DM-Ice
A Search for Dark Matter at the South Pole

Reina Maruyama
University of Wisconsin - Madison

Dark Matter Underground and in the Heavens 2011
CERN, Geneva Switzerland
18 - 29 July, 2011
Bounds on Dark Matter from Terrestrial Experiments

Spin-Independent

Spin-Dependent

One, maybe two signals.

One claim for discovery: DAMA
Bounds on Dark Matter from Terrestrial Experiments

Spin-Independent

Spin-Dependent

One, maybe two signals.

One claim for discovery: DAMA

J.I. Collar, arXiv:1106.0653
Possible Sources of Annual Modulation

• **Environmental Effects/Backgrounds**
 - Ambient temperature variation
 - Muon flux depend on temperature/pressure in the upper atmosphere
 - Spallation neutrons from muons interaction in rock
 - Radon diffusion from rocks may be varying with time
 - detector and lab maintenance timing

Many of these factors tend to have periodicity of 1 year

• **Detector Effects**
 - quenching factor
 - channeling
 - Xenon scintillation function
 - “Nygren effect”

• **Astrophysical Uncertainties?**
 - $f(v)$? v_{esc}? v_0? co-rotating?

• **Dark Matter Physics**
 - inelastic scattering
 - iso-spin violation
 - spin-dependent
Possible Sources of Annual Modulation

• Environmental Effects/Backgrounds
 • Ambient temperature variation
 • Muon flux depend on temperature/pressure in the upper atmosphere
 • Spallation neutrons from muons interaction in rock
 • Radon diffusion from rocks may be varying with time
 • detector and lab maintenance timing

Many of these factors tend to have periodicity of 1 year

• Detector Effects
 • quenching factor
 • channeling
 • Xenon scintillation function
 • “Nygren effect”

• Astrophysical Uncertainties?
 – f(v)? v_{esc}? v_0? co-rotating?

• Dark Matter Physics
 – inelastic scattering
 – iso-spin violation

Repeat experiment in different environment. Look for annual modulation with NaI(Tl) in Southern Hemisphere.
Why South Pole?

- The phase of the dark matter modulation is the same.
- Many environmental variations are either opposite in phase (e.g. muon rate) or absent (e.g. temperature, neutrons).
- > 2500 m.w.e. of overburden with clean ice.
 - Clean ice \rightarrow no lead/copper shielding necessary. No radons.
 - Ice \rightarrow neutron moderator.
 - Ice as an insulator \rightarrow No temperature modulation.
- Existing infrastructure
 - NSF-run Amundsen-Scott South Pole Station
 - Ice drilling down to 2500 m developed by IceCube
 - Muon veto by IceCube/DeepCore
 - Infrastructure for construction, signal readout, and remote operation
DM-Ice Sensitivity and a DAMA-Like Signal

Sensitivity

Model-Independent: Assume DAMA-like signal, statistics

<table>
<thead>
<tr>
<th></th>
<th>2 NAIAD</th>
<th>NAIAD size</th>
<th>DAMA size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years</td>
<td>17.0 kg</td>
<td>44.5 kg</td>
<td>250 kg</td>
</tr>
<tr>
<td>NAIAD background</td>
<td>1</td>
<td>0.45</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.77</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.00</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.18</td>
<td>1.91</td>
</tr>
<tr>
<td>50% NAIAD background</td>
<td>1</td>
<td>0.63</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.09</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.41</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.67</td>
<td>2.70</td>
</tr>
<tr>
<td>Double DAMA background</td>
<td>1</td>
<td>0.85</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.47</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.90</td>
<td>3.07</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2.25</td>
<td>3.64</td>
</tr>
<tr>
<td>DAMA background</td>
<td>1</td>
<td>1.20</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.08</td>
<td>3.37</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.69</td>
<td>4.35</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.18</td>
<td>5.14</td>
</tr>
<tr>
<td>1/10 DAMA background</td>
<td>1</td>
<td>3.80</td>
<td>6.15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.58</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.50</td>
<td>13.75</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10.06</td>
<td>16.27</td>
</tr>
</tbody>
</table>

- 5-σ detection of DAMA-like signal with a 250-kg / 2-year running time (2 - 4 keV) and comparable backgrounds to DAMA

arXiv:1106.1156

DM-Ice 250kg Concept

Design Concept
- Large pressure vessel
- Portable detector, hermetically sealed for in-ice (water?) deployment
- Segmented crystals with ~250 kg mass (e.g. 38@6.5kg)
- 1500 kg total including pressure vessel
- 2 detectors to mitigate deployment risk

Current Activities
- R&D on low background crystals
- Designing pressure vessels
- Investigating low background PMTs
- Customizing electronics
DM-Ice 250 kg Concept

Dr. Reina Maruyama

DM-Ice 250 kg Concept

250kg NaI Detector Array Deep in the Ice

Local muon veto in ice

250 kg NaI detector array in pressure vessel

Local muon veto in ice

~2500m

arXiv:1106.1156
Overburden at -2500 m (2200 m.w.e.)

- ~85 muons/m²/day at bottom of IceCube
- IceCube/DeepCore veto reduces rate by ~1-2 orders of magnitude.
- Ice is a neutron moderator
Radiopurity of Antarctic Ice

Purity

• -2500 m at South Pole is ~100,000 years old
• Most of the impurities come from volcanic ash
 • ~ 0.1 ppm
• Ice is nearly as clean as materials used for ultra-low background experiments.
 • U ~ 0.1ppt, Th ~ 0.1ppt, K ~ 100 ppt

scattering/absorption studies in ice
Muon Rate Seasonal Modulation

South Pole

- Muon modulation at the South Pole is 10% and is strongly correlated with the atmospheric temperature, maximum muon rate occurs in mid-January.
- Modulation is larger than the 2% effect at LNGS.

Muon Rate at Gran Sasso vs. South Pole

• LVD:
 Selvi, Proc. 31st ICRC.

• Opposite Muon modulation at the South Pole:
 Tilav, Proc. 31st ICRC. (2009)
DM-Ice-17 deployed in 2010

Detectors:
- Two 8.5 kg NaI detectors (total: 17 kg)
- crystals from NAIAD

Goals:
- Assess the feasibility of deploying NaI(Tl) crystals in the Antarctic Ice for a dark matter detector
- Establish the radiopurity of the antarctic ice / hole ice
- Explore the capability of IceCube to veto muons

Installed Dec. 2010
DM-Ice-17 Detector

- 36 cm (14”)
- 2 IceCube mainboards + HV control boards
- 5” ETL PMTs from NAIAD (2)
- NAIAD NaI Crystal (8.5 kg)
- quartz light guides (2)
- PTFE light reflectors (2)
- Stainless Steel Pressure Vessel
- DM-Ice
- DOM 59
- DOM 60
- 35 m extension cable
- 7 m
DM-Ice-17

DM-Ice prototype functioning well
– taking data, stable operation since March 2011
– data transmitted over satellite

Data

Preliminary

239 keV: Pb-212 from Th chain
352 keV: Pb-214 from U chain
609 keV: Bi-214 from U chain
860 keV: TI-208 from Th chain
1173 keV: Co-60
1460 keV: K-40
DM-Ice-17

Background Simulations
assumed U, Th, and K concentrations

<table>
<thead>
<tr>
<th>Material</th>
<th>238U (ppm)</th>
<th>232Th (ppm)</th>
<th>nat K (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>drill ice [27]</td>
<td>0.076±0.046</td>
<td>0.47±0.14</td>
<td><262</td>
</tr>
<tr>
<td>Antarctic ice</td>
<td>10^{-4}</td>
<td>10^{-4}</td>
<td>0.1</td>
</tr>
<tr>
<td>PMT [26]</td>
<td>30</td>
<td>30</td>
<td>60000</td>
</tr>
<tr>
<td>steel PV [27]</td>
<td>0.2</td>
<td>1.6</td>
<td>442</td>
</tr>
<tr>
<td>NaI</td>
<td>0.005</td>
<td>0.005</td>
<td>10</td>
</tr>
</tbody>
</table>

estimated contributions to event rate

<table>
<thead>
<tr>
<th>Material</th>
<th>event rate in NaI (cpd/kg/keVee)</th>
</tr>
</thead>
<tbody>
<tr>
<td>drill ice</td>
<td>0.8</td>
</tr>
<tr>
<td>Antarctic ice</td>
<td><0.001</td>
</tr>
<tr>
<td>photomultiplier tubes</td>
<td>0.01-0.02</td>
</tr>
<tr>
<td>steel PV</td>
<td>0.2-0.6</td>
</tr>
<tr>
<td>NaI crystal</td>
<td>~0.3</td>
</tr>
</tbody>
</table>

Goal: ~ 1 cpd/kg/keV

Reducing the backgrounds

drill water/ice
- won’t reuse circulate water
- minimize volume of drill ice around detector

steel pressure vessel (PV)
- can use better material, custom steel
- may be able to use Cu or Ti for full detector

NaI crystal
- purify raw materials

Optimizing analysis, background studies with radio-assay & Monte Carlo simulation

arXiv:1106.1156
Summary & Conclusions

• We have an opportunity for a unique annual modulation experiment in Southern Hemisphere.

• Backgrounds and systematics very different from any other underground location.

• Two NaI(Tl) detectors (17 kg) installed and operating in the South Pole ice since Dec 2010

• 250 kg experiment currently under design.

• An unambiguous discovery of DM requires signal in multiple experiments with different targets.

see arXiv:1106.1156
DM-Ice Collaboration

UW-Madison
Francis Halzen*, Karsten Heeger, Albrecht Karle*, Reina Maruyama*, Walter Pettus, Antonia Hubbard*, Bethany Reilly

University of Sheffield
Neil Spooner, Vitaly Kudryavtsev, Dan Walker, Sean Paling, Matt Robinson

University of Alberta
Darren Grant*

Penn State
Doug Cowen*

Fermilab
Lauren Hsu

University of Stockholm
Seon-Hee Seo*

* IceCube collaboration members