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Abstract – Satisfiability is a classic problem in computational complexity theory, in which
one wishes to determine whether an assignment of values to a collection of Boolean variables
exists in which all of a collection of clauses composed of logical ORs of these variables is true.
Here, a renormalization group transformation is constructed and used to relate the properties
of satisfiability problems with different numbers of variables in each clause. The transformation
yields new insight into phase transitions delineating “hard” and “easy” satisfiability problems.
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Computational complexity theory addresses the ques-
tion of how fast the resources required to solve a given
problem grow with the size of the input needed to spec-
ify the problem [1]. P is the class of problems that can
be solved in polynomial time, which means a time that
grows as a polynomial of the size of the problem specifica-
tion, while NP is the class of problems for which a solution
can be verified in polynomial time. Whether or not P is
distinct from NP has been a central unanswered question
in computational complexity theory for decades [2].
Satisfiability (SAT) is a classic problem in computa-

tional complexity. An often-studied type of SAT isK-SAT,
in which one attempts to find assignment of N variables
such that the conjunction (AND) of M constraints, or
clauses, each of which is the disjunction (OR) ofK literals,
each literal being either a negated or un-negated variable,
is true. (This way of writing the problem, as a conjunc-
tion of clauses that are disjunctions, is called conjunctive
normal form.) For example, the 3-SAT instance with the
4 variables x1, x2, x3, and x4 and the four clauses

(x1 = 1 OR x2 = 0 OR x4 = 1)

AND (x1 = 0 OR x3 = 1 OR x4 = 0)

AND (x2 = 1 OR x3 = 1 OR x4 = 1)

AND (x1 = 0 OR x3 = 0 OR x4 = 1), (1)

is satisfiable because it it is true for the assignments
x1 = 1, x2 = 1, x3 = 1, x4 = 1. Below, we will write satis-
fiability problems in conjunctive normal form using the
notation of [3], where the ANDs and ORs are implied and

the literals have positive or negative signs depending on
whether or not they are negated. For example, the expres-
sion of eq. (1) is written

(1 −2 4), (−1 3 − 4), (2 3 4), (−1 −3 4).
2-SAT can be solved in polynomial time [1], while K-

SAT with K � 3 is known to be NP-complete [4]: if a
polynomial algorithm for 3-SAT exists, then P is equal
to NP. The complexity of SAT is intimately related to the
presence of phase transitions [5–11]. For random problems
with N variables, M clauses, and K literals per clause, as
M is increased there is a phase transition from a satisfiable
phase, in which almost all random instances are satisfiable,
to an unsatisfiable phase, in which almost all random
instances are unsatisfiable. The most difficult instances are
near this SAT-unSAT transition. It has also been shown
that there is a transition as the parameter K is changed
between 2 and 3, at Kc ∼ 2.4, at which the nature of the
SAT-unSAT transition changes [5].
Here, we investigate the relationship between satisfia-

bility problems with different values of K by constructing
a renormalization group transformation, similar to those
used for phase transition problems [12–15], that reduces
the number of degrees of freedom, while possibly increas-
ing the number and range of interactions [16] (which in
this context is the number of literals per clause). To do
this, we note that the expression

((A1 x), (A2 x), . . . (AP x),

(B1 −x), (B2 −x)) . . . , (BQ −x))
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is satisfiable if and only if

((A1 B1), (A1 B2), . . . (A1 BQ),
(A2 B1), (A2 B2), . . . (A2 BQ),
. . . ,

(AP B1), (AP B2), . . . , (AP BQ))

is satisfiable. Here, the Ai’s and Bi’s are arbitrary clauses
and x is a variable. (The easiest way to see the equivalence
is to note that both expressions are satisfiable if and only if
(A1 AND A2 AND . . .AP ) OR (B1 AND B2 AND . . .BQ)
is.) The first step of the renormalization procedure is to
use this identity to eliminate a given variable. In this step,
P clauses in which a given variable comes in un-negated
and Q clauses in which the same variable comes in negated
are eliminated and replaced with PQ “resolution” [17]
clauses. Thus, eliminating a “frustrated” [18] variable (one
that enters into different clauses negated and un-negated)
increases the number of clauses if PQ-(P+Q)>0. The
resolution of two clauses of length Ki and Kj has length
Ki+Kj − 2. Note that resolving two 2-clauses yields a 2-
clause, resolving a 2-clause with a clause of length K� 3
yields a clause length K, and resolving two clauses with
lengths K1 � 3 and K2 � 3 yields a clause with length
greater than both K1 and K2.
One then simplifies the resulting satisfiability expression

by noting that

1) Duplicate clauses are redundant,

2) Duplicate literals in a given clause are redundant,

3) If a variable enters into one clause both negated and
un-negated, then the clause must be true and can be
removed,

4) If a clause has one literal, then the value of the
corresponding variable is determined, and

5) If a subset of the literals in a clause comprise a
different clause, then the clause with more literals is
redundant.

This last point means, for example, that if an expression
contains both (1 3−4 5) and (1 3), then (1 3−4 5) can
be removed, because it is satisfied automatically if (1 3) is
satisfied.
This procedure is known in computer science as “the

Davis-Putnam procedure of 1960 [19] with subsump-
tion [20],” and was originally proposed as a method for
solving satisfiability instances. It does not perform well in
practice [21], and has been proven to require exponential
time on some instances [22,23]. However, here the aim is
not to solve a given instance, but rather to investigate
the “flow” of the problem itself as variables are elimi-
nated [12,24]. In particular, this renormalization group
(RG) transformation provides a natural framework for
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Fig. 1: Plot of αK , the ratio of MK , the number of clauses of
length K, to N , the number of variables, at different stages of
the renormalization process. The points plotted are the mean
and standard deviation of the results from five independent
system realizations. The parameters are chosen to be at the
SAT-unSAT transition with p= 0.2< pc (left panel) and p=
0.6> pc (right panel). When p > pc the clause length increases
markedly and the number of clauses grows enormously.

understanding a phase transitions between “easy” and
“hard” satisfiability problems identified in [5].
We present evidence that the change in the nature

of the SAT-unSAT phase transition at the critical value
Kc ∼ 2.4 [5] is intimately related to whether or not
the number of clauses proliferates exponentially upon
repeated application of the renormalization group (RG)
transformation. Note that when K = 2 the clause length
decreases upon renormalization, since the resolution of
two 2-clauses is a 2-clause, so no clause gets longer, and
some of the resulting clauses have a duplicate literal and
so get shorter. Having a large number of 2-clauses limits
the growth in the number of long clauses because of
subsumption, so there is a qualitative difference in the
behavior depending on whether the ratio of the number
of 2-clauses to the number of variables grows or shrinks
upon renormalization.
We show numerical data for an RG implementation

in which successive variables are chosen randomly and
eliminated if they occur in a clause of minimum length.
This procedure is used because it focuses on short clauses,
which when they are present tend to subsume the long
clauses. Figure 1 shows αK , the ratio of MK , the number
of clauses of length K to N , the number of variables
remaining in the problem, as a function of K, as the
RG proceeds. The average and standard deviation of
numerical data from 5 realizations at the SAT-unSAT
transition with p= 0.2 and p= 0.6, where p=K − 2, are
shown (using parameter values for the transition locations
from [5]). Large numbers of long clauses are generated
when p= 0.6> pc and not when p= 0.2< pc.
It has been proven that the SAT-unSAT transition for

2-SAT occurs at α≡M/N = 1 [25], and for 2�K < 2.4,
the SAT-unSAT transition is believed to occur when
α2 = 1 [5]. Figure 2 (left) shows that when K = 2.2,
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Fig. 2: Left: plot of α2, the ratio of the number of 2-
clauses to the number of variables, vs.N , the number of
undecimated variables, for instances with p= 0.2 and different
initial values of α. The numerical data are averages and
standard deviations of five realizations of systems of size 500
when the initial α= 1, size 400 when the initial α= αc =
1.2, and size 300 when the initial α= 1.67. The numerical
data are consistent with the hypothesis that when K <Kc
the SAT-unSAT transition occurs when α2 neither decreases
nor increases upon renormalization. Right: schematic phase
diagram showing the SAT-unSAT transition (using data of
ref. [5]), the region in which the number of 2-clauses increases
upon renormalization (the red (online) hatched region in the
left of the figure) and an estimate of the region in which the
number of clauses with K � 3 increases upon renormalization
(the blue (online) hatched region in the right of the figure). The
SAT-unSAT transition line crosses into the region in which long
clauses proliferate exponentially at the intersection of the three
lines. The estimate for 3-clause proliferation given in the text
yields an intersection at (K = 2.4, α= 1.25).

α2 increases upon renormalization when α2 > 1 and
decreases upon renormalization when α2 < 1. An
approximate analytic expression for α2, the ratio of the
number of two-clauses to the number of variables, as a
function of ρ, the fraction of variables eliminated, can be
obtained by considering only cases in which a variable is in
one two-clause negated and in any number of two-clauses
un-negated, or vice versa. Within this approximation,
eliminating a variable causes the number of variables
to decrease by one, and also the number of clauses to
decrease by one. Denoting the number of iterations by τ ,
the number of two-clauses after τ iterations as M2(τ),
and the ratio of the number of two-clauses to the number
of variables at time τ as α2(τ) =M2(τ)/(N − τ), one
obtains

α2(τ) =M2(τ)/(N − τ) =
(M2(τ − 1)− 1)/(N − τ) = (M2(0)− τ)/(N − τ), (2)

so that as a function of ρ= τ/N (N is the number of
variables before any decimations have been made), one
has

α2(ρ) = (α2(0)− ρ)/(1− ρ). (3)

In this expression, α2 increases as ρ increases when
α2(0)> 1, and decreases as ρ increases when α2(0)< 1 [26].
Because adding additional three-clauses does not affect
the behavior of the two-clauses, and because two-clauses
are much more restrictive than longer clauses, the two-
clauses dominate the problem whenever α2 > 1. We esti-
mate that a set of M3 3-clauses would proliferate in the
absence of 2-clauses when 3M3/2 =Ninitial, the initial
number of variables. This estimate, the analog of the
result for two-clauses, follows from ignoring fluctuations
and setting the number of literals in all 3-clauses to twice
the number of variables, which means that on average
each variable enters into one 3-clause negated and one
3-clause un-negated. Then, eliminating one variable on
average yields two less literals and one less variable, so
that the number of literals in all clauses of length greater
than two remains equal to twice the number of vari-
ables. However, because proliferating 2-clauses subsume
the 3-clauses, adding 3-clauses to the 2-clauses changes
the nature of the SAT-unSAT transition only when enough
3-clauses have been added so that the SAT-unSAT transi-
tion occurs with α2 < 1. These results are consistent with
those of Achlioptas et al. [27], who demonstrate that when
K < 2.4 an assignment of variables that satisfies all the
two-clauses also satisfies all the three-clauses with proba-
bility that approaches unity as N →∞.
In the regime in which α2 < 1, under renormalization

the 2-clauses disappear and so the clauses all become
longer. Since very long clauses are ORs of many literals
and hence easy to satisfy, the number of clauses must
go up sufficiently fast for the problem to be difficult to
solve —at large K, the SAT-unSAT transition occurs
when the ratio of the number of clauses to the number
of variables is ∝ 2K [11]. When K >Kc, near the SAT-
unSAT transition we expect the number of clauses to grow
geometrically with iteration number, and the numerical
data are consistent with the maximum number of clauses
obtained during the renormalization process increasing
exponentially with the initial number of variables, with an
exponent that increases monotonically with (M/N)initial,
the initial ratio of the number of clauses to the number
of variables. Figure 2 (right) shows phase boundary lines
for the SAT-unSAT transition, for the onset of increase in
the number of 2-clauses, and our estimate for the onset
of proliferation of clauses of length greater than or equal
to three.
When K >Kc, the renormalization transformation

causes both the typical clause length and the total
number of clauses to grow. The value of α at which
clauses proliferate is much lower than that at which
standard algorithms take a long time on average, but
may signify the onset of a region of “heavy tails” [28,29]
in which standard algorithms run quickly on average
but require exponential time on a small fraction of
realizations. This type of behavior is very reminiscent
of “Griffiths phases” [30] that occur in many disordered
condensed matter systems. The SAT-UNSAT transition
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itself [5–10,31] occurs at a larger value of α=M/N , which
we conjecture is when the rate of exponential growth
reaches a critical value.
It is interesting to consider the “replica-symmetry

breaking” (RSB) transition [7,9,10,31] at which the
space of satisfying assignments breaks up into many
disconnected pieces in terms of the RG transformation.
The RSB transition, which occurs at values of α greater
than that at which clauses proliferate and smaller than
that of the SAT-unSAT transition, is in the regime in
which a given variable is in many clauses both un-negated
and negated, so each decimation generates many new
clauses that would not be generated if one of the possible
assignments for the decimated variable was eliminated.
Moreover, the value of a decimated variable is often
implicitly determined by that of an undecimated one,
say y, when a newly generated clause of the form
(. . . y . . .− y . . .) is eliminated in the subsumption step (in
other words, the compound clause is always true because
for a given value of y one can fix the eliminated variable
so that both original clauses are satisfied). At the very
end of the RG process, when the number of variables is
small and the newly generated clauses are short, in the
replica-symmetry-broken phase one expects that fixing
the value of one of the remaining variables will fix the
values of all the eliminated variables.
Because of the exponential clause proliferation, numer-

ical investigation of the RSB and SAT-unSAT transitions
using this renormalization group is limited to small sizes.
However, the renormalization group may still be useful for
investigating these transitions using analytic techniques
appropriate for large K [10,11] for any K >Kc, though it
will be necessary to understand how to account for possi-
ble RG-induced correlations between clauses.
Finally, we note that when K >Kc, the number of

clauses continues to increase under renormalization until
it is no longer unlikely that a given compound clause
contains a repeated variable (in addition to the decimated
one), which we expect to occur when the renormalized
clause length is of order

√
N [32]. It appears that there is

no impediment to the growth in the effective value of K
until it is of order

√
N , where the problem specification

itself is exponentially large in N .
In summary, a transformation inspired by the renormal-

ization group is constructed and used to relate the behav-
ior of satisfiability problems with different values ofK, the
number of literals per clause. The transformation provides
useful insight into previously identified phase transitions
of satisfiability problems.
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