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A detailed study of reduced-basis tight-binding models of electrons in semiconducting quantum wells is
presented. The focus is on systems with degenerate valleys, such as silicon in silicon germanium heterostruc-
tures, in the low-density limit, relevant to proposed quantum computing architectures. Analytic results for the
bound states of systems with hard-wall boundaries are presented and used to characterize the valley splitting in
silicon quantum wells. The analytic solution in a no-spin-orbit model agrees well with larger tight-binding
calculations that do include spin-orbit coupling. Numerical investigations of the valley splitting for finite band
offsets are presented that indicate that the hard-wall results are a good guide to the behavior in real quantum
wells.
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[. INTRODUCTION example, no theory has emerged to explain the strong en-
hancements observed in high magnetic fiélmisd extending
The presence of degenerate levels in a quantum systemts low fields1? Other fascinating experiments also reveal as-
an essential feature of a potential quantum computing deviceects of valley physics that remain unexplairftiéd.
Two examples are spin degeneracy, used for spintrbaitg One impediment to properly understanding valley split-
quantum computindg,and layer degeneracy in quantum Hall ting has been the lack of a strong microscopic foundation,
bilayers, leading to ferromagnetism in a two-dimensionalparticularly with respect to quantum wells. In these wells, the
electron gas. Spin is also of interest for semiconductor valley splitting has been calculated in detail in the two-valley
quantum computing devices. Si/SiGe heterostructures with affective-mass approximatiot? and predicted but not ex-
goal of achieving long spin coherence times are being purplained in superlattice tight-binding calculatiofsin addi-
sued actively;*® since silicon is expected to have longer tion, the ground state of a symmetric device can be of either
spin coherence times than GaAs. even or odd parity, depending on the well width. The alter-
Bulk silicon has sixfold degenerate conduction-bandnating parity has been predicted befétdaut only very re-
X-valleys, while in[001]-strained silicon, the relevant degen- cently explained?®
eracy is reduced to the twé-valleys lying alongz. Since the In a recent papéef we presented results for a single-
valley index is a pseudospin, the valley states can also bparticle explanation of valley splitting, valid in the limit of
exploited for quantum devices, similarly to spin states. In-low electron density, which is most relevant for quantum
deed, valley “polarization” has recently been obsefed,computing application3.Employing both simpler, analytic
while electronic gate control of valley physics has beertight-binding models, and more complete tight-binding
known for some timé. calculations'®1” we showed rough quantitative agreement
While potentially useful for other devices, valley degen-between the results using the sophisticated modeling and
eracy is problematic in spin quantum computing, for it is athose obtained using a simple one-dimensional tight-binding
potential source of decoherence and other difficufti@&e  model. However, in Ref. 15 the analytic formulas for the
extraneous valley degree of freedom must be strictly convalley splitting of the simple model are quoted but not de-
trolled to prevent leakage of quantum information outsiderived, and results for only infinite square wells are presented.
the qubit Hilbert space. Therefore, it is of great interest toReal heterostructures have finite band offsets, so it is of great
understand how to lift the valley degeneracy and maximizenterest to determine the range of well depths for which in-
the splitting between these two valleys. Practically, this in-finite square well results are a good guide.
volves creating a valley splitting, to lift the degeneracy. This article presents the mathematical details of the deri-
The quantum system can then be constrained to its valleyation of the valley splitting of the simple tight-binding
ground state by lowering the temperature far below the splitmodel of Ref. 15 as well as numerical investigations of the
ting, as demonstrated in Ref. 6. behavior of the valley splitting under conditions of finite
Although valley splitting has been studied for many yearsgquantum confinement. Our calculations of the valley splitting
it is far less well understood than one might expect. Foiffer from previous work on valley splitting using the two-
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FIG. 1. Sketch of different versions of a simple tight-binding o——t—
model, all related by basis transformations. White regions are nega- 00 02 04 06 08 10
tive, striped regions positivéa) Single-band model with ong-like ¢.¢lm

orbital per atom and one atom per unit aédingtha/2). Parameters
are ¢ (on-sitg, v (nearest-neighbgpr and u (second-nearest-
neighboy. (b) Grouping two atoms together in a single cell yields a

two-band model with two atoms per unit cé¢léngtha), and each
two-band cell. The parameters are:=3.0 eV, v=0.682 640 eV,

atom with onep-like orbital. (¢c) A basis transformation on the —0.611 705 6V. Al h h having th
middle model using symmetric and antisymmetric combinations"~ °- eV. Also shown are two phases having the same en-

yields a two-band model with one atom of two orbitals per unit Ce”ergybas (cjilscu(js:aq |nhSec. I B. For clarity only one energy for the
(length @). The parameters arees=e-v, gp=e+v, Vg=U one-band model IS shown.
-vl/2, Vpp=u+v/2, V5p=v/2.

FIG. 2. Bulk dispersions for the one- and two-band models with
the same parameters. The one-band phase=ikYa/2 and the
two-band phase ig=k@a (the one-band cell is half as long as the

N+2

valley effective-mass approximatitrand using superlattice W) = __2N+2 Cilzim, (1)
tight-binding calculation$ because we have no empirical M2
valley-coupling constant and we solve discrete tight-bindingwvhere|z;n) denotes thep,-like orbital on thenth atom(see
models for quantum wells in real space. Our calculationsFig. 1). Within the quantum well, the Schrédinger equation,
furthermore, give an analytic approximation for the valley using matrix elements shown in Fig(al, reads
splitting from a two-band tight-binding model in semi- B
quantitative agreement with multiband tight-binding calcula- UG2+vChy +[e ~EJC +vChiy +UG,2=0, (2
tions.

The article is organized as follows. Section Il presents the Inf<=N-2,
details of the valley splitting calculation for the two-band
model along with results, Sec. Ill discusses the effects o
finite-height barriers, and Sec. IV the conclusions. Appendix C_n+2) =Cone1) =Cpnw2=Cre1 =0 (3)
A discusses the three equivalent descriptions of the simple ) ) o )
tight-binding model investigated in the bulk of the paper, re_sults in the following quantum well Hamiltonian matrix of
while Appendix B discusses the application of the method tdlimension(2N+1):

¥vhi|e application of the hard-wall boundary conditions

more complicated tight-binding models. (e v u O - - 0]
v € v :
Il. VALLEY SPLITTING IN THE TWO-BAND MODEL Uu v e v
A. Infinite quantum well Honea(e,v,u)=( 0 0 (4)
In order to obtain an analytic expression we employ the . u v e v U
simplest possible model for the conduction band of Si, a .. 0 U v e v
two-band modelsee Fig. 1 The underlying bulk model is 0 o i 0
discussed in detail in Appendix A. Since the two atoms in a L u v e

unit cell are identical, each with a singfg-like orbital, the This Hamiltonian can be analyzed analytically because
orbital coefficients may be indexed by atom without ambi-for a flatband quantum well, the wave function for a bound
guity. (This is equivalent to describing the problem as a onestate of energye, can only be a superposition of the avail-
band model; Appendix A details the requisite basis transforable propagating and evanescent bulk states at the same en-
mation) Because the analysis is also somewhat simpler foergy, E,. The exact details of this superposition are deter-
an odd number of atom@alf-integral number of unit cells  mined by the boundary conditions, in the present study taken
we present this case, later generalizing the results to an evea be hard walls. The situation of interest is that encountered
number of atoms. in Si X-valley conduction-band quantum we(lsee Fig. 2in

For a quantum well of R+1 atoms, the wave function in the energy range in which there are two degenerate pairs of
the localized-orbital basis using atom-indexed notation is propagating states. The dimension of the generalized
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eigenproblert? for the bulk material, which is equal to 4, is possible. For the problem of valley splitting in Si quantum
confirms that there are no evanescent states at these energieslls1>1%20approximations for the energies themselves are
Each member of the quartet of Bloch states which serves asot so important; instead, approximations for the difference
the basis for a quantum well state takes the fgup to a  in energy between successive bound states, referred to as the
normalization valley splitting, is of greater interetThe two-band model
allows for a particularly illuminating and useful approxima-
tion for valley splitting.

The first step is to rewrite Eq$9) and (11) using trigo-
nometric relations. To simplify the notation, expressin

) terms of the dimensionless length. For the atom-indexed

where in the atom-indexed treatment it must be remembere@erivation given aboves5=2N+1. For an integral number of
that each atom occupies leng#i2. Note that two atoms unit cells (even number of atomsS=2N,y, whereNcey is
beyond the quantum well on each side must be induded:he total number of two-band unit cells in the quantum well.
only the total wave function need vanish there, not its sepalsing trigonometric relations, E¢9) is rewritten as

rate components. The total wave function is then a superpo- _. = (e . —O7 4 iy O\ o
sition of this quartet of Bloch states, given by Si(0®)sin(S+2)¢] + sin(¢*®)sin (S +2) 87 = 0,
(13

N+2

2= X €&%zn); e=kal2; -2mla<ks<2mla,
n=—(N+2)

2
[w)y=> {b}+>|w;j>+ b}‘)|¢//?¢j)}; ¢;=ka2.  (6)  while Eq.(11) becomes
=1

— sin(89)sin(S+ 2) '] + sin(¢@)sin[(S+ 2) 5] = 0,
Exploiting the symmetry of the well by combining counter- n(&)sinl( )@+ sin(g)sin( )71

propagating states into parity eigenstates simplifies matters. (14
Since the well is centered about the zeroth atom, no cente{ghere the individual phases are expressed in terms of differ-
ing phase enters; comparison of E¢f5. and(6) shows that  gnces and averages, as

the coefficientsC, are either eveiee) or odd(o) and may be

written 8= (e - g2, o= (ol + ¢i)I2; @ e feo}.
C®=aP® cogne?) + a cogneyY), (7) (15)
. . It is important to note that while the'® will be close to the
C =al” sin(ng?) +ay sin(ngy”), (8)  valley minimum-phasegpy,, [calculated with Eq.(A4) of

. @ Appendix A}, they will not exactly equal it, since the valley
wh(tz)re in terms of the one-band wave vectsf’ (’DJ( ) will be somewhat asymmetric. Observe that E@s3) and
=kj"al/2,a e{e,o}. - (14) differ only in the sign of the first term. This fact, to-
Imposing the boundary conditiorf&q. (3)] on each of  gather with the approximate location of thevalley mini-
Egs. (7) and (8) results in a homogeneous system for they,m |eads to a useful approximation for the splitting.
coefficientsal®, whose determinant must vanish for a non- As shown in Fig. 2, for a reasonably symmetxe/alley,
trivial solution to exist. For eveICn [Eq (7)], the allowed the phase of the Va”ey minimur('tpmin) will be approxi_
wave vectors are determined by the simultaneous solution gfately the average of the two Bloch state phases:,
the secular equation ~¢@. Using this approximation in Eq$13) and(14) leads
cog (N + 1)zp(f)]cos{(N + 2)(P(2e>] to two significant conclu_sipns. First, wheéS.+ -2)(.pmin:i’ili77, .
for m an integer, the splitting should be minimized since in
- cod(N+2)¢{]cod(N+ 1)gs’]=0 (9)  this case the first term of each is approximately zero and Egs.
(13) and (14) are therefore almost identical. Second, when
(S+2)pmin=(2m+1)7/2, for m an integer, the splitting
E(¢'®) = E(¢¥), (100  should be maximized, since Eq&l3) and (14) differ the
. ) ) most. Two additional useful observations follow from these:
where the bulk energy is given in Appendix A, E&4). For g gplitting oscillates with the well width, and the parity of
odd C, one must solve the pair of equations the ground state depends upon the well width, as observed in
Sin(N + 1)<p(1°)]sir{(N + 2)<P(2°)] R(_afs. 14 and .15. Thg \(arying pairity can be seen by corisid—
ering the maximal splitting case, in which the sign of the first
-siM(N+2¢PIsif(N+1)¢s’1=0,  (11)  term oscillates with the quantum well width.
The key insight leading to the approximate splitting is the
E(¢?) = E(¢). (12) realization that the lowest-lying states of any reasonable
length quantum well will have phases differing only slightly
from that of the valley minimum. Hence, the phases of the
two cosines in Eq(7) and those of the two sines in E@)
will be close. Since sums and differences of cosines and
The attraction of the two-band model above is that Egssines may be expressed as products of cosines and sines, one
(9)~(12) are sufficiently simple that analytic solution of them at the average of the two phases, the other at the average of

along with the bulk equation

B. Approximate expression for the valley splitting
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o + so(f)) . (so(f) - w(le))
sSin >

© 4 p . © _ o .
X sin( 2| (Pm'”>sin< 2] (Pm'n>
2 2
© 4 o . ©_ ,
+ sin( (%1 (Pmm)sin< (%1 @mln) .
2 2

(21)

the difference in the two phases, the two lowest states will
have essentially the same, slowly varying, cosine-like enve- E(¢}”) - E(¢{?) = 16u sin(
lope, but opposite-parity underlying fast oscillations.
Accordingly, Eqs(13) and(14) can be rewritten in com-
plex form and subjected to a perturbation treatrfietat cal-
culate thes'® to any desired order. For the present purpose,
however, a lowest-order expansion is all that is required and
is most easily carried out by taking advantage of the above
physical and mathematical insights. The lowest two bound
states of this quantum well should both have cosine-like en-

velopes characterized by a phas&®& =~ /S, which will be
small for any reasonable quantum well, so that(&it)
~ 89, Similarly, the argument of the last sine of E¢$3)

and(14) may be approximated by first using a trigopnometric

relation to reduce it:

The term in curly braces in Eq21) may be expanded to
lowest order in(S+2)™! using Egs(17) and(19). Substitut-
ing this expansion into Eq21) results in

167u

Sin(@min)

E(e”) ~E(el) = 51 5

0 4 @ (0) _ (e
xsin( LZERE 2| )sin( LI 2| )
2 2

(22)

siN(S+2)89]=~-sif(S+2)8Y - 7] = 71— (S+2)§?.
(16)

Making these small-angle approximations in E¢k3) and

(14) yields Similarly, expansions to lowest order {8+ 2)™* give for the
- remaining two sines in Eq22),
5 ~
Sin((S+ 2)¢™] . <<p<1°> + so(f)) .
S+2)xF ————— sinl ————— | = sin(@min) , (23
( ) -+ SIH(E(O‘)) 2 mln)
T m  sinf(S+2)¢@] {e (0 _ (o i
=~ + - a= , 2 2] m S”{(S"' 2)¢min]
2 o sm( ) ~ - , (24
(S+2) 7 (S+2?  sin(¢) ) > (5+27  sinom) (24)
(17) L
so that the splitting is
where the upper signs are taken fore and the lower signs 16724
for a=o. E(el”) - E(¢”) = - 5SIN(@min)SIN (S+ 2) @iminl,
The average phases must now be related back to the val- (S+2)

ley minimum phaseg; this is easily accomplished by us- (25

ing bulk relation Eq(A4) and trigonometric relations to find
g AAD g where EQq.(25) is derived for the atom-indexed model. The

magnitude of the splitting is easily recast in terms of the
two-band model using Appendix A 1:

16772U . (d’min)

“seM

cod¢{¥) + codl”) = 2 cog@pin) O cogg'®)cog 6)

= cog @min) - (18)
sin{(S+ 2)%]

— |e(0)
Since the deviation of the average phase from the valleyAEl_|
minimum ought to be small—most valleys are not grossly (26)
asymmetric, at least for the lowest states—it is convenient to

recast Eq(18) in terms of the separation where, as stated abov87 2N, twice the number of two-
band cells, and the one-band phasg, is related to the
two-band phaséy,i, Via ¢nmin=7= dmin/ 2. The notatioME;
emphasizes that the splitting calculated is that between the
states of the lowest doublet.

- E(e)|

A= E(a) ~ Pmin (19
and make small-angle approximations & andA(® to get
a quadratic equation fak®. The relevant root of this equa-
tion [keeping in mind that ta.,,) <0] to lowest order in

5 is C. Results
The two-band model is very useful since, lacking valence
bands, it can be more readily made to represent the conduc-
tion band of Si. The lower two-band dispersion shown in Fig.

2 represents Si as strained to apg&e, , substrate. Figure 3
The valley splitting(energy difference between the statesgraphs the magnitude of the splitting of the lowest two con-

of the lowest bound doubletay now be calculated. Using fined states versus quantum well lengthmonolayer(ML)

Eq. (Ad), cog ¢min) =—v/4u, and trigonometric relations, the =one two-band ce#two atom$ as calculated with the two-

splitting may be expressed as band model andNEMo!® using the sp’d®s* model?? The

A = = Ol g 5P, (20
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FIG. 3. Valley splitting(magnitude of the energy difference be-
tween the states of the lowest doubleta strained Si quantum well FIG. 4. Ground stat&- andZ-coefficients for a quantum well of
at zero applied field with hard-wall boundary conditions. Numerical30 cells as calculated in the two-band model.
results calculated withemo’s sp’d®s* model, NEMO spds and the
two-band model presented here, two-baedac), are shown as terials models together with the boundary conditions. In
symbols with no lines. The approximate two-band splitting from gddition to quantum wells, the tight-binding method easily
Eq. (26), two-band(Approx), along with a fit of thexemo results to - models graded junctions, delta-doping confinement, and high
Eq. (26), spdsiit, are shown as lines with no symbols, although gjectric fields. The tight-binding calculations therefore avoid
they are calculated at the same points as the numerical results. a significant shortcoming of the effective-mass approach, es-

effective mass and minimum of the lower band of the two-Pecially for Gggeneral purpose heterostructure - simulator
band model are chosen to match those of strained bulk Si iqevelopmenf. ’ _
the NEMO® calculation. Symbols plot calculated poiriteom Figures 4 and 5 plot wave-function results from the two-
direct diagonalization in the two-band mogethile lines band model for a 30 Mli.e., 30 two-band cells or 60 one-
plot Eq. (26) for the two-band model and an amplitude- band celly quantum well. Figure 4 graphs the ground state
scaled version of this equation fit to themo'® results.  €nvelopes, Fig. 5 the first excited state envelopes. Symbols
Equation(26) is remarkably good for the two-band model for are points as calculated by direct diagonalization of the one-
quantum wells over 30 MLgabout 8.1 nm Most impor- band version, transformed to the two-band model using Egs.
tantly, the simpler and more completeEmo™® calculations (1) and (2). Appendix A 2 gives a detailed discussion of
show the same oscillatory behavior and rate of decay fofhese wave functions.
quantum wells over 30 ML, the two models agree quantita-
tively for quantum wells over 60 Mlabout 16.2 nm lll. EFFECTS OF FINITE-HEIGHT BARRIERS

~ The most significant feature of Fig. 3 is that both the Real heterostructures have finite-height barriers, so it is
simpler and more complete tight-binding models predict osimportant to examine the applicability of the foregoing val-
cillations in the splitting with well width even without an

electric field. This behavior is due to the presence of multiple 0.30 ————
propagating states in the wetlpt spin-orbit effects, since the f
two-band model has no spin-orbit coupling, whereas the 020 [
more completeNEMo®® sgd®s* calculation does include Tl
spin-orbit. i
These oscillations have also been seen by Ohkaima R 0.10 ;
two-valley effective-mass calculations for silicon quantum 3 W
wells. However, the commonly employed effective-mass ap- § 0.00
proach requires an empirical valley coupling constant to < 1
model valley splitting. This empirical valley coupling con- 0.10 |
stant ultimately depends on the details of the heterostructure, i
and thanks to the advancement of growth techniques and 020 [
materials technology, numerous combinations of heterointer- L |-=-pz
faces are possible in a single device, so that each hetero- 030 TR
interface in a device might require its own empirical cou- )
pling constant. In contrast, the tight-binding method needs 0 3 10 clesu 0530
no additional parameters, as the mixture of different propa-
gating states in the wellor valley mixing in the effective- FIG. 5. First excited stat& and Z-coefficients for a quantum

mass frameworkis completely determined by the bulk ma- well of 30 cells as calculated in the two-band model.
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ley splitting treatment to the practical case. For_$be, bar- 1000
riers the height varies from 0.1 to 0.3 eV o+ 0.2 and 0.5,
respectively¥* Two approaches are available for modeling
the finite barrier problem. The simpler, in terms of both pro-
gramming and explanation, is to add long barrier regions on
either side of the quantum well, and apply hard-wall bound-
ary conditions at the ends of the barriers. Provided that the
barriers are sufficiently long, increasing the barrier length
will not affect the lowest eigenstatathe ones of interest
here. Note that although the Hamiltonian becomes quite
large, one must still solve only an ordinary Hermitian eigen-
value problem. The more difficult, but more elegant, ap-
proach involves finding the appropriate forward and reverse 001
eigenstate'$ in the barrier regions and expanding the wave
function on each side of the well in terms of these states. For Well Width [unit cells]
a quantum well bound state these decay going into the bar-
riers. This results in a Hamiltonian matrix only slightly larger ~ FIG. 6. Valley splitting(magnitude of the energy difference be-
than that required for the quantum well with hard walls dis-tween the states of the lowest doupleersus well width for quan-
cussed above, but now one must solve a non-Hermitian efum wells with band offsets ranging from 0.1 to 10 eV. The behav-
genvalue problem, W|th the further CompllcaUO” that the ex_ior is qualitatively similar for the entire range of band Oﬁsets,
pansion states themselves depend on the energy eigenvalu@g,icating that the hard-_wall limit ﬁs a good startjng point for real
requiring an iterative solution. qugntum wells. For typlc.alle.xperlmental well widths, .roughly 20
Because it is considerably easier to program and modean'_t c_:ells_,, the hard-wall limit is a reasonably good estimate of the
desktop PCs are more than adequate in terms of memory arfting in wells of depth 0.1 eV or greater.

speed for the two-band model, we investigate the effects of ied b 0 and 10 eV. All calculati
finite barriers using the simpler method of adding long con-£8~ & Was varied between 0 an ev. All calculations were

fining regions. The case of symmetric barriers is the simplesllzamed out for an integral number of ce{l®., an even num-

and incorporates the relevant physics and thus is treated he grbqf qtom;sso that the two-band viewpoint applies without
We likewise adopt the simplest treatment for finite barriers,""mF.'gu'ty'6 h h I litti f . £ well
shifting the on-site parameter in the barriers up relative to . igure 6 shows the valley splitting as a function of we
that in the well. The neighbor-coupling parameterand u width for several different band offset§The results for in-

could also be changed, affecting the complex bands in th

gnite square wells are indistinguishable on the scale of the
barriers, but the overall physics would be similar. Thus, wedraPh from those for the 10-eV welslt is immediately
opt for the simplest barrier treatment.

clear that the qualitative behavior of the valley splitting is the
The Hamiltonian is partitioned into three regions; each o

gsame for well depths of order 0.1 eV as for infinite square
the barriers is taken to comprig atoms and the wel wells, displaying oscillations as a function of width with the
atoms. The Hamiltonian is then written

same periodthough with a phase that depends slightly on
well depth. Figure 7 shows a measure of the fractional

1.00

1

0.10 | i

Valley Splitting, AE [meV]

Hg(eg,v,U) P 0 change in the valley splitting as a function of well width. The
H = p Hy(e,0,U) P @7 data for this graph were obtaln_ed by selectln_g those points
that are local maxima in the splitting-versus-width curve for
Q ET HB(SB,U,U)
; : wELiitIIt gy
P= , » - ..00 "A“A“‘A
u *. . . g L - 4 A 4 ° 106V
v u 0 O L Y Wt o 3y
2 . ® 03eV
whereP is a BX W matrix, the square matricdsg andH,y § . Qosev
take the form of Eq(4), and eg>¢. Hard-wall boundaries g owo " il
correspond to the limitg—oc. As discussed above, in this g E
case it is not necessary to explicitly include any of the barrier
layers. (See also Ref. 25 for a rigorous treatment in the
single-band nearest-neighbor tight-binding model. L

The numerical investigations cover well widths of 5-100 20 0 60 80 100
cells (10-200 atoms The dimension of Hamiltonian Eq.
(27) is taken to be 40Qi.e., 400 atoms or 200 ce)lswhich
was found to be sufficiently large that increasing the matrix FIG. 7. Fractional change in the valley splittiigee Sec. I
size did not change the results. The on-site energy differenogersus well width for well depths ranging from 0.01 to 10 eV.

Well Width [unit cells]
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each well depth, fitting the 10 eV data thus obtained to an this publication was carried out at the Jet Propulsion
power law form, and then dividing the splitting for each well Laboratory, California Institute of Technology under a con-
depth and width by the 10 eV fit function. This proceduretract with the National Aeronautics and Space Administra-
alleviates the difficulty that comparing valley splittings at tion. Funding was provided at JPL under grants from ARDA,
two different well depths and the same well widths is com-ONR, and JPL.

plicated by the different phases of the oscillations for differ-

ent well depths. The figure demonstrates that for typical well

widths of 20 unit cells, the valley splitting is of the same APPENDIXA: DETAILS OF THE TWO-BAND MODEL

order of magnitude as that of the infinite well for well depths 1. Bulk model

down to 0.1 eV.

It is interesting to ask what sets the scale at which the The simplest model that can accurately reproduce the
finite-depth corrections to the valley splitting become signifi-lowest conduction band of silicon can be described in one of
cant. One candidate scale is the confinement energy, definglree ways, completely equivalent insofar as they are related
as the difference in energy between the ground state of they a change of basis. One basis, producing a two-band
infinite well and of the finite well. The relation between val- model, consists of a unit cell of two identical atoms, each
ley splitting and confinement energy is not simple becausevith a single p-like orbital, and having second-nearest-
the splitting arises from a delicate cancellation, and the leadaeighbor interactionfFig. 1(b)]. Replacing these orbitals by
ing corrections in powers of inverse well width are identicalsums and differences results in an identical two-band model,
for the two lowest states. Our numerical results for severahow with only one atom per unit cell, but two orbitals and
different well widths indicate that both the confinement en-p-like) per atom and only nearest-neighbor interactigig.
ergy and the valley splitting change by roughly 50% whenl(c)]. The unit cell size is the same as in the tprrbital
the well depth is decreased from infinity down to 0.1 eV. two-band model. The third description is of a one-band
model, with a single atom unit celhalf the size of the two-
band unit cell, each atom having onp-like orbital [Fig.
1(a)]. This basis, like the first, has second-near-neighbor in-

The conventional technique for finding the bound states oferactions.
guantum wells modeled using the empirical tight-binding Each of the three equivalent descriptions plays an impor-
method involves diagonalizing what is often a very largetant role in solving and interpreting the results of quantum-
Hamiltonian matrix. This numerical technique differs greatly confined problems. Analytic results are most readily obtained
from that used to solve the infinite square well of elementaryusing the one-band mod@Fig. 1(a)]. Wave-function plots,
guantum mechanics, in which only the bulk eigenstateshiowever, are much more easily interpreted in terms of the
(plane wavepandE(k) dispersion in the well are necessary. two-band, nearest-neighbdfS,Z) model [Fig. 1(c)]. The
As shown here, a similar approach can be used with tighttwo-band, second-nearest-neighbor moff&h. 1(b)] links
binding models when hard-walinfinite barriej boundary the other two; it is particularly easy to translate expressions
conditions are enforced. for the splitting from the one-band model to this two-band

This approach has the additional virtue of yielding ana-model. Although the one-band treatment of a quantum well
lytic results for smaller(two-band tight-binding models. is the same for either an even or odd number of atoms in the
Here, the zero-field splitting between the lowest two states invell, rigorous correspondence with the two-baK8,2)
strained silicon quantum wells is computed using this apmodel implies an even number of atoms. Since bi(k)
proach. The analytic results highlight the rich interferencerelations are needed to find the eigenstates of a flatband
between multiple propagating states in the well, which isquantum well with hard walls, the equivalence of the three
responsible for the alternating parity of the ground state andescriptions must be established first.
the oscillations with well widtl{even at zero electric fieJdn Figure 1 illustrates the transformations linking a two-band
these structures. In contrast, the conventional, purely numer{wo orbital per atom, one atom per c@flig. 1(c)] model to
cal approach of diagonalizing a large Hamiltonian matrixthe one-bandone p-orbital per atom, one atom per c¢flig.
provides no insights into these phenomena. Finally, the infi1(a)] model. The connection can be seen in the following
nite square well model has been shown to be appropriate faway. A chain of N identical atoms, each with a singpelike
most situations of interest in quantum-computing devices. orbital, may be described equivalently a8l ingle-atom
unit cells of sizea/2, or N two-atom unit cells of siza. The
first results in a one-band model, the second a two-band
model?® As illustrated in Figs. (a) and 1b), both of these

We acknowledge useful conversations with R. Joynt andingle-orbital-per-atom models involve second-nearest-
M. A. Eriksson. Work at JPL, UAH, and UW was sponsoredneighbor interactions.
in major proportion by the U. S. Army Research Office The two-band(S,Z) basis results from defining two new
through the ARDA program and directly through ARDA. orbitals for each cel{note they have identical centgras
The work at UW was also supported by the National Science
Foundation through the MRSEC and QuBIC programs. The
work at Purdue was supported by the National Science Foun-
dation, Grant No. EEC-0228390. Part of the work described
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1 =0.611705 eV; each model has an indirect minimum like
S;n) = TEHZAJ n) - [zCn)], (A2)  that of Si. Figure 2 shows that the two models are equivalent,
v being related by zone folding. Setting=¢/2,¢:0— 7/2 in
wheren is the cell index and A” and “C” label the two  EqQ. (A4) yields theE, band of Eq.(A7), while setting¢
atoms in a two-atom ceff’ results in a chain oN one-atom, =w—-¢/2,¢:7/2— min Eq. (A4) yields theE_ band of Eq.
two-orbitals-per-atom, cells. Note from Fig(c] that theZz  (A7).
andS orbitals of Eqs(Al) and(A2) are not exactly atomic-
like states, but that they do transform as do their atomic
counterparts under symmetry operations of the chain, and )
that the Sorbital has the opposite sign of the atomic Figures 4 and 5 plot wave.-functlon results from the two/
sorbital. Also observe that the transformations Egsl)  ©ne-band model for a 30 Mli.e, 30 two-band cells or 60
and (A2) convert the second-nearest-neighbor one-orbital®n€-band cellsquantum well. Figure 4 graphs the ground
per-atom model to a nearest-neighbor, two-orbital-per-atorgtate envelopes_ and Fig. 5 the first e_xmted_state e_nve_lopes.
model, and that the four parameters of this two-orbital-per—symb0|3 are points as calculated by direct diagonalization of

atom model are uniquely determined by the three parametef§® one-band version, transformed to the two-band model
of the one-orbital-per-atom model. using Egs.(Al) and (A2). These wave-function plots are

The bulk dispersion for the one-band model is trivially MOSt remarkable, for they in no way resemble what one ex-
obtained. Using the Bloch bagiwith the orbital type written ~ P&Cts for the ground state and first excited state of a quantum

in lower case to distinguish the one-band kets from the twoWell. While there is a cosine-like envelope, there are also
band kets underlying fast oscillations, and, most strikingly of dbth

of the lowest two states share this envelope.
inkMa _ These results are fully explained by the foregoing analy-
|z:m) (A3)  sis. Consistent with a well located in layers 1-30, the wave-
function center is 15.%the two-band coefficients must van-
and matrix elements illustrated in Fig. 1, one immediatelyish at layers 0 and 31For the lower state, thg-coefficients
arrives at the dispersion are sums of cosines and tHecoefficients are sums of sines,
(&) (&) ;
_ ) — 1D at phases¢,”=0.85157, ¢,”=0.78807, corresponding to
Be) =& +2v cos¢) +2u cod2¢); ¢=kTal2 bulk states just above the valley minimum locateddaf,,
(A4)  =0.82r (seeE_ in Fig. 2. For the first excited state the
with a Brillouin zone extending over the range S-coefficients are sines and tlzecoefficients cosines, with

-2mla<kV<2s/a (the cell size isa/2). The phase which phases¢y’=0.85257, ¢ =0.7870r. The addition of two

minimizesE(¢) is denotedp,; It must be remembered that sings or cosines of nearly equal ar_gument explains the slo'w
the indexn stands for different cells in the one- and two- cosine-like envelope and fast oscillations underneath. This

band descriptions. envelopes just what one might expect for the ground state
For the two-band model, the Bloch sums basis states ar@f @ direct-gap quantum well of 30 sitg81 intervals,
\ /31~ 0.03%:)3:7, since the offsets of t(h? states VeI’SL(J? the
1 ) minimum, ¢35 = ¢min=0.03157, ¢min—¢; ~0.03207, ¢,
2N\ — _— (2) CA\ - 2 min min 1 )
ik ) = Vuﬁze’(d'”k ajloin); we{Sz}, ~ hmin=~0.0325r, and dyin— 4. ~0.0330r, are nicely clus-
tered about this central value. The next two stasecond
(A5) and third excited, not showrare likewise paired, having a

which in the basig|S;k),|Z;K)} yields the Hamiltonian ma- €0mmon  sine-like envelope characterized i3y ~ &
=~ 2/ 31. Finally, results for a well of 31 two-band cef{lsot

2. Wave functions in an infinite quantum well

1 2N
z;k) = =2 ex
V2N n=1

trix . .
showr) demonstrate the expected changing parity of the
o= gst+2VssCOd )  —i2Vg,Sin(¢) e ground state, for in this case the lower state is odd
—=2- i2Vgp sin(¢) e, + 2V, cod¢) |’ $=k“a (Scoefficients are sines and-coefficients are cosings
(AB) Without the analysis, only numerical results would be avail-

able, and these wave functions would have been difficult to
with a Brillouin zone extending over the rangerfa<k®  explain and interpret.
< l/a. It is essential to keep in mind that the wave vectors
kD of the one-band an&® of the two-band models are
different. Expressing the two-band tight-binding parameters
in terms of the one-band parameters, and employing trigono- The four-band model represents an intermediate between
metric relations, the eigenvalues of this Hamiltonian matrixthe simple two-band model and more complete, multiband
are tight-binding models: Alhough far from perfetk,it is the
_ simplest model with a two-atom, multiple-orbital-per-atom

E:(¢) =&+ 20 cod/2) +2u cod ). (A7) basis. Consequently, the procedures for constructing its
Figure 2 displays bulk dispersions for both models usingquantum-confined wave functions are essentially the same as
parameters appropriate for strained Si in SiGe modulationthose for much larger models. Specifically, the procedures
doped heterostructurés, £=3.0 eV, v=0.682 640 eV,u for determining the centers of the expansion coefficients and

APPENDIX B: EXTENSION TO A FOUR-BAND MODEL
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boundary conditions are readily generalizable to larger modtage of the fact that for in-plane wave vector=k.e,+k;
els sharing the same geometry, differing only in the large=0, the s- and p,-like orbitals are decoupled from,- and
number of orbitals. Thus, unlike the case with the two-bandd,-like orbitals in both the Bloch and planar-orbital Hamil-
model, the four-band results can serve as guides for corfonians. The resulting subspace ®f and p,-like orbitals
structing the form and interpreting results of large, multibandyields a Hamiltonian matrix equivalent to that of a chain of
calculations, which to date have been restricted to purelywo-atom unit cells, with ons- and onep,-like orbital per
numerical result3 atom; for an elemental semiconductor such as Si the
atoms are, of course, identicZIThe bulk dispersions for the
chain (i.e., under cyclic boundary conditionare found by
1. Bulk model diagonalizing the Hamiltonian in the

The four-band model is readily extracted from the{|sA;k),|zA;Kk),|sC;k),|zC;k)} basis(A andC designate the

nearest-neighbor, no-spin-ortsip* model by taking advan- two atoms in a unit cejl

€s 0 2055 COLp) izvsp sin(¢)
H, = 0 _ sp. —i2vgpSin(e) 2v,, COL @) ' B1)
2vssCOd ) 1205, SiN(g) & 0
—i2v5pSiN(¢) 20, COL @) 0 &p
[
where ¢g=ka/2and the tight-binding parameters are illus- 1
trated in Fig. 8. The Bloch sum basis states @se {s,z}) |zt k)= EHZA' k) £ |zC k)], (B5)
which block-diagonalizesi, into two 2-dimensional blocks,
N
1 . as
|wA; k) = =2, €4 wA;n), (B2) _ .
VNp=1 HE = £5* 2055 COS)  £i204, SIN(¢) 86)
=2 Fi2vgpSin(e)  ept 2vp, COY @)
LN The ?ig):;envalues of the matrices E&6) are readily found,;
|wC:k) = NE okl n+1/2)| cn, (B3) for H,” they are
VINp=1 1
B = Jtel + o\ [el - o P+ 163, si(o)},
wheren indexes the unit cells. Note that tiieatom in a cell (B7)
is taken to lie a distanca/2 (one-half unit cell ahead of the ) )
A atom, as shown in Fig. 8. while for H; " they are

The four-band Hamiltonian for elemental semiconductors 1 /
[Eq. (B1)] is further simplified by introducing the change of ~ E{)= 5{8(3_) +el) £ \[el) -2 + 1603, sin(e)},
basis, as

(B8)
1 Whel’esf):&‘wiszw cog¢),w e1s,p}. (Chadi and Cohefl
s+ ;k) = TEHSA; ky + |sC;k)], (B4)  give a treatment of the fubp® model, including dispersions
\“‘

for other bands and expressions for the energies at various
symmetry pointg. As an example, an indirect minimum
similar to the Si conduction band occurs in lﬂﬁié) band for
£s=3.0 eV, gp=-1.0 eV, vg=-2.0eV, vy,=1.5eV, and
vsp=0.25 eV (not shown. In other respects, however, the
bands do not well mimic those of Si.

2. Infinite quantum well

FIG. 8. Unit cells of the four-band model showing on-site and ~As with the simpler model of Sec. Il, setting up the
nearest-neighbor parameters. Hamiltonian for the quantum-confined case is actually not

165325-9
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| conjugation(there is no spin-orbit interaction in this moylel
Alcla @ cla ¢ Equations(B12) and(Bl3)_thus show the_ form taken by
the quartet of Bloch states in the well, which serves as the
0 A 1* > 3 7 | 5 basis for the total wave function. In the localized-orbital ba-
| T sis, the un-normalized basis states are
0.75 1.25 2.50

Ny+1 Nyy
FIG. 9. Computation of anion and cation centers in the four- | QW = > &én| |sA:n) +i ¢ lzAn) | + >, @42
band model for a quantum well of four unit cells. n=1 n=0

necessary since the four-band model provides analf(i¢ x[|sC; ny + ip<§>|ZC; n)], (B14)
relations.(The Hamiltonian is block-tridiagonal with 322

blocks) Just as before, due to the confinement, the WaVG here ¢p=2¢=ka. Note that theC atom in cell 0 and the\
vectork is not a conserved quantity, and the optimum basigom in cell(Ny,+ 1)must be included in the sums as only the
to use is the localized-orbital basign a three-dimensional total wave function(and not its components separajeiy
model this corresponds to the planar-orbital basis with required to vanish at these atoms

=0.) In the case of confinement by hard walls, the wave = gjy e the well is symmetric, the quantum well eigenstates
function is completely restricted to the well. In general, the ., ba chosen as simultaneous parity eigenstatith re-
well can gon.tam an mtggral or half-integral number of un'tspect to the center of the welNote, however, that the offset
Ce”i’ b_eglnnlngf orr] ending 6A (?I'rhc aton;s é’md t::e metho% between thel andC atoms means that their coefficients will
works In any of these cases. The method Is, however, begt e ifferent centers. This is illustrated in Fig. 9 for a well
illustrated via a concrete example, and here the well is takeEomposed of four unit cells. In the more general case of a
%O eﬁcompaﬁs L;n't cells number&d2, ... Ny. The wave o) having an integral number of cells as discussed above,
unction Is therefore written as the states(B14) are centered by extracting a phase

Ny+1 explify) , Oo=p(Ny/2+3/4), since the initialA (in cell 1) has
wy=> > > Corjrlar;j’). (B9)  position 3/4 and the well length i&ya. Up to normaliza-
j'=0 ac{szre{AC} tions, centered even states ardexp(-ifp)|yS™
The hard-wall boundary is imposed by noting that the Wave+exm‘90)|¢’9§/>l>] while odd states are[exp(-i 60)lw3")
function must vanish at th& atom just to the left of the well, —explifp)|y2,]. Thus, un-normalized even and odd quan-
as tum well basis states resulting from a single pair of bulk
Bloch states are, in the localized-orbital basis,
CSQO = CZC,O =0 (BlO)
. . Nw+1 N 3
and on theA atom just to the right of the well, as |¢Ef)> =2 {CO{ ¢<n - ?W_ Z)}bk "
Connyr1 = Coangr1= 0, (B11) =t
since the well contains an integral number of cells. Note in —p(é)sin[ ¢(n— N _ §>]|2A; n>}
particular thano demand may be made on the coefficients of 2 2 4
the A atom in cell O or theC atom in cellNy+1, as these Nyy 1
coefficients do not exist. + > {cos{ ¢<n - W_ _ﬂ sC;n)
As before, in silicon the interest is in states within the n=0 4

two pairs of Bloch or propagating statéand no evanescent

X-valleys (corresponding to tth) band, where there are Ny
—p(—)sin ¢(n— — - —) |zCny r,
ones in this modeglat a given energy. The quantum well

bound states are therefore superpositions of this quartet. The (B1Y5)
Bloch states are easily found by diagonaliziljg") [EqQ.
(B6)], and selecting the eigenvector associated E&W@). Nw+1 No, 3
Up to a normalization, each of the Bloch states takes the =2 {sin{¢(n— —W——)]|SA; n)
form n=1 2 4
[ihag) = ISAK) +|SC;K) +ip()|ZAK) +ip(¢)|zC;k), + p(ib>co{ ¢>(n _Nw _ :_3)} |zA; n)}
Ny
where +> {sin[¢(n—N—W—1)]|sC;n>
g5+ 2055 COY ) — E(++)((P) n=0 2 4
ple) = 5 ino) . (B13) & Ne 1
Usp SIN(@ +p(—>cos{¢(n——w_—)}|zc;n)}
Note thatp(—¢)=-p(¢) and as a result, the state of wave 2 2 4
vector K is related to that of wave vectork+by complex (B16)
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These states are used to construct the even and odd quantu ¢(e> N, 1 N 1
. o L 72 g © W, =) lcod O W4 =
well bound states, from which the quantization conditions? sin| & > 2 ) > T2

2
result.

Each bound state of ax-valley quantum well in the four- B ﬁ sin| ¢® Ny +} cod ¢© Ny . 1 ~0
band model is a superposition of Bloch states of two differ- P 2 112 14 2\ 2 4 '
ent wave vectors; call the associated pair of ph@*é@s¢(ze) (B19)
for even states aneb(°),¢(2°)for odd states. A general even
quantum well bound state is therefore a superposition (e H

B ZL | = | 22
E; ( >—E+ ( ) (B20)
2 2
|¥©) = al®)| ¢§i>+a(2e>| (/,((;2)>, (B17)  Likewise, the odd states are found by solving the pair of
transcendental equations
(0)
2 oo (M2 [l o %0 2)
|\p(o)> = a(lo)|l//$)l)> + a(20)|¢5§2)>, (B18)
(ﬁ)co ¢(0)<N_W+}> sin (o)(M/J,}) -0
A2 1\2 "4 2\"2 T4)| 7
where the| z,bf}f?) are given in Eq(B15) for even states and (B21)
Eq. (B16) for odd states. To enhance readability the super-
scripts on the phases are suppressed in @js) and(B18); (0) (0)
) . B 2L ) = g 22
in Eq. (B17) the ¢; stand for4.?, 4, while in Eq. (B18) EY 5 )= EY 5 (B22)

they stand forg”, ¢\. The quantization conditions follow . .

on substituting Eq(B15) into Eq.(B17) and Eq.(B16) into Observe that as with the two-band model above, the effort in
Eq. (B18) and requiring the total wave function to vanish on determining the bound states is completely_mdependent of
the C atom in cell 0 and thé atom in cell(Ny+1). Since the quantum well length. Also note that while these equa-

symmetry has already been imposed the two requiremenfl®"S Yield only semi-analytic informatiogsince a solution
’ o Of nontrivial transcendental equations is requjretiis can
yield the same homogeneous system for the coefflcmfﬁ)ts

h th | h be useful in and of itself. It is also true that when only the
As with the two-band model above, the bound states arg,est few bound states are needed the simultaneous solu-

found by requiring the de_:termingnt o_f the appropriate hom_otion of these equations is easier to program than is the ini-
geneous system to vanish, while simultaneously satisfyinggjization and diagonalization of a large Hamiltonian matrix.
the bulk equatiorE|”(¢\/2)=E\"(¢}”/2). Thus the even More importantly, the wave-function construction procedures
states are found by solving the pair of transcendental equaleveloped above are directly applicable to more complete
tions tight-binding models having the same geometry.
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