, fβM). This term, which represents the interaction of δfα with the

Maxwellian field population fβM (68; 29), can be written as follows:

Ĉ(fα, fβ) ≈ Ĉ(δfα, fβM)

= ναβ
D L(δfα) +

1

v2
∂

∂v

{

v3
( mα

(mα +mβ)
ναβ
s (δfα) +

1

2
ναβ
‖ v

∂(δfα)

∂v

)}

.
(C.16)
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This exact expression C.16 arises from substituting an arbitrary test population δfα

and an isotropic Maxwellian field population fβM with thermal speed vth,β (centered at

v = 0) into equation C.12. Here we introduced L, the Lorentz collision operator:

L =
1

2

{ ∂

∂µ
(1− µ2)

∂

∂µ
+

1

1− µ2

∂2

∂φ2

}

=
1

2

∂

∂µ
(1− µ2)

∂

∂µ
,

(C.17)

where it is assumed the distributions are gyrotropic (∂fα/∂φ = 0). The coefficients

ναβ
D (v), ναβ

s (v), and ναβ
‖ (v) represent the characteristic rates of perpendicular veloc-

ity diffusion, frictional slowing, and parallel energy exchange, respectively. The exact

velocity-dependent expressions, which depend on the error function erf(v/vth,β), for these

coefficients can be found in reference (29). In the high-speed regime relevant to the strahl,

v ≫ vth,β, we can approximate erf(v/vth,β) ≈ 1 and the various terms of equation C.16

reduce to the following expressions:

ναβ
D (v)L(δfα) ≈

2πnβq
2
αq

2
βΛαβ

m2
αv

3

∂

∂µ
(1− µ2)

∂

∂µ
(δfα) (C.18)

mα

(mα +mβ)

1

v2
∂

∂v

{

v3ναβ
s (v)(δfα)

}

≈
4πnβq

2
αq

2
βΛαβ

mαmβv2
∂

∂v
(δfα) (C.19)

1

v2
∂

∂v

{1

2
ναβ
‖ v

∂(δfα)

∂v

}

≈
2πnβq

2
αq

2
βΛαβv

2
th,β

m2
α

{

− 1

v4
∂

∂v
(δfα) +

1

v3
∂2

∂2v
(δfα)

}

(C.20)

Using these expressions, the collision operator (eq. C.16) for the electron distribution

function f (in the high-velocity regime where δfe ≈ f) takes the form:
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Ĉ(f) = Ĉ(f, feM) +
∑

i

Ĉ(f, fiM)

=
4πnee

4Λ

m2
e

[

β

v3
∂

∂µ
(1− µ2)

∂f

∂µ
+

1

v2
∂f

∂v
+

v2th,e
2v2

(

− 1

v2
∂f

∂v
+

1

v

∂2f

∂v2

)]

.

(C.21)

Equation C.21 takes into account the interaction of the electrons with all ion species;

the letter “i” in the sum indexes the ion species. The ions are electrons are assumed to

have similar temperatures Te ≈ Ti, which allowed terms that are small to first order in

the parameter

( vth,i
vth,e

)2

≈ me

mi
≪ 1, (C.22)

to be neglected. The expression β appears as a coefficient which characterizes the pitch-

angle diffusion amplitude, and is defined as:

β ≡ (1 + Zeff)/2. (C.23)

Here, Zeff , the “effective charge” of the ions (57), is defined:

Zeff ≡
∑

i niZ
2
i

∑

i niZi

. (C.24)

In equation C.24, ni and Zi refer respectively to the number density and charge state of

ion species i.



97

Bibliography

[1] M. R. Aellig, A. J. Lazarus, and J. T. Steinberg, The solar wind helium

abundance: Variation with wind speed and the solar cycle, Geophys. Res. Lett., 28

(2001), pp. 2767–2770.

[2] B. R. Anderson, R. M. Skoug, J. T. Steinberg, and D. J. McComas,

Variability of the solar wind suprathermal electron strahl, Journal of Geophysical

Research (Space Physics), 117 (2012), p. A04107.

[3] P. Astfalk and F. Jenko, LEOPARD: A grid-based dispersion relation solver for

arbitrary gyrotropic distributions, Journal of Geophysical Research (Space Physics),

122 (2017), pp. 89–101.

[4] S. D. Bale, M. Pulupa, C. Salem, C. H. K. Chen, and E. Quataert,

Electron Heat Conduction in the Solar Wind: Transition from Spitzer-Härm to the
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[35] P. Kajdič, O. Alexandrova, M. Maksimovic, C. Lacombe, and A. N.

Fazakerley, Suprathermal Electron Strahl Widths in the Presence of Narrow-band

Whistler Waves in the Solar Wind, Astrophys. J., 833 (2016), p. 172.

[36] S. I. Krasheninnikov, Superthermal Particles and Electron Thermal Conductiv-

ity, JETP, 67 (1988), pp. 2483–2486.

[37] R. M. Kulsrud, MHD description of plasma, in Basic Plasma Physics: Selected

Chapters, Handbook of Plasma Physics, Volume 1 (North Holland Publishing Com-

pany, Amsterdam), A. A. Galeev and R. N. Sudan, eds., 1983, p. 1.



102

[38] C. Lacombe, O. Alexandrova, L. Matteini, O. Santoĺık,
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