DM-Ice: Dark Matter Search at the South Pole

Bethany Reilly, University of Wisconsin-Madison For the DM-Ice Collaboration

MADISO

What is Dark Matter?

Astronomical Evidence

- Galaxy rotation
 - Baryonic matter can't account for rotation speed
- **Gravitational lensing**
 - Light is bent by the gravity of the dark matter
- Galaxy collision
 - Dark matter and baryonic

Detecting Dark Matter

- Indirect detection
- Colliders
- **Direct detection**
 - Nuclear recoil from WIMPs
 - Annual modulation in signal •

Ref: arXiv:1106.1156

DAMA/LIBRA signal

DM-Ice Experiment

- Nal crystal 250 kg
- PMTs collect light from WIMP collisions
- Look for annual modulation seen by DAMA at the South Pole
 - To be installed at the South Pole near the center of IceCube
 - Same DM modulation as DAMA
 - Opposite phase seasonal muons etc
 - Can use IceCube detector for muon veto
 - Clean ice, 2200 mwe of overburden
 - Ice temperature is stable
 - No radons, neutrons moderated

matter separated

DM-Ice Conceptual Design

DM-Ice Concept

- Large Pressure Vessel
- Segmented Crystals

38 Nal Crystals (each vessel contains 19)

- 95.6 mm Diameter
- 250 mm Long
- 6.5 kg each -
- 2 PMTs each

Instrument with few "DOMs" externally for veto

50 - 60 mm Copper Radial Shield

SS External Pressure Vessel Shell 10°

DM-Ice prototype

- Already installed at South Pole
- Presently taking data, with full waveforms

- 65 cm (25.6 inch) Outer Diameter
- 1.7 m (67 inch) Length -

250 kg Nal (38@6.5 kg crystals) 1500 kg total including pressure vessel

1000 Geant4 Simulation

Placing various backgrounds in and around the crystal in order to understand how they behave in that environment Amundsen-Scott South Pole Statio

Table 1: Assumed concentrations of ²³⁸U, ²³²Th and ^{nat}K, in ppb for major components of a NaI assembly and the surrounding ice. Details on the estimate for contamination in Antactic ice are in the text.

Material	²³⁸ U	²³² Th	^{nat} K
drill ice [27]	0.076 ± 0.046	0.47 ± 0.14	<262
Antarctic ice	10 ⁻⁴	10^{-4}	0.1
PMT [26]	30	30	60000
steel PV [27]	0.2	1.6	442
NaI	0.005	0.005	10
the second second		-	-

Table 2: Shown are the estimated contribution to event rate from 1-10 keVee in a single 8 kg NaI crystal. The first three items are calculated using the Geant4 simulation of a simple 8 kg assembly. The internal NaI contamination is taken from [18] where the energy spectrum of events from radioactivity was simulated for the DAMA experiment assuming radioisotope concentrations reported in [32].

Material	event rate in Na

Backgrounds

Simulating gammas from:

⁴⁰K

South Pole

Figure 2: The histograms show the simulated activity in NaI crystals due to uniform radioactivity in the ice surrounding the detector assembly.

IceCube

runway

Geant4	visua	lization	of	detector	prototype
			•••		

	$(cpu/kg/kev_{ee})$
drill ice	0.8
Antarctic ice	< 0.001
photomultiplier tubes	0.01-0.02
steel PV	0.2-0.6
NaI crystal	~0.3

The below plots show numbers of counts vs. the amount of energy deposited in the crystal from each decay.

Simulating 1 million ⁶⁰Co decays, distributed throughout the pressure vessel which surrounds the detector.

Acknowledgments

Here 1 million ⁴⁰K simulated decays are distributed throughout the pressure vessel which surrounds the detector.

Simulating 1 million ⁴⁰K decays, with each located at the center of the crystal

Thanks to the DM-Ice group, my advisor Reina Maruyama, and Lauren Hsu