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A detailed study of reduced-basis tight-binding models of electrons in semiconducting quantum wells is
presented. The focus is on systems with degenerate valleys, such as silicon in silicon germanium heterostruc-
tures, in the low-density limit, relevant to proposed quantum computing architectures. Analytic results for the
bound states of systems with hard-wall boundaries are presented and used to characterize the valley splitting in
silicon quantum wells. The analytic solution in a no-spin-orbit model agrees well with larger tight-binding
calculations that do include spin-orbit coupling. Numerical investigations of the valley splitting for finite band
offsets are presented that indicate that the hard-wall results are a good guide to the behavior in real quantum
wells.
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I. INTRODUCTION

The presence of degenerate levels in a quantum system is
an essential feature of a potential quantum computing device.
Two examples are spin degeneracy, used for spintronics1 and
quantum computing,2 and layer degeneracy in quantum Hall
bilayers, leading to ferromagnetism in a two-dimensional
electron gas.3 Spin is also of interest for semiconductor
quantum computing devices. Si/SiGe heterostructures with a
goal of achieving long spin coherence times are being pur-
sued actively,2,4,5 since silicon is expected to have longer
spin coherence times than GaAs.5

Bulk silicon has sixfold degenerate conduction-band
X-valleys, while in[001]-strained silicon, the relevant degen-
eracy is reduced to the twoX-valleys lying alongz. Since the
valley index is a pseudospin, the valley states can also be
exploited for quantum devices, similarly to spin states. In-
deed, valley “polarization” has recently been observed,6

while electronic gate control of valley physics has been
known for some time.7

While potentially useful for other devices, valley degen-
eracy is problematic in spin quantum computing, for it is a
potential source of decoherence and other difficulties.8 The
extraneous valley degree of freedom must be strictly con-
trolled to prevent leakage of quantum information outside
the qubit Hilbert space. Therefore, it is of great interest to
understand how to lift the valley degeneracy and maximize
the splitting between these two valleys. Practically, this in-
volves creating a valley splittingDv to lift the degeneracy.
The quantum system can then be constrained to its valley
ground state by lowering the temperature far below the split-
ting, as demonstrated in Ref. 6.

Although valley splitting has been studied for many years,
it is far less well understood than one might expect. For

example, no theory has emerged to explain the strong en-
hancements observed in high magnetic fields9 and extending
to low fields.10 Other fascinating experiments also reveal as-
pects of valley physics that remain unexplained.11

One impediment to properly understanding valley split-
ting has been the lack of a strong microscopic foundation,
particularly with respect to quantum wells. In these wells, the
valley splitting has been calculated in detail in the two-valley
effective-mass approximation,12 and predicted but not ex-
plained in superlattice tight-binding calculations.13 In addi-
tion, the ground state of a symmetric device can be of either
even or odd parity, depending on the well width. The alter-
nating parity has been predicted before,14 but only very re-
cently explained.15

In a recent paper,15 we presented results for a single-
particle explanation of valley splitting, valid in the limit of
low electron density, which is most relevant for quantum
computing applications.5 Employing both simpler, analytic
tight-binding models, and more complete tight-binding
calculations,16,17 we showed rough quantitative agreement
between the results using the sophisticated modeling and
those obtained using a simple one-dimensional tight-binding
model. However, in Ref. 15 the analytic formulas for the
valley splitting of the simple model are quoted but not de-
rived, and results for only infinite square wells are presented.
Real heterostructures have finite band offsets, so it is of great
interest to determine the range of well depths for which in-
finite square well results are a good guide.

This article presents the mathematical details of the deri-
vation of the valley splitting of the simple tight-binding
model of Ref. 15 as well as numerical investigations of the
behavior of the valley splitting under conditions of finite
quantum confinement. Our calculations of the valley splitting
differ from previous work on valley splitting using the two-
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valley effective-mass approximation12 and using superlattice
tight-binding calculations13 because we have no empirical
valley-coupling constant and we solve discrete tight-binding
models for quantum wells in real space. Our calculations,
furthermore, give an analytic approximation for the valley
splitting from a two-band tight-binding model in semi-
quantitative agreement with multiband tight-binding calcula-
tions.

The article is organized as follows. Section II presents the
details of the valley splitting calculation for the two-band
model along with results, Sec. III discusses the effects of
finite-height barriers, and Sec. IV the conclusions. Appendix
A discusses the three equivalent descriptions of the simple
tight-binding model investigated in the bulk of the paper,
while Appendix B discusses the application of the method to
more complicated tight-binding models.

II. VALLEY SPLITTING IN THE TWO-BAND MODEL

A. Infinite quantum well

In order to obtain an analytic expression we employ the
simplest possible model for the conduction band of Si, a
two-band model(see Fig. 1). The underlying bulk model is
discussed in detail in Appendix A. Since the two atoms in a
unit cell are identical, each with a singlepz-like orbital, the
orbital coefficients may be indexed by atom without ambi-
guity. (This is equivalent to describing the problem as a one-
band model; Appendix A details the requisite basis transfor-
mation.) Because the analysis is also somewhat simpler for
an odd number of atoms(half-integral number of unit cells),
we present this case, later generalizing the results to an even
number of atoms.

For a quantum well of 2N+1 atoms, the wave function in
the localized-orbital basis using atom-indexed notation is

uCl = o
n=−sN+2d

N+2

Cnuz;nl, s1d

where uz;nl denotes thepz-like orbital on thenth atom(see
Fig. 1). Within the quantum well, the Schrödinger equation,
using matrix elements shown in Fig. 1(a), reads

uCn−2 + vCn−1 + f« − EgCn + vCn+1 + uCn+2 = 0, s2d

unu ø N − 2,

while application of the hard-wall boundary conditions

C−sN+2d = C−sN+1d = CN+2 = CN+1 = 0 s3d

results in the following quantum well Hamiltonian matrix of
dimensions2N+1d:

HI2N+1s«,v,ud = 3
« v u 0 ¯ ¯ 0

v « v u 0 ]

u v « v u � ]

0 � � � � � 0

] � u v « v u

] � 0 u v « v

0 ¯ ¯ 0 u v «

4 . s4d

This Hamiltonian can be analyzed analytically because
for a flatband quantum well, the wave function for a bound
state of energyEn can only be a superposition of the avail-
able propagating and evanescent bulk states at the same en-
ergy, En. The exact details of this superposition are deter-
mined by the boundary conditions, in the present study taken
to be hard walls. The situation of interest is that encountered
in Si X-valley conduction-band quantum wells(see Fig. 2) in
the energy range in which there are two degenerate pairs of
propagating states. The dimension of the generalized

FIG. 1. Sketch of different versions of a simple tight-binding
model, all related by basis transformations. White regions are nega-
tive, striped regions positive.(a) Single-band model with onep-like
orbital per atom and one atom per unit cell(lengtha/2). Parameters
are « (on-site), v (nearest-neighbor), and u (second-nearest-
neighbor). (b) Grouping two atoms together in a single cell yields a
two-band model with two atoms per unit cell(lengtha), and each
atom with onep-like orbital. (c) A basis transformation on the
middle model using symmetric and antisymmetric combinations
yields a two-band model with one atom of two orbitals per unit cell
(length a). The parameters are:«s=«−v , «p=«+v, Vss=u
−v /2 , Vpp=u+v /2 , Vsp=v /2.

FIG. 2. Bulk dispersions for the one- and two-band models with
the same parameters. The one-band phase isw=ks1da/2 and the
two-band phase isf=ks2da (the one-band cell is half as long as the
two-band cell). The parameters are:«=3.0 eV, v=0.682 640 eV,
u=0.611 705 eV. Also shown are two phases having the same en-
ergy as discussed in Sec. II B. For clarity only one energy for the
one-band model is shown.
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eigenproblem18 for the bulk material, which is equal to 4,
confirms that there are no evanescent states at these energies.
Each member of the quartet of Bloch states which serves as
the basis for a quantum well state takes the form(up to a
normalization)

ucw
Bl = o

n=−sN+2d

N+2

einwuz;nl; w = ka/2; − 2p/a , k ø 2p/a,

s5d

where in the atom-indexed treatment it must be remembered
that each atom occupies lengtha/2. Note that two atoms
beyond the quantum well on each side must be included:
only the total wave function need vanish there, not its sepa-
rate components. The total wave function is then a superpo-
sition of this quartet of Bloch states, given by

uCl = o
j=1

2

hbj
s+ducw j

B l + bj
s−duc−w j

B lj; w j = kja/2. s6d

Exploiting the symmetry of the well by combining counter-
propagating states into parity eigenstates simplifies matters.
Since the well is centered about the zeroth atom, no center-
ing phase enters; comparison of Eqs.(1) and (6) shows that
the coefficientsCn are either even(e) or odd(o) and may be
written

Cn
sed = a1

sed cossnw1
sedd + a2

sed cossnw2
sedd, s7d

Cn
sod = a1

sod sinsnw1
sodd + a2

sod sinsnw2
sodd, s8d

where in terms of the one-band wave vector,kj
sad, w j

sad

=kj
sada/2 ,aP he,oj.
Imposing the boundary conditions[Eq. (3)] on each of

Eqs. (7) and (8) results in a homogeneous system for the
coefficientsaj

sad, whose determinant must vanish for a non-
trivial solution to exist. For evenCn [Eq. (7)], the allowed
wave vectors are determined by the simultaneous solution of
the secular equation

cosfsN + 1dw1
sedgcosfsN + 2dw2

sedg

− cosfsN + 2dw1
sedgcosfsN + 1dw2

sedg = 0 s9d

along with the bulk equation

Esw1
sedd = Esw2

sedd, s10d

where the bulk energy is given in Appendix A, Eq.(A4). For
odd Cn one must solve the pair of equations

sinfsN + 1dw1
sodgsinfsN + 2dw2

sodg

− sinfsN + 2dw1
sodgsinfsN + 1dw2

sodg = 0, s11d

Esw1
sodd = Esw2

sodd. s12d

B. Approximate expression for the valley splitting

The attraction of the two-band model above is that Eqs.
(9)–(12) are sufficiently simple that analytic solution of them

is possible. For the problem of valley splitting in Si quantum
wells,15,19,20approximations for the energies themselves are
not so important; instead, approximations for the difference
in energy between successive bound states, referred to as the
valley splitting, is of greater interest.4 The two-band model
allows for a particularly illuminating and useful approxima-
tion for valley splitting.

The first step is to rewrite Eqs.(9) and (11) using trigo-
nometric relations. To simplify the notation, expressN in
terms of the dimensionless length. For the atom-indexed
derivation given above,S=2N+1. For an integral number of
unit cells (even number of atoms) S=2Ncell, whereNcell is
the total number of two-band unit cells in the quantum well.
Using trigonometric relations, Eq.(9) is rewritten as

sinsdseddsinfsS+ 2dw̄sedg + sinsw̄seddsinfsS+ 2ddsedg = 0,

s13d

while Eq. (11) becomes

− sinsdsoddsinfsS+ 2dw̄sodg + sinsw̄soddsinfsS+ 2ddsodg = 0,

s14d

where the individual phases are expressed in terms of differ-
ences and averages, as

dsad = sw1
sad − w2

sadd/2, w̄sad = sw1
sad + w2

sadd/2; a P he,oj.

s15d

It is important to note that while thew̄sad will be close to the
valley minimum-phase,wmin [calculated with Eq.(A4) of
Appendix A], they will not exactly equal it, since the valley
will be somewhat asymmetric. Observe that Eqs.(13) and
(14) differ only in the sign of the first term. This fact, to-
gether with the approximate location of theX-valley mini-
mum, leads to a useful approximation for the splitting.

As shown in Fig. 2, for a reasonably symmetricX-valley,
the phase of the valley minimumswmind will be approxi-
mately the average of the two Bloch state phases:wmin
< w̄sad. Using this approximation in Eqs.(13) and(14) leads
to two significant conclusions. First, whensS+2dwmin=mp,
for m an integer, the splitting should be minimized since in
this case the first term of each is approximately zero and Eqs.
(13) and (14) are therefore almost identical. Second, when
sS+2dwmin=s2m+1dp /2, for m an integer, the splitting
should be maximized, since Eqs.(13) and (14) differ the
most. Two additional useful observations follow from these:
The splitting oscillates with the well width, and the parity of
the ground state depends upon the well width, as observed in
Refs. 14 and 15. The varying parity can be seen by consid-
ering the maximal splitting case, in which the sign of the first
term oscillates with the quantum well width.

The key insight leading to the approximate splitting is the
realization that the lowest-lying states of any reasonable
length quantum well will have phases differing only slightly
from that of the valley minimum. Hence, the phases of the
two cosines in Eq.(7) and those of the two sines in Eq.(8)
will be close. Since sums and differences of cosines and
sines may be expressed as products of cosines and sines, one
at the average of the two phases, the other at the average of
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the difference in the two phases, the two lowest states will
have essentially the same, slowly varying, cosine-like enve-
lope, but opposite-parity underlying fast oscillations.

Accordingly, Eqs.(13) and(14) can be rewritten in com-
plex form and subjected to a perturbation treatment21 to cal-
culate thedsad to any desired order. For the present purpose,
however, a lowest-order expansion is all that is required and
is most easily carried out by taking advantage of the above
physical and mathematical insights. The lowest two bound
states of this quantum well should both have cosine-like en-
velopes characterized by a phasedsad<p /S, which will be
small for any reasonable quantum well, so that sinsdsadd
<dsad. Similarly, the argument of the last sine of Eqs.(13)
and(14) may be approximated by first using a trigonometric
relation to reduce it:

sinfsS+ 2ddsadg = − sinfsS+ 2ddsad − pg < p − sS+ 2ddsad.

s16d

Making these small-angle approximations in Eqs.(13) and
(14) yields

dsad <
p

sS+ 2d 7
sinfsS+ 2dw̄sadg

sinsw̄sadd

<
p

sS+ 2d
±

p

sS+ 2d2

sinfsS+ 2dw̄sadg
sinsw̄sadd

, a = He

o
,

s17d

where the upper signs are taken fora=e and the lower signs
for a=o.

The average phases must now be related back to the val-
ley minimum phase,wmin; this is easily accomplished by us-
ing bulk relation Eq.(A4) and trigonometric relations to find

cossw1
sadd + cossw2

sadd = 2 cosswmind ⇒ cossw̄saddcossdsadd

= cosswmind. s18d

Since the deviation of the average phase from the valley
minimum ought to be small—most valleys are not grossly
asymmetric, at least for the lowest states—it is convenient to
recast Eq.(18) in terms of the separation

Dsad = w̄sad − wmin s19d

and make small-angle approximations fordsad andDsad to get
a quadratic equation forDsad. The relevant root of this equa-
tion [keeping in mind that tanswmind,0] to lowest order in
dsad is

Dsad < −
1

2
cotswmindfdsadg2. s20d

The valley splitting(energy difference between the states
of the lowest bound doublet) may now be calculated. Using
Eq. (A4), cosswmind=−v /4u, and trigonometric relations, the
splitting may be expressed as

Esw1
sodd − Esw1

sedd = 16u sinSw1
sod + w1

sed

2
DsinSw1

sod − w1
sed

2
D

3 HsinSw1
sod + wmin

2
DsinSw1

sod − wmin

2
D

+ sinSw1
sed + wmin

2
DsinSw1

sed − wmin

2
DJ .

s21d

The term in curly braces in Eq.(21) may be expanded to
lowest order insS+2d−1 using Eqs.(17) and (19). Substitut-
ing this expansion into Eq.(21) results in

Esw1
sodd − Esw1

sedd <
16pu

sS+ 2d
sinswmind

3sinSw1
sod + w1

sed

2
DsinSw1

sod − w1
sed

2
D .

s22d

Similarly, expansions to lowest order insS+2d−1 give for the
remaining two sines in Eq.(22),

sinSw1
sod + w1

sed

2
D < sinswmind, s23d

sinSw1
sod − w1

sed

2
D < −

p

sS+ 2d2

sinfsS+ 2dwming
sinswmind

, s24d

so that the splitting is

Esw1
sodd − Esw1

sedd < −
16p2u

sS+ 2d3sinswmindsinfsS+ 2dwming,

s25d

where Eq.(25) is derived for the atom-indexed model. The
magnitude of the splitting is easily recast in terms of the
two-band model using Appendix A 1:

DE1 = uEsod − Esedu <
16p2u

sS+ 2d3sinSfmin

2
DUsinFsS+ 2d

fmin

2
GU ,

s26d

where, as stated above,S=2Ncell, twice the number of two-
band cells, and the one-band phasewmin is related to the
two-band phasefmin via wmin=p−fmin/2. The notationDE1
emphasizes that the splitting calculated is that between the
states of the lowest doublet.

C. Results

The two-band model is very useful since, lacking valence
bands, it can be more readily made to represent the conduc-
tion band of Si. The lower two-band dispersion shown in Fig.
2 represents Si as strained to an Si0.8Ge0.2 substrate. Figure 3
graphs the magnitude of the splitting of the lowest two con-
fined states versus quantum well length[1 monolayer(ML )
5one two-band cell5two atoms] as calculated with the two-
band model andNEMO16 using thesp3d5s* model.22 The
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effective mass and minimum of the lower band of the two-
band model are chosen to match those of strained bulk Si in
theNEMO16 calculation. Symbols plot calculated points(from
direct diagonalization in the two-band model) while lines
plot Eq. (26) for the two-band model and an amplitude-
scaled version of this equation fit to theNEMO16 results.
Equation(26) is remarkably good for the two-band model for
quantum wells over 30 MLs(about 8.1 nm). Most impor-
tantly, the simpler and more completeNEMO16 calculations
show the same oscillatory behavior and rate of decay for
quantum wells over 30 ML, the two models agree quantita-
tively for quantum wells over 60 ML(about 16.2 nm).

The most significant feature of Fig. 3 is that both the
simpler and more complete tight-binding models predict os-
cillations in the splitting with well width even without an
electric field. This behavior is due to the presence of multiple
propagating states in the well,not spin-orbit effects, since the
two-band model has no spin-orbit coupling, whereas the
more completeNEMO16 sq3d5s* calculation does include
spin-orbit.

These oscillations have also been seen by Ohkawa12 in
two-valley effective-mass calculations for silicon quantum
wells. However, the commonly employed effective-mass ap-
proach requires an empirical valley coupling constant to
model valley splitting. This empirical valley coupling con-
stant ultimately depends on the details of the heterostructure,
and thanks to the advancement of growth techniques and
materials technology, numerous combinations of heterointer-
faces are possible in a single device, so that each hetero-
interface in a device might require its own empirical cou-
pling constant. In contrast, the tight-binding method needs
no additional parameters, as the mixture of different propa-
gating states in the well(or valley mixing in the effective-
mass framework) is completely determined by the bulk ma-

terials models together with the boundary conditions. In
addition to quantum wells, the tight-binding method easily
models graded junctions, delta-doping confinement, and high
electric fields. The tight-binding calculations therefore avoid
a significant shortcoming of the effective-mass approach, es-
pecially for general purpose heterostructure simulator
development.16,23

Figures 4 and 5 plot wave-function results from the two-
band model for a 30 ML(i.e., 30 two-band cells or 60 one-
band cells) quantum well. Figure 4 graphs the ground state
envelopes, Fig. 5 the first excited state envelopes. Symbols
are points as calculated by direct diagonalization of the one-
band version, transformed to the two-band model using Eqs.
(1) and (2). Appendix A 2 gives a detailed discussion of
these wave functions.

III. EFFECTS OF FINITE-HEIGHT BARRIERS

Real heterostructures have finite-height barriers, so it is
important to examine the applicability of the foregoing val-

FIG. 3. Valley splitting(magnitude of the energy difference be-
tween the states of the lowest doublet) in a strained Si quantum well
at zero applied field with hard-wall boundary conditions. Numerical
results calculated withNEMO’s sp3d5s* model, NEMO spds, and the
two-band model presented here, two-band(exact), are shown as
symbols with no lines. The approximate two-band splitting from
Eq. (26), two-band(Approx), along with a fit of theNEMO results to
Eq. (26), spds-fit, are shown as lines with no symbols, although
they are calculated at the same points as the numerical results.

FIG. 4. Ground stateS- andZ-coefficients for a quantum well of
30 cells as calculated in the two-band model.

FIG. 5. First excited stateS- and Z-coefficients for a quantum
well of 30 cells as calculated in the two-band model.
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ley splitting treatment to the practical case. For Si1−xGex bar-
riers the height varies from 0.1 to 0.3 eV forx=0.2 and 0.5,
respectively.24 Two approaches are available for modeling
the finite barrier problem. The simpler, in terms of both pro-
gramming and explanation, is to add long barrier regions on
either side of the quantum well, and apply hard-wall bound-
ary conditions at the ends of the barriers. Provided that the
barriers are sufficiently long, increasing the barrier length
will not affect the lowest eigenstates(the ones of interest
here). Note that although the Hamiltonian becomes quite
large, one must still solve only an ordinary Hermitian eigen-
value problem. The more difficult, but more elegant, ap-
proach involves finding the appropriate forward and reverse
eigenstates18 in the barrier regions and expanding the wave
function on each side of the well in terms of these states. For
a quantum well bound state these decay going into the bar-
riers. This results in a Hamiltonian matrix only slightly larger
than that required for the quantum well with hard walls dis-
cussed above, but now one must solve a non-Hermitian ei-
genvalue problem, with the further complication that the ex-
pansion states themselves depend on the energy eigenvalues,
requiring an iterative solution.

Because it is considerably easier to program and modern
desktop PCs are more than adequate in terms of memory and
speed for the two-band model, we investigate the effects of
finite barriers using the simpler method of adding long con-
fining regions. The case of symmetric barriers is the simplest
and incorporates the relevant physics and thus is treated here.
We likewise adopt the simplest treatment for finite barriers,
shifting the on-site parameter in the barriers up relative to
that in the well. The neighbor-coupling parametersv and u
could also be changed, affecting the complex bands in the
barriers, but the overall physics would be similar. Thus, we
opt for the simplest barrier treatment.

The Hamiltonian is partitioned into three regions; each of
the barriers is taken to compriseB atoms and the wellW
atoms. The Hamiltonian is then written

HI = 3HIBs«B,v,ud PI 0I

PI† HIWs«,v,ud PI

0I PI† HIBs«B,v,ud
4 , s27d

PI = 3
0 ¯ ¯ 0

0 � � ]

u � � ]

v u 0 0
4 ,

wherePI is a B3W matrix, the square matricesHIB andHIW
take the form of Eq.(4), and «B.«. Hard-wall boundaries
correspond to the limit«B→`. As discussed above, in this
case it is not necessary to explicitly include any of the barrier
layers. (See also Ref. 25 for a rigorous treatment in the
single-band nearest-neighbor tight-binding model.)

The numerical investigations cover well widths of 5–100
cells (10–200 atoms). The dimension of Hamiltonian Eq.
(27) is taken to be 400(i.e., 400 atoms or 200 cells), which
was found to be sufficiently large that increasing the matrix
size did not change the results. The on-site energy difference

«B−« was varied between 0 and 10 eV. All calculations were
carried out for an integral number of cells(i.e., an even num-
ber of atoms) so that the two-band viewpoint applies without
ambiguity.

Figure 6 shows the valley splitting as a function of well
width for several different band offsets.(The results for in-
finite square wells are indistinguishable on the scale of the
graph from those for the 10-eV wells.) It is immediately
clear that the qualitative behavior of the valley splitting is the
same for well depths of order 0.1 eV as for infinite square
wells, displaying oscillations as a function of width with the
same period(though with a phase that depends slightly on
well depth). Figure 7 shows a measure of the fractional
change in the valley splitting as a function of well width. The
data for this graph were obtained by selecting those points
that are local maxima in the splitting-versus-width curve for

FIG. 6. Valley splitting(magnitude of the energy difference be-
tween the states of the lowest doublet) versus well width for quan-
tum wells with band offsets ranging from 0.1 to 10 eV. The behav-
ior is qualitatively similar for the entire range of band offsets,
indicating that the hard-wall limit is a good starting point for real
quantum wells. For typical experimental well widths, roughly 20
unit cells, the hard-wall limit is a reasonably good estimate of the
splitting in wells of depth 0.1 eV or greater.

FIG. 7. Fractional change in the valley splitting(see Sec. III)
versus well width for well depths ranging from 0.01 to 10 eV.
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each well depth, fitting the 10 eV data thus obtained to a
power law form, and then dividing the splitting for each well
depth and width by the 10 eV fit function. This procedure
alleviates the difficulty that comparing valley splittings at
two different well depths and the same well widths is com-
plicated by the different phases of the oscillations for differ-
ent well depths. The figure demonstrates that for typical well
widths of 20 unit cells, the valley splitting is of the same
order of magnitude as that of the infinite well for well depths
down to 0.1 eV.

It is interesting to ask what sets the scale at which the
finite-depth corrections to the valley splitting become signifi-
cant. One candidate scale is the confinement energy, defined
as the difference in energy between the ground state of the
infinite well and of the finite well. The relation between val-
ley splitting and confinement energy is not simple because
the splitting arises from a delicate cancellation, and the lead-
ing corrections in powers of inverse well width are identical
for the two lowest states. Our numerical results for several
different well widths indicate that both the confinement en-
ergy and the valley splitting change by roughly 50% when
the well depth is decreased from infinity down to 0.1 eV.

IV. CONCLUSIONS

The conventional technique for finding the bound states of
quantum wells modeled using the empirical tight-binding
method involves diagonalizing what is often a very large
Hamiltonian matrix. This numerical technique differs greatly
from that used to solve the infinite square well of elementary
quantum mechanics, in which only the bulk eigenstates
(plane waves) andEskd dispersion in the well are necessary.
As shown here, a similar approach can be used with tight-
binding models when hard-wall(infinite barrier) boundary
conditions are enforced.

This approach has the additional virtue of yielding ana-
lytic results for smaller(two-band) tight-binding models.
Here, the zero-field splitting between the lowest two states in
strained silicon quantum wells is computed using this ap-
proach. The analytic results highlight the rich interference
between multiple propagating states in the well, which is
responsible for the alternating parity of the ground state and
the oscillations with well width(even at zero electric field) in
these structures. In contrast, the conventional, purely numeri-
cal approach of diagonalizing a large Hamiltonian matrix
provides no insights into these phenomena. Finally, the infi-
nite square well model has been shown to be appropriate for
most situations of interest in quantum-computing devices.
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APPENDIX A: DETAILS OF THE TWO-BAND MODEL

1. Bulk model

The simplest model that can accurately reproduce the
lowest conduction band of silicon can be described in one of
three ways, completely equivalent insofar as they are related
by a change of basis. One basis, producing a two-band
model, consists of a unit cell of two identical atoms, each
with a single p-like orbital, and having second-nearest-
neighbor interactions[Fig. 1(b)]. Replacing these orbitals by
sums and differences results in an identical two-band model,
now with only one atom per unit cell, but two orbitals(s- and
p-like) per atom and only nearest-neighbor interactions[Fig.
1(c)]. The unit cell size is the same as in the two-p-orbital
two-band model. The third description is of a one-band
model, with a single atom unit cell(half the size of the two-
band unit cell), each atom having onep-like orbital [Fig.
1(a)]. This basis, like the first, has second-near-neighbor in-
teractions.

Each of the three equivalent descriptions plays an impor-
tant role in solving and interpreting the results of quantum-
confined problems. Analytic results are most readily obtained
using the one-band model[Fig. 1(a)]. Wave-function plots,
however, are much more easily interpreted in terms of the
two-band, nearest-neighborsS,Zd model [Fig. 1(c)]. The
two-band, second-nearest-neighbor model[Fig. 1(b)] links
the other two; it is particularly easy to translate expressions
for the splitting from the one-band model to this two-band
model. Although the one-band treatment of a quantum well
is the same for either an even or odd number of atoms in the
well, rigorous correspondence with the two-bandsS,Zd
model implies an even number of atoms. Since bulkEskd
relations are needed to find the eigenstates of a flatband
quantum well with hard walls, the equivalence of the three
descriptions must be established first.

Figure 1 illustrates the transformations linking a two-band
(two orbital per atom, one atom per cell[Fig. 1(c)] model to
the one-band(onep-orbital per atom, one atom per cell[Fig.
1(a)] model. The connection can be seen in the following
way. A chain of 2N identical atoms, each with a singlep-like
orbital, may be described equivalently as 2N single-atom
unit cells of sizea/2, orN two-atom unit cells of sizea. The
first results in a one-band model, the second a two-band
model.26 As illustrated in Figs. 1(a) and 1(b), both of these
single-orbital-per-atom models involve second-nearest-
neighbor interactions.

The two-bandsS,Zd basis results from defining two new
orbitals for each cell(note they have identical centers), as

uZ;nl =
1
Î2

fuzA;nl + uzC;nlg, sA1d
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uS;nl =
1
Î2

fuzA;nl − uzC;nlg, sA2d

where n is the cell index and “A” and “C” label the two
atoms in a two-atom cell,27 results in a chain ofN one-atom,
two-orbitals-per-atom, cells. Note from Fig. 1(c) that theZ
andS orbitals of Eqs.(A1) and(A2) are not exactly atomic-
like states, but that they do transform as do their atomic
counterparts under symmetry operations of the chain, and
that the S-orbital has the opposite sign of the atomic
s-orbital. Also observe that the transformations Eqs.(A1)
and (A2) convert the second-nearest-neighbor one-orbital-
per-atom model to a nearest-neighbor, two-orbital-per-atom
model, and that the four parameters of this two-orbital-per-
atom model are uniquely determined by the three parameters
of the one-orbital-per-atom model.

The bulk dispersion for the one-band model is trivially
obtained. Using the Bloch basis(with the orbital type written
in lower case to distinguish the one-band kets from the two-
band kets)

uz;ks1dl =
1

Î2N
o
n=1

2N

expF inks1da

2
Guz;nl sA3d

and matrix elements illustrated in Fig. 1, one immediately
arrives at the dispersion

Eswd = « + 2v cosswd + 2u coss2wd; w = ks1da/2

sA4d

with a Brillouin zone extending over the range
−2p /a,ks1dø2p /a (the cell size isa/2). The phase which
minimizesEswd is denotedwmin. It must be remembered that
the indexn stands for different cells in the one- and two-
band descriptions.

For the two-band model, the Bloch sums basis states are

uv;ks2dl =
1

ÎN
o
n=1

N

expfinks2daguv;nl; v P hS,Zj,

sA5d

which in the basishuS;kl , uZ;klj yields the Hamiltonian ma-
trix

HI2 = F«s + 2Vss cossfd − i2Vsp sinsfd
i2Vsp sinsfd «p + 2Vpp cossfd G ; f = ks2da

sA6d

with a Brillouin zone extending over the range −p /a,ks2d

øp /a. It is essential to keep in mind that the wave vectors
ks1d of the one-band andks2d of the two-band models are
different. Expressing the two-band tight-binding parameters
in terms of the one-band parameters, and employing trigono-
metric relations, the eigenvalues of this Hamiltonian matrix
are

E±sfd = « ± 2v cossf/2d + 2u cossfd. sA7d

Figure 2 displays bulk dispersions for both models using
parameters appropriate for strained Si in SiGe modulation-
doped heterostructures,15 «=3.0 eV, v=0.682 640 eV, u

=0.611705 eV; each model has an indirect minimum like
that of Si. Figure 2 shows that the two models are equivalent,
being related by zone folding. Settingw=f /2 ,w :0→p /2 in
Eq. (A4) yields theE+ band of Eq.(A7), while settingw
=p−f /2 ,w :p /2→p in Eq. (A4) yields theE− band of Eq.
(A7).

2. Wave functions in an infinite quantum well

Figures 4 and 5 plot wave-function results from the two/
one-band model for a 30 ML(i.e, 30 two-band cells or 60
one-band cells) quantum well. Figure 4 graphs the ground
state envelopes and Fig. 5 the first excited state envelopes.
Symbols are points as calculated by direct diagonalization of
the one-band version, transformed to the two-band model
using Eqs.(A1) and (A2). These wave-function plots are
most remarkable, for they in no way resemble what one ex-
pects for the ground state and first excited state of a quantum
well. While there is a cosine-like envelope, there are also
underlying fast oscillations, and, most strikingly of all,both
of the lowest two states share this envelope.

These results are fully explained by the foregoing analy-
sis. Consistent with a well located in layers 1–30, the wave-
function center is 15.5(the two-band coefficients must van-
ish at layers 0 and 31). For the lower state, theS-coefficients
are sums of cosines and theZ-coefficients are sums of sines,
at phasesf2

sed=0.8515p , f1
sed=0.7880p, corresponding to

bulk states just above the valley minimum located atfmin
=0.82p (see E− in Fig. 2). For the first excited state the
S-coefficients are sines and theZ-coefficients cosines, with
phasesf2

sod=0.8525p , f1
sod=0.7870p. The addition of two

sines or cosines of nearly equal argument explains the slow
cosine-like envelope and fast oscillations underneath. This
envelopeis just what one might expect for the ground state
of a direct-gap quantum well of 30 sites(31 intervals),
p /31<0.0323p, since the offsets of the states versus the
minimum, f2

sed−fmin<0.0315p, fmin−f1
sed<0.0320p, f2

sod

−fmin<0.0325p, andfmin−f1
sod<0.0330p, are nicely clus-

tered about this central value. The next two states(second
and third excited, not shown) are likewise paired, having a
common sine-like envelope characterized bydsed<dsod

<2p /31. Finally, results for a well of 31 two-band cells(not
shown) demonstrate the expected changing parity of the
ground state, for in this case the lower state is odd
sS-coefficients are sines andZ-coefficients are cosines).
Without the analysis, only numerical results would be avail-
able, and these wave functions would have been difficult to
explain and interpret.

APPENDIX B: EXTENSION TO A FOUR-BAND MODEL

The four-band model represents an intermediate between
the simple two-band model and more complete, multiband
tight-binding models: Alhough far from perfect,28 it is the
simplest model with a two-atom, multiple-orbital-per-atom
basis. Consequently, the procedures for constructing its
quantum-confined wave functions are essentially the same as
those for much larger models. Specifically, the procedures
for determining the centers of the expansion coefficients and
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boundary conditions are readily generalizable to larger mod-
els sharing the same geometry, differing only in the larger
number of orbitals. Thus, unlike the case with the two-band
model, the four-band results can serve as guides for con-
structing the form and interpreting results of large, multiband
calculations, which to date have been restricted to purely
numerical results.13,14

1. Bulk model

The four-band model is readily extracted from the
nearest-neighbor, no-spin-orbitsp3 model by taking advan-

tage of the fact that for in-plane wave vectork uu=kxex+kyey
=0, the s- and pz-like orbitals are decoupled frompx- and
py-like orbitals in both the Bloch and planar-orbital Hamil-
tonians. The resulting subspace ofs- and pz-like orbitals
yields a Hamiltonian matrix equivalent to that of a chain of
two-atom unit cells, with ones- and onepz-like orbital per
atom; for an elemental semiconductor such as Si the
atoms are, of course, identical.27 The bulk dispersions for the
chain (i.e., under cyclic boundary conditions) are found by
diagonalizing the Hamiltonian in the
husA;kl , uzA;kl , usC;kl , uzC;klj basis(A andC designate the
two atoms in a unit cell):

HI4 = 3
«s 0 2vss cosswd i2vsp sinswd
0 «p − i2vsp sinswd 2vpp cosswd

2vss cosswd i2vsp sinswd «s 0

− i2vsp sinswd 2vpp cosswd 0 «p

4 , sB1d

where w=ka/2and the tight-binding parameters are illus-
trated in Fig. 8. The Bloch sum basis states aresvP hs,zjd

uvA;kl =
1

ÎN
o
n=1

N

eikanuvA;nl, sB2d

uvC;kl =
1

ÎN
o
n=1

N

eikasn+1/2duvC;nl, sB3d

wheren indexes the unit cells. Note that theC atom in a cell
is taken to lie a distancea/2 (one-half unit cell) ahead of the
A atom, as shown in Fig. 8.

The four-band Hamiltonian for elemental semiconductors
[Eq. (B1)] is further simplified by introducing the change of
basis, as

us± ;kl =
1
Î2

fusA;kl ± usC;klg, sB4d

uz± ;kl =
1
Î2

fuzA;kl ± uzC;klg, sB5d

which block-diagonalizesHI4 into two 2-dimensional blocks,
as

HI2
s±d = F«s ± 2vss cosswd ± i2vsp sinswd

7 i2vsp sinswd «p ± 2vpp cosswd G . sB6d

The eigenvalues of the matrices Eq.(B6) are readily found;
for HI2

s+d they are

E±
s+d =

1

2
h«s

s+d + «p
s+d ± Îf«s

s+d − «p
s+dg2 + 16vsp

2 sin2swdj,

sB7d

while for HI2
s−d they are

E±
s−d =

1

2
h«s

s−d + «p
s−d ± Îf«s

s−d − «p
s−dg2 + 16vsp

2 sin2swdj,

sB8d

where«v
s±d=«v±2vvv cosswd ,vP hs,pj. (Chadi and Cohen29

give a treatment of the fullsp3 model, including dispersions
for other bands and expressions for the energies at various
symmetry points.) As an example, an indirect minimum
similar to the Si conduction band occurs in theE+

s+d band for
«s=3.0 eV, «p=−1.0 eV, vss=−2.0 eV, vpp=1.5 eV, and
vsp=0.25 eV (not shown). In other respects, however, the
bands do not well mimic those of Si.

2. Infinite quantum well

As with the simpler model of Sec. II, setting up the
Hamiltonian for the quantum-confined case is actually not

FIG. 8. Unit cells of the four-band model showing on-site and
nearest-neighbor parameters.
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necessary since the four-band model provides analyticEskd
relations.(The Hamiltonian is block-tridiagonal with 232
blocks.) Just as before, due to the confinement, the wave
vectork is not a conserved quantity, and the optimum basis
to use is the localized-orbital basis.(In a three-dimensional
model this corresponds to the planar-orbital basis withk uu
=0.) In the case of confinement by hard walls, the wave
function is completely restricted to the well. In general, the
well can contain an integral or half-integral number of unit
cells, beginning or ending onA or C atoms and the method
works in any of these cases. The method is, however, best
illustrated via a concrete example, and here the well is taken
to encompass unit cells numbered1,2, . . . ,NW. The wave
function is therefore written as

uCl = o
j8=0

NW+1

o
aPhs,zj

o
tPhA,Cj

Cat; j8uat; j8l. sB9d

The hard-wall boundary is imposed by noting that the wave
function must vanish at theC atom just to the left of the well,
as

CsC;0 = CzC;0 = 0 sB10d

and on theA atom just to the right of the well, as

CsA;NW+1 = CzA;NW+1 = 0, sB11d

since the well contains an integral number of cells. Note in
particular thatno demand may be made on the coefficients of
the A atom in cell 0 or theC atom in cellNW+1, as these
coefficients do not exist.

As before, in silicon the interest is in states within the
X-valleys (corresponding to theE+

s+d band), where there are
two pairs of Bloch or propagating states(and no evanescent
ones in this model) at a given energy. The quantum well
bound states are therefore superpositions of this quartet. The
Bloch states are easily found by diagonalizingHI2

s+d [Eq.
(B6)], and selecting the eigenvector associated withE+

s+dswd.
Up to a normalization, each of the Bloch states takes the
form

uc2wl = usA;kl + usC;kl + irswduzA;kl + irswduzC;kl,

sB12d

where

rswd =
«s + 2vss cosswd − E+

s+dswd
2vsp sinswd

. sB13d

Note thatrs−wd=−rswd and as a result, the state of wave
vector −k is related to that of wave vector +k by complex

conjugation(there is no spin-orbit interaction in this model).
Equations(B12) and (B13) thus show the form taken by

the quartet of Bloch states in the well, which serves as the
basis for the total wave function. In the localized-orbital ba-
sis, the un-normalized basis states are

ucf
QWl = o

n=1

NW+1

eifnFusA;nl + irSf

2
DuzA;nlG + o

n=0

NW

eifsn+1/2d

3FusC;nl + irSf

2
DuzC;nlG , sB14d

wheref=2w=ka. Note that theC atom in cell 0 and theA
atom in cellsNW+1dmust be included in the sums as only the
total wave function(and not its components separately) is
required to vanish at these atoms.

Since the well is symmetric, the quantum well eigenstates
can be chosen as simultaneous parity eigenstates(with re-
spect to the center of the well). Note, however, that the offset
between theA andC atoms means that their coefficients will
have different centers. This is illustrated in Fig. 9 for a well
composed of four unit cells. In the more general case of a
well having an integral number of cells as discussed above,
the states (B14) are centered by extracting a phase
expsiu0d ,u0=fsNW/2+3/4d, since the initialA (in cell 1) has
position 3a/4 and the well length isNWa. Up to normaliza-
tions, centered even states arefexps−iu0ducf

QWl
+expsiu0duc−f

QWlg while odd states arefexps−iu0ducf
QWl

−expsiu0duc−f
QWlg. Thus, un-normalized even and odd quan-

tum well basis states resulting from a single pair of bulk
Bloch states are, in the localized-orbital basis,

ucf
sedl = o

n=1

NW+1HcosFfSn −
NW

2
−

3

4
DGusA;nl

− rSf

2
DsinFfSn −

NW

2
−

3

4
DGuzA;nlJ

+ o
n=0

NW HcosFfSn −
NW

2
−

1

4
DGusC;nl

− rSf

2
DsinFfSn −

NW

2
−

1

4
DGuzC;nlJ ,

sB15d

ucf
sodl = o

n=1

NW+1HsinFfSn −
NW

2
−

3

4
DGusA;nl

+ rSf

2
DcosFfSn −

NW

2
−

3

4
DGuzA;nlJ

+ o
n=0

NW HsinFfSn −
NW

2
−

1

4
DGusC;nl

+ rSf

2
DcosFfSn −

NW

2
−

1

4
DGuzC;nlJ

sB16d

FIG. 9. Computation of anion and cation centers in the four-
band model for a quantum well of four unit cells.
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These states are used to construct the even and odd quantum
well bound states, from which the quantization conditions
result.

Each bound state of anX-valley quantum well in the four-
band model is a superposition of Bloch states of two differ-
ent wave vectors; call the associated pair of phasesf1

sed ,f2
sed

for even states andf1
sod ,f2

sodfor odd states. A general even
quantum well bound state is therefore a superposition

uCsedl = a1
seducf1

sedl + a2
seducf2

sedl, sB17d

uCsodl = a1
soducf1

sodl + a2
soducf2

sodl, sB18d

where theucf j

sadl are given in Eq.(B15) for even states and
Eq. (B16) for odd states. To enhance readability the super-
scripts on the phases are suppressed in Eqs.(B17) and(B18);
in Eq. (B17) the f j stand forf1

sed ,f2
sed, while in Eq. (B18)

they stand forf1
sod ,f2

sod. The quantization conditions follow
on substituting Eq.(B15) into Eq. (B17) and Eq.(B16) into
Eq. (B18) and requiring the total wave function to vanish on
the C atom in cell 0 and theA atom in cellsNW+1d. Since
symmetry has already been imposed the two requirements
yield the same homogeneous system for the coefficientsaj

sad.
As with the two-band model above, the bound states are

found by requiring the determinant of the appropriate homo-
geneous system to vanish, while simultaneously satisfying
the bulk equationE+

s+dsf1
sad /2d=E+

s+dsf2
sad /2d. Thus the even

states are found by solving the pair of transcendental equa-
tions

rSf2
sed

2
DsinFf2

sedSNW

2
+

1

4
DGcosFf1

sedSNW

2
+

1

4
DG

− rSf1
sed

2
DsinFf1

sedSNW

2
+

1

4
DGcosFf2

sedSNW

2
+

1

4
DG = 0,

sB19d

E+
s+dSf1

sed

2
D = E+

s+dSf2
sed

2
D . sB20d

Likewise, the odd states are found by solving the pair of
transcendental equations

rSf2
sod

2
DcosFf2

sodSNW

2
+

1

4
DGsinFf1

sodSNW

2
+

1

4
DG

− rSf1
sod

2
DcosFf1

sodSNW

2
+

1

4
DGsinFf2

sodSNW

2
+

1

4
DG = 0,

sB21d

E+
s+dSf1

sod

2
D = E+

s+dSf2
sod

2
D sB22d

Observe that as with the two-band model above, the effort in
determining the bound states is completely independent of
the quantum well length. Also note that while these equa-
tions yield only semi-analytic information(since a solution
of nontrivial transcendental equations is required), this can
be useful in and of itself. It is also true that when only the
lowest few bound states are needed the simultaneous solu-
tion of these equations is easier to program than is the ini-
tialization and diagonalization of a large Hamiltonian matrix.
More importantly, the wave-function construction procedures
developed above are directly applicable to more complete
tight-binding models having the same geometry.
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