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Kauffman nets, also known as N-K models, have been studied extensively because their dynamics can be

used to model a variety of interesting dynamical processes. This paper investigates the properties of the
problem of determining whether or not a given configuration of a Kauffman net has a predecessor. Here it is
shown that when the parameter K that governs the number of connections grows as In(N), where N is the
number of elements, the problem of finding a solution is extremely sensitive to small changes in the problem
statement. This result has implications for studies of the physics of random systems and also may have
applications for questions in computational complexity theory.
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I. INTRODUCTION

A Kauffman net (also called a Boolean network or an
N-K model) [1-3] has N elements {c},0,,...,0y}, each of
which is a Boolean variable o;{0,1}, i=1,2,...,N. The
value of the ith element o; at time 7+1 is determined by the
value of its K inputs j;(i),/,(i),...,jx(i) at time ¢, O'jl(i)(l‘),
O'jz([)(f) ey O'jK([)(T), via

ot+1) =ﬁ(0jl(i)(t),0fj2(i)(f), ,ijK(i)(f)), (1)

where each f; is a randomly chosen Boolean function with K
arguments. The K inputs for each element and the Boolean
functions f; are all chosen randomly before beginning and
then fixed throughout the computation. We will denote the N
Egs. (1) for all the elements as {o(t+1)}=f({c(2)}).

Kauffman nets have been studied because of their rel-
evance to physics [4-8], social sciences [9,10], and biology
(Kauffman’s original motivation was to study gene regula-
tion and control [1,2,11-15]). The model exhibits a phase
transition as K is varied; K<2 is a “frozen” phase, while
K>?2 exhibits chaotic dynamics.

This paper focuses on the question of determining
whether a given configuration of a Kauffman net, {o}, has a
predecessor configuration {7} such that {o}=f({}) [16,17].
Specifically, it is demonstrated that when K is proportional to
In N, the solution is extremely sensitive to the change of a
single variable in the configuration whose predecessor is to
be determined. It is argued that this sensitivity may yield
new insight into some problems in computational complex-
ity, which is the study of how the resources needed to solve
different computational problems depend on the size of the
problem specification.

For the problem of determining whether a given configu-
ration {o} of a Kauffman net has a predecessor, a natural
choice for the energy of a given configuration {7} is the num-
ber of bits in the successor configuration {o'}=f({7}) that
differ from the corresponding bit in {¢} [18]. The configura-
tion {o} has a predecessor if there is a configuration {7} for
which this energy is zero. The results here demonstrate that
the local properties of this energy landscape for the prede-
cessor problem evolve systematically as K is increased.
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For any K>2, local search algorithms for solving the
predecessor problem that work by decreasing the number of
wrong bits by changing a small number of bits in the current
“guess” of the predecessor typically find only a local mini-
mum and not the global one. The new ingredient discussed
here is that for K=A log, N, finding a solution is hard even if
one starts off with a configuration whose successor has only
one bit in error. In contrast, if one has found a configuration
whose successor differs from the target by one bit for a ran-
dom problem instance with K=3, there is a substantial prob-
ability that the error can be corrected via a small number of
single bit flips. In addition, when K=A log, N with A large
enough, perturbing a target configuration that has a predeces-
sor with a single bit flip yields a new target, and, with very
high probability, no configuration that differs from the origi-
nal predecessor by fewer than a number of bits that grows as
a power of N is the predecessor of the perturbed target. In
contrast, when K=3, the perturbed target is reasonably likely
to have a predecessor that differs from the original one by
O(1) bits. The systematic evolution of the error energy land-
scape of the predecessor problem as K is varied yields in-
sight into the behavior of a particular random system and
may also yield insight into the question of whether or not
computational problems whose solutions can be verified ef-
ficiently can also be solved efficiently.

The paper is organized as follows. Section II demonstrates
that if one starts with a configuration whose successor differs
by the target by just one element, then an algorithm that
attempts to go “downhill” on the energy landscape will suc-
ceed with a probability that is substantial when K is finite
and is very small when Ko« In N. Section III shows that when
KxIn N, if one is given a predecessor-target pair, then the
probability is extremely small that a configuration that differs
from the original predecessor by a small number of bits is the
predecessor of a perturbed target that differs from the origi-
nal target by one bit. Section IV argues that these results
reflect the increasing roughness of the error energy landscape
as K increases. Section V discusses why the predecessor
problem may be viewed as exhibiting “self-organized criti-
cality” [19] and discusses the possible relevance of the re-
sults to problems in computational complexity. Section VI is
a summary.
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FIG. 1. (Color online) Schematic diagram illustrating why in-
creasing K decreases the probability that a local algorithm finds a
solution to the predecessor problem, starting from a configuration
whose output has one element in error. In this sketch, K=3, there
are five elements o7y, ...,05, and one imagines changing the target
output of o, which is shaded (red online). All the elements are
shown twice, so that it is easier to see the inputs and outputs. Only
the connections of ¢,, 0,, and o, the elements that have inputs to
0,, are shown. Changing an input of o, could also affect K—1 other
outputs, and the target is reached only if all the affected outputs
have the desired value.

II. DEMONSTRATION THAT A DOWNHILL ALGORITHM
ALMOST ALWAYS FAILS TO FIND A SOLUTION
AFTER ONE BIT FLIP WHEN K«In N

To demonstrate the increasing sensitivity of the solution
of the predecessor problem to single-bit changes in the target
as K is increased, one assumes that one is given a configu-
ration {7} such that f({7})={#} differs from the target con-
figuration {o} by exactly one bit. One then attempts to find
the state {v} such that f({v})={o} as follows: (1) For each of
the K inputs of the wrong element i, find the configuration
that results when a given input is flipped, and (2) flip the
input of i that minimizes the number of wrong elements in
the output. This “downhill” algorithm succeeds if single-
element changes of {7} yield no errors in the output instead
of one error.

This algorithm is characterized here using methods simi-
lar to those in Refs. [4,20]. The key point can be illustrated
by considering a model in which each element is constrained
to have exactly K outputs as well as K inputs. Given a con-
figuration {7} whose successor has only one element o+ that
differs from the target, one knows that the true predecessor,
if it does exist, must have the property that at least one of the
inputs to o+ must be different than it is in {7}, since the only
way to change the output o+ is to change at least one of its
inputs. Flipping a given input to o+ affects not only o+ itself
but also K—1 other elements that depend on that input (see
Fig. 1). The likelihood of success of the single-flip algorithm
decreases strongly with K because when one input is
changed, the probability that all K of its outputs are correct is
(1/2)X, so the probability that one of the K choices of the
perturbed inputs yields the target is ~K(1/2)X, which is non-
zero for finite K but vanishes algebraically with N when K
=Alog, N

The probability that the “downhill” algorithm succeeds
for the Kauffman model in which only the number of inputs
per element is fixed is obtained by noting that if each ele-
ment has K different randomly chosen inputs, then the
probability that a given element has L outputs is
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K* exp(-K)/L!. Since the total number of connections is KN
and the number of connections originating from elements
with £ outputs is LNK* exp(—K)/L!, the probability that a
given input to the perturbed element has L outputs is
KD exp(-K)/(£-1)!. Each of the £ elements affected by
a given element is correct with probability 1/2, so starting
with a configuration that yields a successor that differs from
the target by one bit, the probability that flipping one given
input of the wrong element causes the output result to have
no errors is

* 1 L Kﬁ—l e—K 1
P(0) = (—) ——— =" 2
«(0) 1;2:12 (-1 2 @
Similarly, the probability that flipping one input of the per-
turbed element yields an output configuration that differs
from the target by a single element is

_ . 1 ¢ Kﬁ_le_K_l -KI2
Pk(l)—g(2> E(ﬁ—l)!_4(K+2)e . (3)

More generally, the probability that flipping one input of the
perturbed element yields £ bits in error is

Sty e

PilR) = K = RI(L - R)!

Now one gets to pick the input that yields the fewest
incorrect outputs. Defining Qk(j) as the probability that the
best output configuration differs from the target in j bits, one
finds

QK(O) =1- [1 - PK(O)]K,

j-1 K j K
0x(j) = (1 - PK(i)> - (1 - PK(i)) :
i=0 i=0

I<sj<K-1,
K-1 K
0(K) = (1 - PK(J')) : (5)
Jj=0

Equations (5) follow because if the smallest number of errors
yielded by this process is i, no trials can yield a number of
errors less than i, at least one trial must yield i errors, and
[1-1 ;zoPK(j)]K is the probability that only more than i errors
are obtained.

This procedure fixes the error if the resulting configura-
tion has no wrong bits. The quantity Q(0), which bounds
from below the probability that the error has been fixed, is
nonzero for finite K but vanishes as A log, NN when K
=A log, N. More sophisticated estimates accounting for the
possibility that changing an input can yield a configuration
with a different error which in turn can be corrected by flip-
ping one input indicate that the probability that the algorithm
corrects the error is close to 50% when K=3 but vanishes as
N=421og N when K=A log, N.
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III. DEMONSTRATION THAT NO CONFIGURATION
THAT IS NEAR THE PREDECESSOR OF A
GIVEN TARGET IS THE PREDECESSOR OF A NEW
TARGET THAT DIFFERS BY ONE BIT WHEN K«In N

In this section we again start with a target configuration
{0} that has a predecessor {7}, and then consider a perturbed
target {o’'} that is the same as {o} except for the value of one
element o+. It is shown that when K=A log, N with A large
enough, then the probability that a configuration {7’} exists
that is a predecessor to {¢’} and that differs from {7} by a
number of bits that is less than N¥, with x strictly greater than
zero, is bounded above by ¢?N4?~% as N— oo, This result is
plausible because if one changes a single bit of {7} with the
hope of changing only o+, then it is extremely likely that the
number of bits in the successor configuration that changes is
of order In N. To fix these newly erroneous output elements,
one must flip at least one input of each of the output ele-
ments that were flipped in error in the first step, which is
extremely likely to create still more wrong output elements,
and so on. The “damage” of wrong outputs must spread until
flipping an element corrects more errors than it creates,
which requires that enough outputs are wrong that there is an
element that is an input to many wrong outputs. If M, the
number of wrong outputs, is smaller than N7 with y<<1/2,
then the probability that the erroneous outputs share more
than one input must be very low; this can be seen by noting
that the sum of the number of inputs of all the erroneous
outputs is M;= M, K=AN’log, N. So long as M;<VN,
then the probability of duplication exceeding that obtained
trivially by choosing individual inputs so that they are both
inputs to the same element is extremely small [21].

We present a more complete analysis here for systems in
which each element has exactly K inputs and K outputs, a
restriction that does not affect the results but simplifies the
analysis. One begins with a configuration {7} such that f({7})
is the target configuration {o}, and now considers a new
target configuration {¢’'} that is identical to {07} except for a
single bit flip. One then asks how many bits one must flip in
the configuration {7} to obtain a configuration {7’} such that
{7} =0’. To see that {7’} differs from {7} by many bits,
consider all configurations that differ from the original pre-
decessor {7} by up to S bits, where S<N*, with x<1/2.
Given a specific choice of M <S bits of the input configura-
tion that are flipped, let Q to be the number of elements Lvith
at least one input that has been changed. When M <\JN/K
and K is large, Q satisfies the bound Q> MK/2. This is
because the number of affected outputs would be MK if no
output elements shared inputs, and while one can choose
input elements that have a common output, the probability
that two elements share more than one output is negligible
when the connections are chosen randomly and MK << VN
[21]. Therefore, Q is typically at least M(K—1), and is cer-
tainly larger than MK/2.

The probability that changing one or more inputs of QO
elements changes the outputs of R elements is
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2] R(Q-R)! \2/) RI(Q-R)C™®

1\¢ QQ 1\¢9
() e = (3 reor
(6)

In Eq. (6) the second line follows because K«log N and so
0> 1, and since the case of interest is R=1, one knows that
QO—-R>1 as well. The upper bound in the third line follows
because 1=1/R! for any R=0, and the last line follows
because limy,_..(1-R/Q)%=ek.

Now we obtain an upper bound for P,,, the probability
that a choice of the M inputs exists for which R=1. Because
the probability that Q> MK/2 is essentially unity, when K
«In N, even when M is small many elements have their in-
puts flipped, so that the probability that the output has only
one element flipped is very small. Specifically, given a
choice of the M elements in the predecessor that are flipped,
when MK is large, Eq. (6) shows that the probability that the
perturbed successor differs from the original one by only one
bit is bounded above by (eMK/2)2"MK2  There are
N!/(M!(N-M)!)<(Ne)M ways of choosing the M elements
in the predecessor to flip (the bound being valid when N is
large and M <\N), so when K=A log, N, one has

MeA
2

e

Py < (Ne)M<%>2—MK/2 _ (N—(A/Z—l)e)M(

log, N).

(7)
Therefore, when MeA log, N<N, P,, is bounded above by

Py < %(N‘Wz‘z)e)’” . (8)

When A >4, as N— o this bound is small for any M >0, and
moreover, so long as S<N'? so that all the approximations
are valid, the sum 33,_, P, is bounded above by e?N-4/>~2)
[this follows because x/(1-x)<<2x for all x obeying 0<x
< 1/2]. This result means that for all S<N'2, the sum of the
probabilities for all values of M between 1 and § yields the
target is bounded above by ¢?N~(4/2-2),

IV. ARGUMENT THAT RESULTS INDICATE THAT THE
ERROR ENERGY LANDSCAPE GETS VERY
ROUGH WHEN K«In N

In the two preceding sections it was shown that if one
starts with a target configuration that has a predecessor, then
no configuration that has fewer than S=<N"? bits changed
from the original predecessor is the predecessor of a new
target that is obtained by changing one bit of the original
target. Our interpretation of this result is that the error energy
landscape becomes increasingly rough as K increases, in the
sense that many of the new targets will have predecessors,
but that these predecessors differ by many bits from the pre-
decessors of the unperturbed targets. However, another pos-
sible explanation for the results is that the perturbed targets
do not have predecessors at all. We have not been able to
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prove that the second scenario does not happen, but we have
performed numerical enumerations on small systems of up to
24 elements and found that for a given N, the fraction of
configurations with predecessors increases monotonically as
K increases. These numerical results are evidence that the
failure to find nearby predecessors reflects that the error en-
ergy landscape is becoming increasingly rough, in that a rea-
sonable fraction of the perturbed targets have predecessors,
but that these predecessors differ from those of the predeces-
sors of the unperturbed targets by many bits.

V. RELEVANCE OF RESULTS TO QUESTIONS IN
COMPUTATIONAL COMPLEXITY

Computational complexity theory is the study of how the
computational resources required to solve a given problem
grow with the size of the input needed to specify the problem
[22]. The close relationships between the physics of random
systems and computational complexity theory have been ex-
plored for nearly two decades [23,24].

Whether or not P, the complexity class of problems that
can be solved in a time that grows polynomially with the size
of the problem specification (“polynomial time”), and NP,
the class of problems for which a solution can be verified in
polynomial time, are distinct is a central unanswered ques-
tion in computational complexity theory [25]. The class of
NP-complete problems are equivalent in that being able to
solve any one of them in polynomial time implies that any
problem in NP can be solved in polynomial time [26-28]. An
intuitive picture believed to be appropriate for NP-complete
problems is that the presence of conflicting constraints, or
“frustration” [29], causes each problem to have an “energy
landscape” with many local minima, and finding the global
minimum is difficult because typical algorithms must explore
an extremely large number of local minima to find the global
one [24].

Specifying a Kauffman net requires time and space poly-
nomial in N so long as K grows no faster than In(N): this
follows because specifying the K inputs for each of the N
elements takes a number of bits proportional to NK In(N),
and specifying the f; takes N2X bits (one per output for each
of the 2X possible inputs for each element). When K
=Alog, N with A a constant, the problem of determining
whether a given configuration has a predecessor is in NP.

The question of whether a given configuration of a given
Kauffman net has a predecessor can easily be rewritten as an
instance of satisfiability (SAT), a classic NP-complete prob-
lem [22,26,28]. An instance of SAT asks one to determine
whether an assignment of N variables exists such that a set
of M constraints on these variables can all be satisfied si-
multaneously. An often-studied type of SAT is K-SAT, in
which each constraint or clause consists of the logical OR of
IC conditions or literals, each of which is satisfied if a vari-
able is set either to one or to zero. For example, a three-SAT
problem with four variables A, B, C, and D, and four clauses
is

(A=lorB=0orD=1)and (A=0or C=1 or
D=0)and (B=1orC=1orD=1) and
(A=0orC=0o0orD=1). 9)
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f; f, f3 f,
inputs | output  inputs | output  inputs| output inputs | output
000 | O 000 | 1 000 | O 000 | O
001 | 1 001 | O 001 | 1 1
010 | 1 010 | 1 010 | 1 0
011 | 0 011 | 0 011 | 1 1
100 | 0 100 | 1 100 | 0 0
101 ] 1 101 | 0 101 | 0 1
110 | 1 110 | 1 110 | 1 0
111} 0 1o 1111 0 1

FIG. 2. (Color online) A Kauffman model with N=4 and K=3
whose equivalent satisfiability problem is discussed in the text.
Each of the four elements oy, 05, 03, and g is shown twice, so that
it is easier to see the inputs and outputs for all the elements.

This expression is satisfiable because it holds for the assign-
ments A=1, B=1, C=1, D=1.

It is straightforward to rewrite the problem of finding a
predecessor of Kauffman net configuration as a satisfiability
problem. The variables are just the values of the different
elements, and the constraints arise from the requirement that
each element in the successor configuration be equal to the
target. For example, consider the Kauffman net shown in
Fig. 2, which consists of four elements o, ..., 0y. The inputs
for o are gy, 0, and gy, the inputs for o, are o, 03, and oy,
the inputs for o3 are o and o3, and the inputs for o, are oy,
0,, 03, and oy, and the Boolean functions specifying each
output are shown in the figure. To write the problem of
whether the configuration (1, 1, 1, 1) has a predecessor as a
satisfiability formula in standard conjunctive normal form in
which the formula is the conjunction (and) of disjunctions
(or), it is useful to consider the configurations of the inputs
that do not yield the desired outputs; e.g., for the functions
specified in Fig. 2, the output o(¢+1) is zero (and hence nor
the target) if at time ¢ its inputs take on none of the values
(000, 011, 100, and 111), which means the inputs satisfy

[o(1)=1 or o,(t) =1 or oy(r) =1]
and [o(£) =1 or 05(1) =0 or gy() =0]
and [o(t) =0 or o,(1) =1 or o4(t) = 1]
and [o(1) =0 or 0,(t) =0 or oy(r) =0]. (10)

The satisfiability expression encoding the constraints on all
the elements is just the conjunction of the subformulas de-
scribing the analogous constraints on the inputs for all the
individual elements. The resulting satisfiability formula has
N variables and approximately N2X~! clauses, each with K
literals. The number of clauses follows because for randomly
chosen unbiased functions the output specifying a given el-
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ement is nonzero for approximately half of the 2X different
configurations of the inputs. The actual number and length of
clauses is actually somewhat less because of simplifications
arising when a function does not change when an input is
changed—if, for fixed values of o5, ..., 0, the output is the
same for ;=0 and o;=1, then the formula is equivalent to
one in which two clauses each with K literals are replaced by
one clause with K—1 literals. For instance, requiring the
function f, in Fig. 2 to yield the output O can be simplified to
(0,=1 or a4=1) and (0,=0 or g,=1). Ignoring this compli-
cation, the resulting instance is a K-SAT formula with N
variables and approximately N2X~! clauses.

The predecessor problem with K« log N may be a particu-
larly useful one to study because it may be a “self-organized
critical” [19] version of satisfiability. The critical point in
satisfiability that is usually studied occurs when one exam-
ines an ensemble of random satisfiability instances in which
the M clauses are chosen uniformly at random (each clause
consisting of /C literals, with the variables in each occurring
with the same probability, and equally likely to be negated or
un-negated). If one fixes K and W, as the number of clauses
M is increased, then there is a transition between a SAT
phase in which almost all instances are satisfiable and an
unSAT phase in which almost all instance are unsatisfiable
[30,31]. It is known that instances that are at the SAT-unSAT
critical point are the most difficult to solve [30,31].

When K is large, the SAT-unSAT transition for problems
in which the clauses are chosen uniformly at random (each
variable occurring with the same probability, and either ne-
gated or un-negated with equal probability) occurs when «,
the ratio of the number of clauses to the number of variables,
is at a critical value a.gat that in the limit K— o satisfies:
a,— 25 In2~=(0.69)2" [32]. A simple estimate for @y, frmans
the ratio of the number of clauses to the number of variables
for a Kauffman net predecessor problem, is obtained by not-
ing that the Kauffman net predecessor problem has N vari-
ables and approximately N2X~! clauses (this estimate ignores
the fact that the satisfiability instance corresponding to a
given Kauffman net predecessor problem has some clauses
with lengths less than K), yielding agaufrman=(0.5)2%. We
compare gt and Aufiman DY ignoring the fact that for the
Kauffman net predecessor problem the choices of the vari-
ables in different clauses are correlated (they divide up until
N sets of roughly 257! clauses that each involve the same K
variables) and compute a dimensionless quantity to estimate
how far the predecessor problem is from the SAT-unSAT
critical point, = (Ackautfman— Xesat)/ Xesat=—0.28. The
most naive interpretation of this value is that the predecessor
problem for a Kauffman net is close to the SAT-unSAT tran-
sition but still within the SAT phase, but this is unlikely
because adding additional constraints by requiring an output
to take on two different values causes the corresponding sat-
isfiability formula to be surely unsatisfiable. The most natu-
ral interpretation is that the actual critical value of « in the
predecessor problem is shifted slightly because of correla-
tions between clauses, and that the predecessor problem is
indeed tuned to be at a critical point.

It is easy to show that the predecessor problem is indeed
“self-tuned” to be critical if K=N, when each configuration
is a truly random function of its predecessor [33-35]. When
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K=N, the successors of any two different configurations are
completely uncorrelated, and a given configuration has no
predecessor with probability 1/e [16]. This result in itself
indicates that the problem is self-tuned to be critical, because
as N— o0 a randomly chosen formula is satisfiable with prob-
ability 1 in the SAT phase and O in the unSAT phase. The
model can be generalized in different ways that make its
criticality explicit. One way is to add constraints by multiply
specifying the values of some outputs. The probability that a
predecessor configuration exists is 1/e if the new constraints
are compatible with the previously existing ones and O if
they are not. Since doubly specifying an output yields an
incompatible constraint with probability 1/2, the probability
that a Boolean net with N elements and N & doubly-specified
outputs is satisfiable is (1/¢)(1/2)"%, which tends to zero as
N— o for any 6> 0. Conversely, the probability that at least
one configuration has a successor that has N(1—p) elements
consistent with a given target set is 1—(1/ e)(sz) (this can be
seen by noting that no suitable predecessor configuration ex-
ists only if all the successor configurations consistent with
the specifications have no predecessor). Therefore, if all but
pN output elements are specified, then the probability that at
least one configuration satisfies the constraints approaches
unity for any positive p as N— 0. Another way to generalize
the model to exhibit explicitly its criticality is to choose
Boolean functions from a probability distribution in which
functions are chosen with probability p and 1-p if their
outputs are zero and one, respectively. The probability that
the target configuration that is all 1’s does not have a prede-
cessor is (1 —pN)zN, which for large N approaches exp[
—(2p)V]. As N— o, this probability approaches 0 when 2p
>1 and 1 when 2p<1.

When K is finite, the predecessor problem is in the unSAT
phase, because the probability that a randomly chosen con-
figuration has a predecessor is bounded above by the value

(1-2"2V. This bound follows because with probability

2" the function determining the value of any single el-
ement is independent of the values of all its inputs (this

follows because there are 22° Boolean functions with K in-
puts, 2 of which are independent of all the inputs), and for
such a function, with probability 1/2 the output value will be
inconsistent with the target [36]. For fixed K this upper
bound on the probability that a randomly chosen configura-
tion has a predecessor vanishes as N— o, while when K
=Alog,(N), this bound approaches unity as N— . These
simple bounds lead to our conjecture that the Kauffman net
predecessor problem with K«In N is actually self-tuned so
that it is at the critical point for a SAT-unSAT transition with
clauses whose randomness is correlated.

From the point of view of computational complexity,
Kauffman nets with K=3 do not have a fundamental distinc-
tion from those with K«In N, because Kauffman nets with
any K=3 and K=<A In N can be specified using a number of
bits that grows as a polynomial of N, and correspond to
satisfiability instances with =3, a regime for which ran-
domly chosen satisfiability instances appear to require an
exponentially long time to solve [17,37]. Nonetheless, this
paper demonstrates that the local properties of the energy
landscape exhibit systematic evolution as K is increased even
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within this regime. Increasing K even further is known to
make the predecessor problem harder. Indeed, when K=N,
although specifying the model requires space that grows ex-
ponentially with NV, one can still ask how many evaluations
of the Boolean functions are required to determine whether
such a predecessor exists. A candidate solution can be veri-
fied with a single evaluation of each Kauffman net function,
but because in this case each configuration is a truly random
function of its predecessor [33-35], the only way to deter-
mine whether a predecessor exists is to check all of the ex-
ponentially many candidates [16]. This result demonstrates
that the Kauffman net with K=N can act as an oracle relative
to which P and NP are not equal [16].

The results in this paper demonstrate that a Kauffman net
predecessor problem with Ko In N has properties that seri-
ously constrain the computational strategies that could be
used to solve in polynomial time. First, the algorithm must
yield the exact answer, since the local search algorithm can-
not correct even single-bit errors. Second, the algorithm must
explicitly depend on the specification of every bit of every
input function as well as every bit of the target configuration.
The sensitivity to the choice of functions is because if one
realization of the functions yields the target output, then a
second function realization that differs from the first by a
single bit change could yield a configuration that differs from
the target by one bit, and the arguments given above then
demonstrate that the predecessor for the second function re-
alization, if it exists, has a large number of bits that are
different than for the first function realization.

Demonstrating that no algorithm can solve the predeces-
sor problem in time that grows no faster than polynomially
with N would solve the famous P versus NP problem
[25-27], and we do not purport to do that here. The proper-
ties of the Kauffman net predecessor problem investigated
here may be useful in slightly different contexts, however.
We have argued elsewhere [38] that Boolean functions of N
variables have different phases, as defined by the behavior of
the sequence of functions that is obtained when one elimi-
nates individual variables via the transformation

(X1 o X3 Xi s - 5 XN)
=T1f(xp, -ooxw)]
=f(x1s o s Xim 150,005 -0 Xy)
& flx, ... XN » (11)

where @ denotes addition modulo 2. This transformation is
potentially interesting because (1) generic Boolean functions
(those for which the output for a given input is chosen to be
either one or zero with equal probability) are in a “generic”
phase that has the property that applying the transformation
yields another generic Boolean and (2) many well-known

s Xi—1s 1,xi+1, e
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efficiently computable functions can be shown to be in a
non-generic phase. The phases defined using Eq. (11) do not
correspond to complexity classes as defined in computer sci-
ence [22], though Ref. [38] speculates on possible nontrivial
relationships. It may be useful to characterize the different
phases of Boolean functions because the phase classification
procedure is possible computationally and may yield a
deeper understanding of other ways to characterize the com-
plexity of a given function.

We argue here that it is very plausible that the successor
and predecessor functions of a Kauffman net are in different
phases. Because each output element only depends on K in-
put elements, it is easy to see that the successor problem for
a Kauffman net with K<A In N is not in the generic phase,
because the result of one renormalization step of Eq. (11) is
nonzero only if changing a given input element changes the
output. Conversely, since the predecessor problem is nonlo-
cal, it is extremely plausible that whether or not changing
one element of the target configuration affects whether a pre-
decessor exists depends on the values of a large number of
other elements. Whether it is possible to prove that this prop-
erty persists for many levels of renormalization is an inter-
esting open problem.

VI. SUMMARY

This paper shows that the problem of finding a predeces-
sor configuration of a random Kauffman net is extremely
sensitive to single-bit changes in the target configuration
when the number of inputs to each element grows logarith-
mically with the number of elements. If one bit of a target
configuration that has a predecessor is changed, then no con-
figuration that differs from the original predecessor by a
number of bits that grows as N* for an x that is greater than
zero is the predecessor of the perturbed target. We also show
that the predecessor problem has some features of “self-
organized criticality” in that it is naturally tuned to be near a
critical point of an equivalent satisfiability problem. These
properties may be useful in the quest to develop new strate-
gies to characterize the computational resources needed to
solve problems whose solutions can be verified in a number
of computational steps that grows as a polynomial of the size
of the problem specification.
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