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Power-law scaling for the adiabatic algorithm for search-engine ranking
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An important method for search engine result ranking works by finding the principal eigenvector of the “Google
matrix.” Recently, a quantum algorithm for generating this eigenvector as a quantum state was presented, with
evidence of an exponential speedup of this process for some scale-free networks. Here we show that the run time
depends on features of the graphs other than the degree distribution, and can be altered sufficiently to rule out
a general exponential speedup. According to our simulations, for a sample of graphs with degree distributions
that are scale-free, with parameters thought to closely resemble the Web, the proposed algorithm for eigenvector
preparation does not appear to run exponentially faster than the classical case.
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I. INTRODUCTION

Quantum algorithms, which run on quantum computers,
are known to be able to outperform classical algorithms for
certain computational problems [1,2]. Thus, finding a new
algorithm that exhibits a quantum speedup, in particular an
exponential speedup, is of great interest [3]. An extremely
important problem in computer science is calculating ranking
for search engine results. PageRank, first proposed by Brin
and Page [4], underlies the success of the Google search
engine [5]. In this algorithm, websites are represented as nodes
on a network graph, connected by directed edges that represent
links. The matrix of network connections is constructed, and
the PageRank vector is its principal eigenvector. Currently,
computing the PageRank vector requires a time O(n), where
n is the number of websites in the network considered
(e.g., the World Wide Web) [6]. Obtaining a quantum algorithm
for PageRank that runs exponentially faster than the classical
algorithm would be of great interest.

Recently, Garnerone, Zanardi, and Lidar (GZL) proposed
an adiabatic quantum algorithm [7] to prepare the PageRank
vector for a given network [6]. Remarkably, GZL present
evidence that this algorithm can prepare the PageRank vector
in time O[polylog(n)], exponentially faster than classical
algorithms for certain networks. It is important to note that
the algorithm only offers an exponential speedup in the
preparation of the PageRank vector; the information must then
be extracted from the quantum state, which ultimately yields a
polynomial quantum speedup. This polylogarithmic run time
is due to the apparent logarithmic scaling of the gap between
the two smallest eigenvalues of the Hamiltonian used in the
algorithm (the energy gap). This scaling emerged on graphs
constructed using adapted versions of two established methods
of network construction: the preferential attachment model [8]
and the copying model [9]. Both of these models yield graphs
that are similar to the connectivity of the World Wide Web
in that they are sparse (the total number of edges scales at
most proportionally to the number of nodes) and scale-free
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(the probability of finding a node with a specified in or out
degree scales as a power law in those degrees). These features
lead to networks that exhibit large-scale structure similar to
that of the internet, such as being small world [10] and loosely
hierarchical [11]. GZL studied sets of networks that exhibited
both logarithmic scaling and polynomial scaling of the gap
in the system size. However, they did not demonstrate that
the networks with the favorable logarithmic gap scaling are
scale-free over the region studied numerically.

Here we study the scaling of the GZL algorithm for
graphs with degree distributions consistent with the internet.
A realistic network model of the World Wide Web must be
scale-free in both the in and the out degree [12,13]. We
consider a broad variety of scale-free networks constructed
by different methods. Choosing three well-known models for
constructing random, scale-free networks, we control for both
the mean degree and the exponent of the power law governing
the degree distribution. We find that graphs with the same
degree distribution can have different energy gap and run-time
behaviors. Finally, we focus on degree distributions described
by power laws consistent with those measured for the Web,
both for the in degree and the out degree. We find that the
relevant energy gap scales as a power of the system size,
rather than logarithmically. These results demonstrate that
for scale-free graphs with parameters thought to resemble the
Web, the GZL adiabatic algorithm does not appear to yield
an exponential quantum speedup for preparing the PageRank
vector compared to current classical algorithms.

II. NETWORK GROWTH MODELS

We generate samples of graphs with prescribed degree
distributions using three different network growth models.
GZL [6] use modified versions of two network construction
algorithms: the preferential attachment model [8] and the
copying model [9]. In addition to these two models, here
we include also the more complex α-preferential attachment
model described by Bollobás et al. [12,14]. All three models
grow random networks using probabilistic rules at discrete
construction steps, which are detailed in Fig. 1.

All three of these models produce sparse, scale-free directed
networks, in which the probability of the in degree (the number
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FIG. 1. (Color online) Illustrations of the three network gener-
ation models used. (a) GZL [6] preferential attachment, (b) GZL
copying, and (c) α-preferential attachment [12,14]. In all three
models, a network is constructed by adding vertices and edges
sequentially. (a) At each time step a new vertex i is added with
m outgoing edges. The probability that one of these edges connects
to a node j is proportional to the total degree of j . (b) At each time
step there are two possible actions. With probability (1 − p), the new
vertex points to all of the same vertices as the “star vertex,” which is
a pre-existing vertex chosen uniformly at random at each time step.
With probability p, m outgoing edges are added to the new vertex,
each pointing to vertices chosen uniformly at random. (c) There are
three possible actions at each time step. With probability p1, a new
vertex is added with a single outgoing edge, pointing to a node j

with probability proportional to the in degree of j plus a parameter
α. With probability p2, a new vertex is added with a single incoming
edge, pointing from a node j with probability proportional to the out
degree of j plus α. With probability (1 − p1 − p2), no vertex, only
an edge, is added. Its ending and starting points are determined as in
cases 1 and 2, respectively. In all panels, the newly added edges are
indicated by dashed lines.

of incoming edges) and out degree (the number of outgoing
edges) of node i being equal to k are each proportional to a
power law:

P [din(i) = k] ∼ k−γin , (1)

P [dout(i) = k] ∼ k−γout , (2)

where din(i) and dout(i) are the in and out degrees of node
i, respectively, and the exponents γin and γout are typically
between 2 and 4 [8]. The GZL versions [6] of the preferential
attachment and copying models [8,15] produce networks that
are scale-free in the limit of large graph size. However, due
to the addition procedure described below, the networks are
not necessarily scale-free for the sizes of graphs studied

numerically here and in Ref. [6]. To achieve networks that
are scale-free in the out degree, GZL suggest to construct
two networks, X and Y , independently. X and Y are each
generated as in Fig. 1, except that for Y the direction of the
edges added is reversed. The networks can then be added
together, and the weights and loops discarded [6,16]. The
resulting composite network is scale-free in both in degree
and out degree, provided X and Y have the same number of
edges per node. (See Appendix A for details.) In contrast to
Ref. [6], the graphs studied here are all constrained in this
way. However, the graphs exhibiting logarithmic scaling in [6]
are not so constrained [16], and so they do not exhibit truly
scale-free degree distributions over the numerically studied
region. On the other hand, the α-preferential attachment model
(considered here but not in [6]) constructs a network which is
scale-free in both in and out degrees without requiring an
additional combination step. As with the GZL preferential
attachment model, all weights and loops are removed from the
final α-preferential attachment network.

The exponents γin [Eq. (1)] and γout [Eq. (2)] of the
degree distribution are model dependent. In the GZL pref-
erential attachment model the number of edges added at each
construction step controls the sparsity, and it is always the
case that γin = γout = 3 [8]. Both the GZL copying model
and α-preferential attachment allow for independently tunable
exponents and mean degree. (See Appendix A for details.)
This flexibility enables us to create three ensembles of model
networks that have nearly identical degree distributions for
γin = γout = 3. Furthermore, the last two models can be set
with the exponents estimated for the World Wide Web [9,12],
namely γin = 2.1 and γout = 2.72 [13].

III. ALGORITHM DESCRIPTION

The Google matrix is constructed by taking as input an
unweighted, simple network with n nodes [4], and representing
it as an adjacency matrix A, where A(i,j ) = 1 if a directed
edge points from node i to node j , and 0 otherwise. From this,
one defines the matrix P :

P (i,j ) =
⎧⎨
⎩

1/dout(i) if A(i,j ) = 1, (3a)
1/n if ∀j,A(i,j ) = 0, (3b)
0 otherwise. (3c)

The matrix P is stochastic because
∑

j P (i,j ) = 1 for all i.
P can be thought of as a random walk (i.e., a web surfer),
where the walker follows the network with equal likelihood
of traversing all allowed links. If the walker ever reaches a
dangling node (a node with dout = 0), Eq. (3b) implies that
it can randomly hop to any vertex with equal probability.
To prevent the walker from becoming trapped in an isolated
portion of the network (a sink), the probability (1 − αg)
of moving to a node uniformly at random (including the
possibility of staying still) is included, where 0 < αg < 1;
Google uses αg = 0.85, which we also use here [6]. The
Google matrix G is defined as the transpose of this resulting
transition matrix:

G = αgP
T + (1 − αg)J, (4)

where J is the matrix of all ones. The PageRank vector �p is
the unique eigenvector associated with the largest eigenvalue

032307-2



POWER-LAW SCALING FOR THE ADIABATIC ALGORITHM . . . PHYSICAL REVIEW A 88, 032307 (2013)

of G, which is 1. The run time of the best classical algorithm,
which calculates the PageRank vector via power iteration,
is O(n) [4,6].

To formulate an adiabatic quantum algorithm, GZL con-
struct the Hamiltonian h(G):

h(G) = (I − G)†(I − G), (5)

which is Hermitian, even though G is not. The ground state
of this Hamiltonian is the normalized PageRank vector. The
adiabatic algorithm is completely defined by the interpolation
Hamiltonian H (s) = sh(G) + (1 − s)h(Gc), where s ∈ [0,1],
and Gc is the Google matrix for the complete network (includ-
ing loops), whose ground state is a uniform superposition.
The adiabatic theorem guarantees that if we initialize our
system in the ground state of h(Gc) and change s from 0 to 1
sufficiently slowly, the system remains in the ground state [7].
Since the PageRank vector is the ground state of H (1) = h(G),
the PageRank vector is obtained when s = 1. The required
slowness is also determined by the adiabatic theorem: As long
as s(t) is a smooth function of the time t with 0 � t � T , the
run time T ∼ δ−b, where b is O(1) and δ is the energy gap
between the ground and first excited state of H (s), minimized
over s [7]. Thus, an exponential speedup over the classical case
is possible if δ−1 is O[log(n)], since then T is O[polylog(n)].

IV. NUMERICAL RESULTS

To study the scaling of the minimum energy gap δ with
the network size n, we compute δ for the GZL Hamiltonian
H (s), averaging the results over many network realizations
(typically 1000). Specifically, we calculate the minimum value
of δ over s ∈ [0,1] using the Nelder-Mead method [17], where
each objective function call calculates directly the eigenvalue
spectrum of H (s). We find that for most, but not all, network
choices the minimum gap occurs when s = 1. Since H (s)
is a dense matrix, this process is computationally intensive.
We use the University of Wisconsin-Madison Center for High
Throughput Computing and Open Science Grid to perform the
simulations.

To assess whether the inverse energy gap δ−1 scales
logarithmically or as a power law in n, we plot in Fig. 2 δ−1

versus the network size on both log-linear and log-log scales,
with data for the GZL preferential attachment, GZL copying,
and α-preferential attachment models. The model parameters
are tuned (see Appendix A) so that all three have γin = γout = 3
and have an average of two in and two out edges per node.
Despite having nearly identical degree distributions [shown in
Figs. 2(e) and 2(f)], the scaling of δ−1 depends significantly
on the method used to construct the graphs when viewed in
Fig. 2(a). In Fig. 2(c) we show the distribution corresponding to
the final data points in Fig. 2(a), where we see that the distribu-
tions are well separated and hence the construction models give
different values of δ−1. By contrast, the degree distributions
are difficult to distinguish, as shown in Fig. 2(d). Finally, we
conclude that for all three models, the data are more consistent
with δ−1 scaling as a power law or a high-order polylogarithm,
rather than a logarithm, as consistent with the data presented
by GZL in the supplemental information of Ref. [6].

We next perform a similar analysis for degree distributions
more closely related to the network of primary interest, the
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FIG. 2. (Color online) Comparison of the scaling of the inverse
energy gap δ−1 for the GZL [6] preferential attachment model
(triangles, horizontal hatching), GZL copying model (diamonds,
upward-sloping hatching), and α-preferential attachment model [12]
(circles, downward-sloping hatching), shown on (a) semilog and (b)
log-log scales, demonstrating that δ−1 is not proportional to log (n)
for these models. Results are averaged over 1000 random instances
for n < 8192, and over 500 random instances at n = 8192. The fitting
lines showed in (a) are 72.2 ln(n) − 363 for the copying model and
10.1 ln(n) − 48.8 for the α-preferential attachment model. In (b),
the fits shown are 8.0n0.4 for the copying model and 1.7n0.4 for the
α-preferential attachment model. If we fit the data instead to a power
of a logarithm (not shown), we obtain 0.56 ln2.9(n) for the copying
model and 0.18 ln2.5(n) for the α-preferential attachment model. (c)
Histogram of the inverse energy gaps for the data shown in (a) and
(b) at n = 8192. (d) Histogram showing the distribution of number
of vertices with in degree din = 8 for n = 8192. (e) and (f) Degree
distributions of the three models, demonstrating scale-free behavior
and indicating that γin = γout = 3. Adaptive binning was used, as
described in Appendix C. In all cases, both the mean in and out degree
of each graph are two edges per node. These results demonstrate that
δ−1 differs significantly for the different graph construction methods,
while the degree distributions are very similar.

World Wide Web, for which a realistic set of degree parameters
is given by γin = 2.1 and γout = 2.72 [13]. As mentioned
above, the preferential attachment model cannot be tuned to
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FIG. 3. (Color online) Inverse energy gap scaling for GZL [6]
copying model (diamonds), and α-preferential attachment model [12]
(circles) of WWW-like networks, shown on (a) semilog and (b) log-
log scales. Results are averaged over 1000 random instances for
n < 8192, and over 500 random instances at n = 8192. In (a) the line
fit shown is 730 ln(n) − 5300, while in (b) the line fit is 0.2n0.97. If
we fit the data to a power of a logarithm (not shown), for the copying
model we obtain 3 × 10−5 ln8.0(n). Because of the large power of
the logarithm required for the polylogarithmic fit, the power-law
dependence on n appears more natural and plausible. (c) and (d)
Degree distributions of the two models, histogrammed using adaptive
binning (see Appendix C), indicating that γin = 2.1 and γout = 2.72,
corresponding to the estimates for the degree distribution of the World
Wide Web [13]. In all cases, the mean in and out degree of each
network were each two edges per node.

obtain degree parameters other than 3. However, the other two
network models can be adjusted to match these values [9,12].
More details on this are discussed in Appendix A. As before,
we set the mean degree to be two in and two out edges per node.

Figure 3 presents the results of these simulations, clearly
indicating that δ−1 scales at least as a power of n. In particular,
we note that the prefactor of the logarithmic fit is over 700
and the power of the logarithm in the polylogarithmic fit is
8, while the power-law fit exponent is close to 1. The results
do not change substantially when the mean degree is varied
and the degree distributions exponents are fixed. These data
indicate that for graphs with degree distributions similar to
those measured for the World Wide Web, the GZL adiabatic
algorithm for PageRank vector preparation is unlikely to
provide an exponential speedup over the classical case.

V. DISCUSSION

We have investigated the recently proposed adiabatic
quantum algorithm for preparing the PageRank vector using an
adiabatic quantum algorithm [6]. We find that the eigenvalue
gap that determines the algorithm run time depends on the

method of construction of the network, even when the feature
believed to be critical for large-scale network structure, the
degree distribution, is held fixed. The exponent governing the
variation of the gap with graph size does not vary significantly
with the method of construction only if power-law scaling of
the gap with size is assumed. For networks that are scale-free
in their in- and out-degree distributions, and particularly when
the degree distributions similar to those measured for the World
Wide Web, our numerical results indicate strongly that the GZL
adiabatic algorithm for PageRank vector preparation does not
offer an exponential speedup over current classical algorithms.

As our research shows that the degree distribution and the
average number of edges per node do not fully determine
the algorithm’s performance, it is not currently known if
additional network features contribute to the polylogarithmic
gap scaling observed by GZL. Answering this question would
be an interesting topic for future work.
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APPENDIX A: PARAMETERS OF WEB GRAPH MODELS

In implementing the models used in this paper, the rela-
tionship between the parameters of the network generation
algorithms and the generated networks themselves is not
always obvious, so in the following section we explain it in
detail.

1. GZL preferential attachment

The method of graph construction in the GZL preferential
attachment model [6] consists of two phases, each with its
own parameter. First, a graph X (with adjacency matrix AX) is
created by adding a new vertex at each time step, where each
vertex is created with mX outgoing edges. Next, a second graph
Y (with adjacency matrix AY ) is created in the same fashion,
only with each new vertex having mY incoming edges. AX and
AY are then added together, with loops and weights discarded,
forming the adjacency matrix of the desired network. mX and
mY are the two parameters to consider in this algorithm.

In order for a graph to be scale-free, Prob(din = k) and
Prob(dout = k), the probabilities that the in degree din and the
out degree dout of a random node have the value k, must satisfy

Prob(din = k) ∼ k−γin ,
(A1)

Prob(dout = k) ∼ k−γout ,

where γin and γout are positive real numbers, and it is under-
stood that Prob(din = k) = 0 when k < mX and Prob(dout =
k) = 0 when k < mY . To compute γin and γout, one starts
from the undirected version from Ref. [18]. This result is then
combined with a constant offset, since each vertex of X has mx

outgoing edges and each vertex of Y has mY incoming edges.
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FIG. 4. (Color online) Degree distributions for the GZL pref-
erential attachment model with mX = 1 and mY = 15, taken at
graph size n = 8196 and averaged over approximately 1000 random
graph realizations. Both the in-degree (blue circles) and out-degree
(red squares) distributions are shown. For reference, the in-degree
distribution for mX = 1 and mY = 1 [duplicated from Fig. 2 is shown
(black diamonds)]. The dashed line is the expected power law scaling
of d−3, which is applicable for large d . As predicted by Eq. (A2),
shown as fitting curves, the mX = 1 and mY = 15 distributions exhibit
non-scale-free behavior over a wide region of d .

The resulting composite probability distributions follow:

Prob(din = k) ∼ (k + mX − mY )−3,
(A2)

Prob(dout = k) ∼ (k − mX + mY )−3.

Thus, for sufficiently large k, these distributions are scale-free.
However, for a large range of intermediate k, we expect
substantial deviation from the power-law dependence of
Eq. (A1). According to GZL [16], the parameters used to
generate Fig. 2 in their paper [6], which provides the main
evidence for logarithmic scaling of the gap, follow mY � mX.
In Fig. 4 we show the degree distributions for such a network,
where we set mX = 1 and mY = 15. There we see that the
degree distributions are well described by Eq. (A2), and that the
addition process does indeed distort the degree distributions.
By requiring mX = mY , as we have done in this paper (and
GZL did for a portion of their supplemental material [6]),
γin = γout = 3 for all k, meaning that the in degrees and out
degrees both follow the desired power-law behavior.

The asymptotic (large number of nodes) value of average
edges per node for the composite graph is also determined
by the parameters mX and mY . Because mX is the number of
outgoing edges per vertex in graph X, it is also the average
number of edges per vertex in X. The same logic holds for mY

and graph Y . Thus, when constructing the composite graph, the
asymptotic average edges per node would be simply mX + mY .
Although loops are then eliminated from the composite graph,
the expected number of loops is much less than n in the large-n
case, so this has little effect on the average edges per node. To
produce a graph with γin = γout = 3 and average in and out
edges per node of 2 (as in Fig. 2 of the main text), we use this
model with mX = mY = 1.

2. GZL copying model

The parameters of the GZL copying model [6] are similar
to the GZL preferential attachment, as they both involve the
adding of two graphs to form a composite graph. We again
have the parameters mX and mY , which again indicate the
number of outgoing edges per node in one component graph
and the number of incoming edges per node in the other.

This model has two new parameters, pX and pY , which
are the probabilities of a new node connecting to nodes
chosen uniformly at random at a given time step during the
construction of X and Y , respectively. We follow Ref. [15]
and add a constant offset (just as in the preferential attachment
case). Doing so, we again obtain the result that the graphs are
scale-free only for mX = mY . Assuming this constraint, the
composite graph follows:

γin = 2 − pX

1 − pX

, (A3)

γout = 2 − pY

1 − pY

. (A4)

For the data in Fig. 2 of the main text, we used the parame-
ters pX = pY = 0.5 and mX = mY = 1. In Fig. 3 of the main
text, we used pX = 1/11 and pY = 35/86 and mX = mY = 1.

3. α-Preferential attachment

Just as in the GZL copying model, there are multiple
possible actions at each time step in the α-preferential attach-
ment model [12], and each of these steps has an associated
probability. p1 is the probability of adding a new vertex with
a single outgoing edge, p2 is the probability of adding a new
vertex with a single incoming edge, and 1 − p1 − p2 is the
probability of an edge being added to the existing network
without the addition of a new vertex. α, the third parameter,
measures how far the generated network deviates from the
GZL preferential attachment model.

As laid out in Ref. [12], the relationship between these three
parameters and the exponents is

γin = 2 + (p1 + p2)α − p2

1 − p2
, (A5)

γout = 2 + (p1 + p2)α − p1

1 − p1
. (A6)

The connection between these parameters and the average
number of directed edges per node in the graph is clear when
one considers that the probability that a new node will be added
at a given time step is p1 + p2, and a new edge is added at
each step.

Using these constraints, we can find appropriate values for
the parameters for both Figs. 2 and 3 of the main text. In Fig. 2
we used p1 = p2 = 0.25, and α = 1, and in Fig. 3 we used
p1 = 0.415, p2 = 0.0851, and α = 0.0128. These choices in
parameters keep γin and γout fixed at our desired values, while
simultaneously keeping the graph at an average of two in and
two out edges per node.

APPENDIX B: INITIAL CONDITIONS

For each of these models, it is necessary to specify an initial
graph to seed the network growth. In our simulations we used
a complete graph (including loops) with m + 1 vertices, where
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m is the number of edges added per vertex (in the α-preferential
attachment model we used m = 1).

APPENDIX C: ADAPTIVE BINNING

In the plots of the degree distributions [Figs. 2(e), 2(f),
3(c), 3(d), and 4], numerical noise caused by few high-degree
vertices leads to data which are difficult to interpret. In order

to combat this, we use adaptive binning, which functions as
follows. First, some sampling threshold st is set, which we take
to be 200 in our analysis. If a given data point, corresponding
to a degree, contains at least st samples, then it is included. If
the data point instead has fewer than st samples, it is combined
with nearby points until the aggregated samples total at least
st . The weighted average degree and probability are then
recorded.
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