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We investigate experimentally and theoretically the sequence of
phases that occurs when a self-assembled monolayer of gold nano-
particles supported on a fluid is compressed uniaxially in a Langmuir
trough. Uniaxial compression of the monolayer results in the ap-
pearance of lines that have been shown to be regions of trilayer.
These lines exhibit complex patterns that depend on the extent of
compression. We show that these patterns can be understood in
terms of an equilibrium statistical mechanical theory, originally
developed in the context of commensurate–incommensurate transi-
tions in krypton monolayers adsorbed on graphite, in which there is
an energy cost to line deformations and to line intersections. Even
though line intersections are energetically costly, they lower the free
energy because they cause the entropy of the system to increase
when the density of lines is low enough. Our analytic and Monte
Carlo analyses of the model demonstrate that the model exhibits
two-phase coexistence. Our experimental observations are qualita-
tively consistent with the predictions of the model.

pattern formation | two-dimensional phase transitions

The collapse behavior of nanometer- andmolecular-thin films at
interfaces has fascinated researchers for decades (1, 2). In

particular, methods of producing patterns at length scales signifi-
cantly above the size of the constituent particles have recently
garnered interest (3, 4). Most previous work has focused on
structures that can be understood via a one-dimensional approach
(5–7), especially highly ordered structures (8–10). In this report,
we examine a different, 2D pattern observed on a self-assembled
solid monolayer of gold nanoparticles that is in a metastable state.
Under uniaxial compression, the film buckles into localized areas
of trilayer coexisting with the monolayer, forming a complex
“hash” network across the surface of the film (11).We examine the
global arrangement of the buckled hash network on the surface,
using statisticalmechanical arguments. Our theory and experiment
both show a disordered hexagonal arrangement of the trilayer
areas. This type of pattern may be present on other films that
collapse repeatedly into multilayers and are sufficiently influenced
by thermal fluctuations, such as in biological (12, 13) or Langmuir
films (14, 15). It should be noted that these patterns may not be
visually discernable. We demonstrate that there is a theoretical
similarity between collapse structure in these films and the well-
studied commensurate–incommensurate (C-I) transition in mol-
ecules adsorbed on crystalline solids (16–26).This similarity man-
ifests itself in the structural arrangement of the hash lines of the
nanoparticle trilayer, forming the same liquid hexagonal phase
observed in molecules adsorbed on periodic substrates (27).
In the experiments reported here, a nanoparticle film is formed

by spreading a solution of 6-nm (11, 28) Au nanoparticles ligated
with dodecanethiol at the air–water interface in a Langmuir trough.
As the solvent droplet evaporates, the film condenses into solid
monolayer domains separated by regions of open air–water in-
terface (11, 28). Themonolayer is then compressed uniaxially in the
planeof the interface in the x-directionby twomovingbarriers,while
confined in the in-plane y-direction by the borders of the trough (see
Fig. S1 for schematics of the apparatus and the coordinates). The

film is free to buckle out-of-plane in the z-direction into the sub-
phase or superphase. Details about the experimental setup and
apparatus have previously been published (11). Upon compression,
the film buckles, forming localized trilayer regions surrounded by a
monolayer (11, 28). Whereas one might intuitively expect the solid
film to buckle in a straight, one-dimensional striped pattern de-
termined by the direction of compression, we instead observe an
orientation of the trilayer regions into a fully 2D pattern of lines
(11). In this report, we focus on the large-scale organization of these
lines as the degree of compression increases.
For small compressions (Fig. 1A: trilayer coverage of 4.2%), the

lines form a disordered intersecting network, denoted as an in-
termediate hash stage. As compression is increased and the density
of trilayer lines increases (Fig. 1B: trilayer coverage of 46.4%), the
configuration changes significantly and becomes more anisotropic,
and regions of very closely spaced lines appear. Here we address
basic questions about these configurations and their evolution, in
particular (i) why the lines form trilayer hash instead of an aligned
array of nonintersecting lines at low density and (ii) why the lines
become more oriented and form regions of very high density as
their overall density increases. We propose that insight into the
experimental results can be obtained by considering a theoretical
model in which lines that can meander and also intersect are as-
sumed to achieve thermodynamic equilibrium. In such a model,
line intersections can lower the free energy because they increase
the system’s entropy, even if they are energetically costly.
The theoretical model that we investigate is closely related to

models that have been studied previously to model C-I transitions
of molecules adsorbed on periodically corrugated substrates (16–
26, 29). Using analytic arguments and Monte Carlo simulations,
we show that at low density the model exhibits a disordered phase
that can be viewed as a hexagonal array with dislocations (16, 17),
whereas at high density there is a two-phase coexistence of the
disordered hexagonal phase with a very high density of parallel
lines. That the disordered hexagonal phase was favored at low
enough density was pointed out in refs. 16 and 17, but the presence
of the substantial region of two-phase coexistence has not been
realized previously. The behavior obtained theoretically is in good
qualitative agreement with experimental observations.
The success of the theory in describing the qualitative trends in

the experiment is remarkable in view of the fact that direct ob-
servation of the experimental system does not yield evidence for
significant relaxation on experimental timescales. The success of
the entropic mechanism investigated in this paper in describing
several different aspects of the experimentally observed behavior
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suggests that significant configurational relaxation occurs in the
initial stages of the formation of the pattern.

Theoretical Model
The model that we apply to the experiment is a phenomenological
one formulated in terms of the lines of trilayer.We take it as a given
that the compression causes the formation of these lines to be en-
ergetically favored and that the density of lines is fixed because it is
determined by the degree of compression. The free energy for the
system is then written in terms of the properties of these lines. This
approachhasbeenapplied successfully to thestudyofC-I transitions
in systems with charge-density waves (18, 30, 31) and in adsorbed
rare gas monolayers on periodic substrates (16–26). The lines have
an energy per unit length eℓ that depends on the degree of com-
pression (eℓ is positive for small enough compression and decreases
as the compression is increased), and each line intersection or vertex
costs energy EV . Therefore, the total energy, E, of the system is

E= eℓL+EVNV ; [1]

where L is the total length of lines summed and NV is the num-
ber of vertices. It is important to note that this energy function is
independent of any sort of underlying structure (lattice, etc.).
The fact that there is a parameter region in which the density of

lines is low is evidence that the vertex energy EV > 0, because if EV
were negative, then the C-I transition would be strongly first order.
Indeed, it is quite plausible intuitively that the energy cost of a line
intersection in our system is positive. For example, vertex inter-
actions between folded ridges have been found to increase the
strain energy (32). Therefore, we expect that the configurations of
lines in our experimental system are all in the regime eℓ < 0;EV > 0.
If the energy cost of line intersections is positive, then one might

think that it would be favorable for the line configurations to have
no intersections, which is possible if the lines are roughly parallel,
in a “striped” configuration (18, 21, 22). If line intersections are
energetically costly, then there is an entropically induced repulsion
between the lines—essentially, a line has less freedom to wander
when it is near a neighbor, because of the “danger” that a fluctu-
ation would cause an intersection (22, 23), and it is natural to

expect the configurations to consist of lines that are well separated
from each other. However, Villain (24) pointed out that even if line
intersections are energetically costly, the entropy of a hexagonal
phase is large enough that at low enough density it has lower free
energy at any nonzero temperature. The additional entropy of the
hexagonal array is illustrated in Fig. 2: the three configurations
shown all have the same energy because they all have the same
length of line and number of intersections. The entropy per unit area
of the hexagonal phase is lnðℓ=aÞ=ℓ2, where ℓ is the average hexagon
side length and a is amicroscopic length setting theminimum spatial
variation scale (16, 17, 24). Because the energy cost per unit area of
intersections is proportional to 1=ℓ2, the entropic contribution
[which is proportional to lnðℓ=aÞ=ℓ2] dominates when ℓ is large
enough [an ℓ large enough that kBT   lnðℓ=aÞ=ℓ2 > βEV=ℓ2, where β is
a numerical factor, and not the inverse temperature 1

kBT
] and the

hexagonal phase has lower free energy than the striped phase in
the limit ℓ→∞ (note that the 1=ℓ term is irrelevant here because
the total number of particles is fixed; see SI Text S1 for proof).
Therefore, the free energy per unit area of the hexagonal

phase, fH , is (16, 17, 24)

fH =
αeℓ
ℓ
+
βEV

ℓ2
−
kBT
ℓ2

ln
�
ℓ
a

�
; [2]
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Fig. 1. Typical metastable configurations of the system undergoing compression. Under a relatively small degree of compression (trilayer coverage of 4.2%),
the configuration in A appears, showing a few trilayer lines. (B) After further compression (trilayer coverage of 46.4%), lines with significant wandering and
intersection appear, as the film enters the intermediate “hash” stage. As compression continues, the configuration transforms into C (trilayer coverage of
68.9%), showing the congregation of hash lines into thick bands. (D) Further compression after the film becomes a uniform trilayer causes it to wrinkle. The
trilayer coverage is determined by calculating the coverage of the darkened areas (trilayer) relative to the whole picture.

Fig. 2. Schematic illustration of entropy of the hexagonal array when hexa-
gon angles are 60°. The energies of the three configurations are identical,
because the total length of line and the number of intersections are the same.
Because of this entropy, the hexagonal phase has lower free energy than the
striped phase at nonzero temperature when the line density is low enough.
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where α and β are numerical factors of order unity determined by the
geometry.Note thatwhen eℓ ≤ 0, the free energy is negative as ℓ→∞.
The free energy per unit area of the striped phase, fS, when the

mean line separation is λ, is (22, 23)

fS =
γeℓ
λ
+
ηkBT
λ3

; [3]

where γ and η are numerical factors. The second term in Eq. 3 is
contributed by an effective interaction between the lines ∝ 1=λ3

that arises because of entropic effects (22, 23). When eℓ = 0, the
free energy of the striped phase is positive. Therefore, when eℓ is
just barely negative, the hexagonal phase has lower free energy
than the striped phase.
Although the free energy of the ordered hexagonal phase is

lower than that of the striped phase, it does not minimize the
free energy. Refs. 16 and 17 demonstrate that the free energy can
be lowered further by introducing dislocations into the ordered
hexagonal phase, so that when the density of lines is very small,
the system is in a phase described by a liquid that can be thought
of as a melted hexagonal array of domain lines. Here, we char-
acterize the disordered hexagonal phase in more detail, using
both Monte Carlo simulations and analytic calculations, with the
goal of determining whether its properties are consistent with the
hash observed in the nanoparticle films.

Monte Carlo Simulation.WeperformedMonte Carlo simulations to
characterize the thermal equilibrium properties of a model de-
scribed in Eq. 1. Many Monte Carlo simulations have been done
on systems exhibiting C-I transitions (29, 33–38), but almost all of
them explicitly simulate all of the particles, including those that are
in the commensurate regions and thus not in the lines, seriously
limiting the number of lines that can be simulated when the density
of lines is low. Refs. 16 and 17 study the C-I transition using
a description formulated entirely in terms of the domain lines
between large commensurate regions, but use Monte Carlo sim-
ulations that are explicitly restricted to hexagonal arrays with no
dislocations. Here, we formulate the problem in terms of artificial
“particles” that represent the “excess density” (the nonmonolayer
portions of the system). These artificial particles are governed by
an energy functional that favors the formation of lines but not line
breaking and line intersections while still allowing for topological
changes in the line configurations. We do this by writing down
a model in which the energetics are chosen so that lines with no
intersections have lower energy than other candidate config-
urations, but broken lines, intersections, and other rearrangements
are allowed. Our goal is not to treat the microscopics of the ex-
perimental system accurately, but rather to construct a model that
has the fundamental scalings of the energetics of linesmeandering,
intersecting, and dissolving. The model examined here favors lin-
ear assemblies of particles as opposed to isolated particles, allows
for line intersections with the payment of an energy cost, and
allows for topological changes in the arrangement of the lines. The
Hamiltonian that we investigate has energy penalties for changes
in line direction, for line intersections, and for line terminations, so
that the states of lowest energy are those with parallel lines.
The energy functional is described in detail in Materials and

Methods, Monte Carlo Simulation. It is important to not confuse
the particles in the simulation with the nanoparticles in the ex-
periment. The particle in the simulation is not a particle per se,
but rather a simplified abstraction used in a statistical mechanical
computation. To avoid confusion, the term particle always refers
to the discrete objects in the simulation and the term “nano-
particle” always refers to the particles in the experiment.
The free energy per unit area in the two-phase region, fS+H , is

just the weighted sum of the free energies per unit area of the
two phases, fS and fH , where fS is the free energy per unit area of

the striped phase, fH is the free energy per unit area of the
hexagonal phase, and ρ is the fraction of striped phase:

fS+H = ρ

�
ηkBT
λ3

�
+ ð1− ρÞ

�
4EV

3
ffiffiffi
3

p
ℓ2
−
kBT
ℓ2

ln
�
ℓ
a

��
: [4]

Note that the 1=λ and 1=ℓ terms are dropped from Eq. 4 because
the total number of particles is fixed (details of the calculation in
SI Text S1).

Theoretical Results
In this section we first present theoretical results for the Monte
Carlo simulations and then those for the analytic calculations.

Results of Simulation. In our Monte Carlo simulations, we in-
vestigated the effects of changing the particle density and of
changing the parameter E010101 that governs the energy cost of
vertices. The energy parameters governing clusters of adjacent
particles (see Fig. 7 and Materials and Methods, Monte Carlo
Simulation for a detailed explanation) are assumed to be very large
because of the large number of particles in the local configuration
and therefore are not relevant to the energetic cost of a vertex. As
either the particle density or the vertex energy is increased, the
configurations observed in the Monte Carlo simulation change in
a fashion consistent with the existence of a transition from a dis-
ordered hexagonal phase to a two-phase coexistence of hexagons
and stripes. Fig. 3 shows two configurations with parameter values
E010101 = 15:094 and E010101 = 20:282, with the other parameters
set to the values ρ= 0:33, 1

kBT
= 0:135, and 60× 60 cells and all other

parameters as defined inMaterials andMethods, as well as in Fig. 7.
The configurations shown in Fig. 3 are in thermal equilibrium, as
verified by checking that their nature does not depend on the
choice of initial conditions. Note that the two configurations shown
in Fig. 3 have the same energy functional except for E010101, the
vertex energy. When the vertex energy is below a critical value,
the system is in a disordered hexagonal configuration (Fig. 3A).
As the vertex energy increases above the critical value, as ex-
pected from theoretical analysis, the system exhibits phase co-
existence (Fig. 3B). Increasing the vertex energy further increases
the relative fraction of the stripes compared with the disordered
hexagons. In the region in which there is phase coexistence, the
striped phase is extremely dense.
Fig. 4 demonstrates that the behavior as the density is in-

creased is qualitatively very similar to that observed when the
vertex energy is increased. Taking the configuration in Fig. 4F
and increasing the particle density from 0.33 to 0.44 yields the
configuration of phase coexistence (of lines and disordered
hexagons) seen in Fig. 3B.

Results of Analytic Calculations. We minimize Eq. 4 with the con-
straint that the total number of particles must be fixed:

σ = ρ
χ

λ
+ ð1− ρÞ 2χffiffiffi

3
p

ℓ
: [5]

Here, χ is the number of particles per unit length of line and σ is
the total number of particles per unit area. Thus, we minimize
the free energy F with respect to the parameters ℓ, λ, and ρ:

F = ρ

�
ηkBT
λ3

�
+ ð1− ρÞ

�
4EV

3
ffiffiffi
3

p
ℓ2
−
kBT
ℓ2

ln
�
ℓ
a

��

+   ζ

�
σ − ρ

χ

λ
− ð1− ρÞ 2χffiffiffi

3
p

ℓ

�
;

[6]

where ζ is a Lagrange multiplier. Minimizing Eq. 6 and fixing ζ
so that the constraint is satisfied yields the following results:
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ℓ=
54

ffiffiffi
3

p
ηkBT

�
4

ffiffiffi
3

p
EV − 9kBT

�
ln
�
ℓ
a

�
− 1

��2
�
8

ffiffiffi
3

p
EV − 9kBT

�
2 ln

�
ℓ
a

�
− 1

��3 ; [7]

λ2 =
2; 916ðηkBTÞ2

�
4

ffiffiffi
3

p
EV − 9kBT

�
ln
�
ℓ
a

�
− 1

��2
�
8

ffiffiffi
3

p
EV − 9kBT

�
2 ln

�
ℓ
a

�
− 1

��4 ; [8]

ρ=
λ
�
3ℓ2σ − 2

ffiffiffi
3

p
χ
�

χ
�
3ℓ2 − 2

ffiffiffi
3

p
λ
� → 0 as σ→

2
ffiffiffi
3

p
χ

3ℓ2
: [9]

Eq. 7 shows that in the two-phase coexistence region the equi-
librium value of ℓ is independent of particle density and depends
on the external parameters and constants of the system only. Eq.
10 shows that the equilibrium value of λ from Eq. 8 scales with ℓ
in the region of two-phase coexistence as

λ2 ∼

�
ln
�
ℓ
a

�
− 2

�2
�
2 ln

�
ℓ
a

�
− 3

�4; [10]

which approaches

lim
ℓ→∞

�
ln
�
ℓ
a

�
− 2

�2
�
2 ln

�
ℓ
a

�
− 3

�4 = 1�
ln
�
ℓ
a

��2 : [11]

This result can be understood qualitatively by noting that the
entropic contribution to the free energy per unit area of the
hexagonal phase is proportional to 1=ℓ2, whereas in the striped
phase it is proportional to 1=λ3. Therefore, when ℓ and λ are
large, it costs more free energy to decrease ℓ than it does to
decrease λ.
Eq. 9 shows that decreasing the density causes ρ, the fraction

of the system in the striped phase, to decrease, with ρ= 0 for

densities less than 2
ffiffiffi
3

p
χ=3ℓ2. When ρ= 0, the system is in the

disordered hexagonal phase, with the typical hexagon side length
ℓ dependent on the particle density.
To summarize the results in this section, we find that at very

low densities the system is in the disordered hexagonal phase,
whereas at higher density the system exhibits two-phase co-
existence of stripes and disordered hexagons, with the size of the
disordered hexagons independent of particle density.

Comparison with Experiment
In this section we compare simulation and analytical results with
experimental data. Fig. 4 shows metastable images from a linear
sequence of images taken during a compression from the mesh
network hash stage until the thin lines congregate into thick trilayer
bands. The progression of images is qualitatively similar to that
yielded by simulation of the model with parameter values given in
Fig. 4. Fig. 4 compares the images from the experiment (Fig. 4 A,
C, E, and G) with images from the simulation (Fig. 4 B, D, F,
and H); Fourier transforms (FFTs) of the images are also shown
in Fig. 4.
The observed qualitative trends in the experiment (hash at low

density and coexistence of hash and dense regions of many lines)
are consistent with those exhibited by the model at thermal equi-
librium. However, it is likely that the experimental configurations
are not in thermal equilibrium—they are visibly anisotropic, and
direct observation of the system does not yield evidence of con-
figurational rearrangement at long times. We hypothesize that the
kinetics are significantly faster in the initial stages of fold forma-
tion, so that significant relaxation occurs on short timescales, but
the kinetics then arrest, and at long times the configurations are
frozen. To investigate the robustness of the qualitative features
when thermal equilibrium is not reached, we also investigated the
configurations of the model in which the initial configuration is
a uniform array of lines and the system evolves via Monte Carlo
dynamics for a relatively short time.
Examination of Fig. 4 shows the similarity between the results

of our simulation and the experiment as the density is changed
(in the experiment this is done by increasing the compression).
Although the FFTs from both systems are fundamentally dif-
ferent due to the pixelation (rectangular grid vs. hexagonal), they
undergo similar transitions as a function of density (and also
vertex energy, as shown in Fig. 5).
Fig. 5 shows the early metastable stages of a compression from

a configuration with straight and parallel hash lines to a config-
uration with intersecting and disordered hash lines and (Fig. 5
B, D, and F) shows qualitatively similar configurations from

Fig. 3. Particle configurations at different vertex energies. (A) Particle configuration when the vertex energy (E010101 = 15:094) is below the critical value (an
explanation of the energy-naming convention is given in Materials and Methods). (B) Configuration obtained when the vertex energy (E010101 = 20:282) is
above the critical value. All parameters are defined inMaterials and Methods, and all parameters other than the energy E010101 defining the vertex energy are
the same in both simulations: Particle density ρ = 0.33, 1

kBT
= 0:135, and 60 × 60 cells. Both simulations were run for 6×108 Monte Carlo steps (MCS).
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the simulation. We compare the experimental configurations
(Fig. 5 A, C, and E) to unequilibrated Monte Carlo systems with
different densities. In the experiment, compressing the film
causes the trilayer lines to intersect and bend (Fig. 5 C and E).
By comparing the simulation across different densities (Fig. 5 B,
D, and F), we demonstrate good qualitative agreement with the
experiment as the density increases through compression. In the
simulations, a lower density of particles leads to a striped phase,
whereas higher density leads to a disordered hexagonal phase
after the same amount of average movements across all particles.
We also performed experiments to search for direct evidence

of thermally induced line rearrangements, using two different
experimental procedures. The first is a quasi-static approach
where the film is compressed in incremental units of area while
the film sits for a period (500 s) in between compressions. The
surface pressure and images from the start and the end of
a stationary period shown in Fig. S2 show a relaxation in the
pressure when compression is stopped due to the release of
pressure built up during the compression (28), but rearrange-
ment of nanoparticles was not observed.
In the second experiment, the film is compressed until hash

lines appear and then the film sits for a very long period (16 h).

There is no visual evidence (Fig. S3) of structural changes in the
film even after 16 h. This absence of observable variability at long
times may be due to changes in the characteristic rearrangement
times as the trilayer ages. Further experiments are needed to
characterize the processes that govern the dynamics of trilayer
rearrangements. In particular, adding excess ligand to the par-
ticle solution could have significant effects both on the width of
the hash lines and on their kinetics (11, 28).

Summary
In this paper we describe the behavior of the metastable hash
stage of trilayer lines forming disordered intersections under
uniaxial compression by applying a thermodynamic equilibrium
model, using lines that can wander and intersect. The model
exhibits a disordered hexagonal phase when the particle density is
low enough. At higher particle densities, the model exhibits two-
phase coexistence of a disordered hexagonal phase and a phase of
dense stripes. We show that the nature of behavior as the density
is increased is qualitatively similar to experimental measurements
of a gold nanoparticle film as it is compressed. Experimentally,
lower degrees of compression yield hash configurations with
properties that are qualitatively very similar to those of the

Fig. 4. Image comparisons between configurations observed in the experiment and Monte Carlo configurations in the simulation. The experiment was per-
formed at room temperature with 6-nm gold nanoparticles. The simulations were done in a 60 × 60-cell grid with 1

kBT
= 0:135 over a period of 6× 108 Monte Carlo

steps (MCS) with E= Ef kBT , where ~Ef is the vector of parameter values defined in Materials and Methods. (A and B) The mesh network of thin “hash” lines (A)
demonstrates good qualitative agreement with the disordered hexagonal phase in the simulation (B) (density =0:20). (C) The film in the experiment responds to
further compression by congregating the thin trilayer lines into thick bands. (D) In the simulation the density is increased to 0.25. (E) Further compression in the
experiment causes the trilayer bands to increase in width and straighten out, which is mirrored in F by increasing the density to 0.33. (G) As it approaches the end
of the hash stage the experiment is characterized by thick hash bands. (H) In the simulation, increasing the density to 0.44 achieves a similar result. In each panel,
real-space images are shown above the corresponding fourier-transform (FFT) for both experiment and simulation.
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disordered hexagonal phase. As the density of lines is increased by
further compression of the film, we observe a coexistence of hash
and thick bands of closely spaced lines. Again, this behavior is
qualitatively consistent with that exhibited by the theoretical
model. Thus, we have shown that a free energy model formulated
in terms of the meandering and intersecting of lines is qualita-
tively consistent with the behavior of gold nanoparticle films un-
dergo uniaxial compression (11).

Materials and Methods
Experiment. This section presents the experimental methods of a Langmuir
monolayer compression at an interface. A Langmuir film of 6-nm gold
nanoparticles ligated with dodecanethiol (Ocean Nanotech) and suspended
in heptane is spread at the air–water interface of a ð15× 7Þcm2 Langmuir
trough (Nima Technology) with two barriers. The film is then allowed to rest
for 15–20 min to evaporate off the heptane and then imaged continuously
for the duration of the compression, using an optical microscope.

The trough, made from a single piece of Teflon polytetrafluoroethylene
(PTFE) so that it is chemically inert and hydrophobic, is vibration isolated to
stabilize the monolayer. Teflon barriers at the water–air interface are used
to compress the monolayer laterally. Pure water (resisitivity 18:2 MΩ− cm) is
used to fill the trough. A single Wilhelmy plate attached to a sensor is used

to measure the surface pressure as a result of the compression of
the monolayer.

The trough and barriers are cleaned by solvents (chloroform and acetone)
multiple times, and the water subphase is then added until the meniscus
reaches the barrier. The surface is then aspirated to remove impurities. Once
the surface is ready for nanoparticle spreading, a Hamilton microsyringe is
used to deposit the nanoparticles by small drops that disperse throughout the
surface as the drops are lowered slowly to touch the surface.

Monte Carlo Simulation. This section describes the construction and pro-
gramming of the Monte Carlo simulation. The model is constructed on
a hexagonal grid, using periodic boundary conditions and two dimensions, x
and y. Each particle of excess density is described using an ði; jÞ coordinate
pair, as shown in Fig. 6. At the boundaries, if any coordinate value i exceeds
associated dimension x or returns a negative integer, i will be shifted by x,
such that i is within the bounds ½0; xÞ.

The energy of the model is written as the sum of the energies of all local
regions, where each local region is defined as any given cell plus the six im-
mediately adjacent cells, as seen in Fig. 6. The energy of each local region is
determined by the occupied central cell and the distribution of the surrounding
occupied cells, with the energies determined by the parameters shown in Fig. 7.

The energy parameters in the model are chosen such that the minimum
energy configuration on small scales consists of continuous straight lines,
whereas “clusters,” or nonlinear collections of particles, are energetically
disfavored (Fig. 7 E and G–K). We explored specifically the effects of changing
parameter governing the local energy of intersections (Fig. 7F), focusing on
the region in the parameter space in which there existed a transition be-
tween hexagons and lines, and found the critical vertex energy where phase
coexistence occurs. Other parameters for this model include the number of
cells N, the density, defined as the fraction of occupied cells in the entire x by
y hexagonal grid, and the inverse temperature parameter 1

kBT
.

We define the energy parameter ~E as the set

∪Eχ =
�
Eχ1 ; Eχ2 ; . . . Eχn

�
;

where each χ is a six-bit string corresponding to a unique arrangement of
the six occupied and unoccupied cells neighboring a central occupied loca-
tion, starting at the ði; j+ 1Þ location in Fig. 6 and rotating counterclockwise.
As an example, the string representation of Fig. 7F is “010101,” and that of

Fig. 5. Comparison between the early stages of compression in the exper-
iment and simulations performed with different densities. The experiment
was performed at room temperature with 6-nm gold nanoparticles. The
simulation was done in a 60 × 60-cell grid with 1

kBT
= 0:135 and E= Ef kBT ,

where the vector of parameters ~Ef is defined in Materials and Methods. (A)
Very early stage of the compression characterized by straight parallel “hash”
lines. (B) In the simulation we started with the initial condition of straight
parallel lines at particle density of 0:10. B shows a configuration obtained
after the particles have experienced an average of 3×105 movements each
when this snapshot is taken and compared with the experimental image in
A. (C) Further compression in the experiment causes the hash lines to
wander and intersect. (D) By increasing the density to 0.15 in the simulation,
a snapshot of the configuration is taken after around 6× 105 per particle and
compared with the experimental image in K. (E) At this stage of compres-
sion, the criss-crossing hash lines become dominant. (F) Simulation config-
uration obtained after 4×105 moves per particle at a density of 0:25, in
which disordered hexagons are apparent.

Fig. 6. The coordinate system for the simulation model. Periodic boundary
conditions are implemented in the two directions indicated by the arrows.
Also note that i is the x-component in this system, with j the corresponding
y-component.
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Fig. 7G is “010110.” The energy of a configuration α of the local cell is taken
to be rotationally invariant (e.g., the configuration 010110 is energetically
identical to 101100).

In the simulation, we represent all possible configurations as some χn: χ1 =
000000, χ2 = 000001, χ3 = 000011, χ4 = 000101, χ5 = 001001, χ6 = 000111,
χ7 = 001011, χ8 = 010011, χ9 = 010101, χ10 = 001111, χ11 = 010111, χ12 =
011011, χ13 = 011111, and χ14 = 111111.

The value of the energy parameters used in the simulations shown in the
main text can be written as ~E= f74.179, 57.814, 42.604, 27.216, 10.124,
44.668, 49.037, 61.533, E010101, 46.793, 49.588, 50.899, 46.619, 57.550}. With
reference to Figs. 4 and 5, the vector of parameters ~Ef has value
E010101 = 18:204.

The Monte Carlo simulations are performed using standard techniques
(39); in each step, a random particle is chosen and a trial move to an un-
occupied neighboring position is selected at random. The change in energy
obtained when the trial move is made is calculated from the sum of the
energies of the original and new cells of the particle, along with the ener-
gies of the shared neighboring cells within the lattice, both before and after
the proposed move. The move is accepted using the usual Boltzmann

criteria: If the energy is lowered, the move is accepted, and if the move raises
the energy by ΔE, the move is accepted with probability e−

1
kBT

ΔE .
Equilibration of the model was checked by starting from two different

initial conditions (random initial placement of particles and an organized line
lattice) and comparing both the total energy and the qualitative nature of
the configurations; the equilibration time is estimated to be the time at
which the system energy and spacial correlation functions become indepen-
dent of the choice of starting configurations.
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SI Text S1: Phenomenological Analysis of Two-Phase
Coexistence
Here we present details of our analysis of the free energy of the
system, demonstrating the presence of a region of two-phase co-
existence. We first present the free energies of the striped and
hexagonalphases separately andthenshowthat there isa substantial
regime of parameters in which two-phase coexistence is favored.

1. Striped Phase. We define fS to be the free energy per unit area of
the striped phase. There are two terms that contribute to the free
energy of the striped phase, the energy of the particles and the
contribution to the free energy that arises from the entropically
generated repulsion of the lines. We let e be the energy per unit
length of line, so that the energy of a line is ye, where y is the length
of the line, and λy is the “area” occupied by a line, where λ is the
mean separation between lines. We calculate the particle energy
per unit area as

particle  energy
unit  area

¼ particle  energy
line

·
#  of   lines
unit  area

: [S1.1]

Here we have

particle  energy
unit  area

¼ðyeÞ·
�
1
λy

�
; [S1.2]

so the energy contribution to the free energy is e
λ.

The second, entropic, term arises from the entropic repulsion
between lines, which scales as 1∕ λ3 (1, 2). Therefore, the entropic
term in the free energy per unit area is ηkBT

λ3
. Combining the two

terms, the total free energy per unit area of the striped phase is

fS ¼ e

λ
þ ηkBT

λ3
; [S1.3]

where e is the energy per unit length and η is a constant.

2. Hexagonal Phase.The free energy per unit area of the hexagonal
phase, which we denote as fH , can be written in terms of the mean
side length of the hexagon, ℓ. There are three terms that con-
tribute to the free energy of the hexagonal phase, the energy of
the particles, energy cost of each vertex, and the entropic term
resulting from the entropic breathing of the hexagons. The first
term can be derived from e, the particle energy per unit length. A
hexagon of side length ℓ has a perimeter of 6ℓ and energy of 6ℓe.
Because each side is shared by two hexagons, the line length per
hexagon in a hexagonal array is 3ℓe. Because the area of each
hexagon is 3

ffiffi
3

p
2 ℓ2, the particle energy per unit area is

particle  energy
unit  area

¼ particle  energy
hexagon

·
#  of   hexagons

unit  area

¼ ð3ℓeÞ ·
�

2
3

ffiffiffi
3

p
ℓ2

�

¼ 2effiffiffi
3

p
ℓ
: [S1.4]

The second term is contributed by the energy cost of inter-
sections per unit area. Each hexagon has six intersections. Be-
cause each intersection is shared by three hexagons, there are two
intersections per hexagon. Therefore, letting EV be the energy of

an intersection, each hexagon has 2EV in vertex energy. Using
the area of a hexagon, 3

ffiffi
3

p
2 ℓ2, we can calculate the vertex energy

through the following:

vertex energy
unit area

¼ vertex energy
hexagon

·
# of hexagons

unit area

¼ ð2EV Þ ·
�

2
3

ffiffiffi
3

p
ℓ2

�

¼ 4EV

3
ffiffiffi
3

p
ℓ2
: [S1.5]

The third term is caused by the entropy from the “breathing”
of the hexagons, which scales as ln ℓ∕ a

ℓ2
(3–5). So the third term is

just − kBT
ℓ2

 ln  ℓa, where a is the microscopic length setting the
minimum spatial variation scale. Putting the three terms to-
gether we get the total free energy per unit area of the hex-
agonal phase,

fH ¼ 4e
3

ffiffiffi
3

p
ℓ
þ 2EVffiffiffi

3
p

ℓ2
−
kBT
ℓ2

 ln 
�
ℓ
a

�
; [S1.6]

where e is the number of particles per unit length and EV is the
intersection energy.

3. Phase Coexistence. When there is phase coexistence, the total
free energy per unit area is just the appropriate weighted sum
of the free energy of two phases. Letting ρ be the fraction of
the area that is in the striped phase, the total energy per unit
area is

fSþH ¼ ρ

�
e

λ
þ ηkBT

λ3

�
þ ð1− ρÞ

�
2effiffiffi
3

p
ℓ
þ 4EV

3
ffiffiffi
3

p
ℓ2
−
kBT
ℓ2

 ln 
�
ℓ
a

��
:

[S1.7]

3.1. Constraint. We also have to implement the constraint that the
total number of particles is fixed. Let σ be the total number of
particles in the system. In the striped phase, we can calculate the
number of particles per unit area through

# of particles
unit area

¼ # of particles
line

·
# of lines
unit area

¼ ðyχÞ·
�
1
λy

�

¼ χ

λ
; [S1.8]

where χ is the number of particles per unit length (i.e., the line
density). Note that this is the same form as Eq. S1.2 except the
energy per unit length has been replaced by the number of par-
ticles per unit length.
For the hexagonal phase, we can calculate the number of

particles per unit area through the following:
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#  of   particles
unit  area

¼ #  of   particles
hexagon

·
#  of   hexagons

unit  area

¼ ð3ℓχÞ ·
�

2
3

ffiffiffi
3

p
ℓ2

�

¼ 2χffiffiffi
3

p
ℓ
: [S1.9]

Given that ρ is the portion of the striped phase, the total
constraint is

σ ¼ ρ
χ

λ
þ ð1− ρÞ 2χffiffiffi

3
p

ℓ
: [S1.10]

4. Minimizing the Free Energy. Putting everything together and
introducing a Lagrange multiplier ζ, we write the free energy per
unit area of the system F as

F ¼ ρ

�
e

λ
þ ηkBT

λ3

�
þ ð1− ρÞ

�
2effiffiffi
3

p
ℓ
þ 4EV

3
ffiffiffi
3

p
ℓ2
−
kBT
ℓ2

 ln 
�
ℓ
a

��

þ  ζ

�
σ − ρ

χ

λ
− ð1− ρÞ 2χffiffiffi

3
p

ℓ

�
; [S1.11]

where the Lagrange multiplier ζ is determined by the implemen-
tation of the constraint Eq. S1.10.
We can solve for the minimum of the free energy by taking the

partial with respect to the three parameters, λ, ℓ, and ρ. We find

∂L
∂λ

¼ ρ

�
− e

λ2
−
3ηkBT
λ4

�
þ ζ

�
ρχ

λ2

�
¼ 0; [S1.12]

λ2 ¼ 3ηkBT
ζχ − e

; [S1.13]

∂L
∂ℓ

¼ ð1− ρÞ
�
−

2effiffiffi
3

p
ℓ2
−

8EV

3
ffiffiffi
3

p
ℓ3
þ 2kBT

ℓ3
 ln 

�
ℓ
a

�
−
kBT
ℓ3

�

þ ζ

�
ð1− ρÞ 2χffiffiffi

3
p

ℓ2

�
¼ 0; [S1.14]

ℓ ¼

ffiffiffi
3

p
kBT ln 

�
ℓ
a

�
−
4EV

3
−

ffiffiffi
3

p
kBT
2

e− χζ
; [S1.15]

∂L
∂ζ

¼ σ − ρ
χ

λ
− ð1− ρÞ 2χffiffiffi

3
p

ℓ
¼ 0; [S1.16]

ρ ¼ λ
�
3ℓσ − 2

ffiffiffi
3

p
χ
�

χ
�
3ℓ− 2

ffiffiffi
3

p
λ
� ; [S1.17]

∂L
∂ρ

¼ e

λ
þ ηkBT

λ3
−

2effiffiffi
3

p
ℓ
−

4EV

3
ffiffiffi
3

p
ℓ2
þ kBT

ℓ2
 ln 

�
ℓ
a

�
−
ζχ

λ
þ 2χζffiffiffi

3
p

ℓ
¼ 0;

[S1.18]

e− ζχ

λ
þ ηkBT

λ3
¼

4EV

3
ffiffiffi
3

p − kBT ln 
�
ℓ
a

�

ℓ2
þ 2e− 2χζffiffiffi

3
p

ℓ
: [S1.19]

Rearranging these equations yields the results

ζ ¼ e

χ
þ 3ηkBT

λ2χ
¼

ffiffiffi
3

p

2χℓ

�
2eℓffiffiffi
3

p − 2kBT ln 
�
ℓ
a

�
þ 8
3

ffiffiffi
3

p EV þ kBT
�
;

[S1.20]

ℓ ¼
54

ffiffiffi
3

p
ηkBT

�
4

ffiffiffi
3

p
EV − 9kBT

�
ln
�
ℓ
a

�
− 1

��2
�
8

ffiffiffi
3

p
EV − 9 kBT

�
2 ln 

�
ℓ
a

�
− 1

��3 ; [S1.21]

ρ ¼ λ
�
3ℓσ − 2

ffiffiffi
3

p
χ
�

χ
�
3ℓ− 2

ffiffiffi
3

p
λ
� : [S1.23]

The hexagon side length ℓ is independent of particle density
and is dependent on the external parameters and constants of
the system only. We can also reduce the scaling of λ:

λ2 ∼

�
1−

�
ln
�
ℓ
a

�
− 1

��2
�
2−

�
2 ln

�
ℓ
a

�
− 1

��4

λ2 ¼ 18
ffiffiffi
3

p
ηkBTℓ

8
ffiffiffi
3

p
EV − 9kBT

�
2 ln 

�
ℓ
a

�
− 1

� ¼ 18
ffiffiffi
3

p
ηkBT

8
ffiffiffi
3

p
EV − 9kBT

�
2 ln 

�
ℓ
a

�
− 1

�
54

ffiffiffi
3

p
ηkBT

�
4

ffiffiffi
3

p
EV − 9kBT

�
ln 
�
ℓ
a

�
− 1

��2
�
8

ffiffiffi
3

p
EV − 9kBT

�
2 ln 

�
ℓ
a

�
− 1

��3

¼
2; 916ðηkBTÞ2

�
4

ffiffiffi
3

p
EV − 9kBT

�
ln 
�
ℓ
a

�
− 1

��2
�
8

ffiffiffi
3

p
EV − 9kBT

�
2 ln 

�
ℓ
a

�
− 1

��4 ; [S1.22]
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∼

�
ln
�
ℓ
a

�
− 2

�2
�
2 ln

�
ℓ
a

�
− 3

�4

→
1�

ln
�
ℓ
a

��2  in the limit as ℓ→∞: [S1.24]

5. Discussion. Here we determine the regime in which phase co-
existence occurs. Phase coexistence exists when 0< ρ< 1. So we
first determine the regime where ρ> 0 and then determine where
ρ< 1. Using Eq. S1.23, one finds that the fraction of striped phase,
ρ, is greater than zero when one of the following two conditions
is true:

ℓ>
2

ffiffiffi
3

p
χ

3σ
 and ℓ>

2
ffiffiffi
3

p
λ

3

or

ℓ<
2

ffiffiffi
3

p
χ

3σ
 and ℓ<

2
ffiffiffi
3

p
λ

3
: [S1.25]

The fraction of striped phase, ρ, is less than one, λð3ℓσ − 2
ffiffi
3

p
χÞ

χð3ℓ− 2
ffiffi
3

p
λÞ ¼

ρ< 1, when

3ℓχ − 2
ffiffiffi
3

p
χλ> 3ℓσλ− 2

ffiffiffi
3

p
χλ → λ<

χ

σ
: [S1.26]

Combining Eqs. S1.25 and S1.26 we get the overall constraint
for phase coexistence,

0<

ffiffiffi
3

p
ℓ

2
< λ<

χ
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σ
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Eq. S1.27 can be interpreted in simple terms. As the density
χ
σ increases, the average line separation in the striped phase, λ
decreases, which increases the portion of the striped phase be-
cause ρ scales with λ as ρ∼ ℓλσ − χλ

ℓχ − χλ . This result makes intuitive
sense given the results of the simulations.
Recall that
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Applying Eq. S1.27, phase coexistence can occur only when

0< λ2 <
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Note that
2;916ðηkBTÞ2
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��4 > 0 always, due to the

even power in the numerator and denominator.
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Fig. S1. Pictures of the experimental setup. B shows a close-up view of A. The strip of paper dipped in the trough acts as a Wilhelmy plate and is attached to
a pressure sensor. The trough is filled with water with the gold nanoparticle monolayer forming blue islands the surface.
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Fig. S2. Pressure and image data from a quasi-static compression. The experiment was performed at room temperature with 6-nm gold nanoparticles. The
film was compressed by 1 cm2 every 500 s. The surface image from the start of a stationary period looks indistinguishable from the surface image at the end of
the same stationary period.
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Fig. S3. Surface microscopy images from a long compression. (A) The surface configuration after compression is stopped. (B) The surface configuration after it
has been sitting stationary for 16 h. No changes in the structure were detected.
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