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Valley splitting theory of SiGe/Si/SiGe quantum wells
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We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the
valley splitting. The theory introduces a valley coupling parameter v, which encapsulates the physics of the
quantum well interface. The new effective mass parameter is computed by means of a tight binding theory. The
resulting formalism provides rather simple analytical results for several geometries of interest, including a
finite square well, a quantum well in an electric field, and a modulation doped two-dimensional electron gas.
Of particular importance is the problem of a quantum well in a magnetic field, grown on a miscut substrate.
The latter may pose a numerical challenge for atomistic techniques such as tight binding, because of its
two-dimensional nature. In the effective mass theory, however, the results are straightforward and analytical.
We compare our effective mass results with those of the tight binding theory, obtaining excellent agreement.
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I. INTRODUCTION

Silicon heterostructures form the basis of numerous semi-
conductor technologies. To understand future silicon hetero-
structure devices that involve quantum effects, one must con-
sider the quantum states associated with the degenerate X
valleys in the conduction band structure. In a strained quan-
tum well, the valley degeneracy is twofold. This degeneracy
is lifted by the singular nature of the quantum well interface,
with characteristic energy splittings of order 0.1-1 meV for
the case of SiGe/Si/SiGe quantum wells.!® Because this
splitting is comparable in size to the Zeeman splitting, the
valley states can compete with spin states for prominence in
quantum devices.” For emerging technologies like silicon
spintronics®~'? and quantum computing,'3-16 it is therefore
crucial to obtain a solid physical understanding of the valley
physics, and to develop a predictive theory for the valley
states. Strain splitting of the X valleys also occurs in several
other heterostructure systems, most notably AlAs/AlGaAs
(Ref. 17) and Si/SiC,'® and the present theory also applies to
these cases. However, Si/SiGe structures are the main focus
of our work, because of their prevalence in devices.

The technological significance of valley states was recog-
nized long before the current interest in quantum devices.!%°
Early studies focused on bulk silicon, particularly on the
electronic states of shallow donors. In this case, valley split-
ting was known to originate from the singular core of the
donor potential, known as the “central cell.”?! In one theo-
retical approach, the many-body interactions associated with
the central cell were projected onto a single-electron, effec-
tive mass (EM) framework, allowing the energy spectrum of
the low-lying hydrogenic states to be computed from first
principles.?>?* Reasonable agreement with experiments was
attained. However, because of the complicated projection
procedure, a general purpose EM theory was not obtained
until more recently.>

Related techniques were applied to the problem of valley
splitting in a semiconductor heterostructure. There were sev-
eral attempts to develop an EM theory, which is well suited
for treating inhomogeneous conditions, including conduction
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band offsets and nonuniform electric fields associated with
modulation doping and top gates. However, the resulting
theories proved controversial, and many important valley
splitting problems remain unsolved.

Atomistic approaches such as tight-binding (TB) theory
have recently emerged as important tools for calculating the
valley splitting.> These techniques have been applied to a
range of heterostructure geometries,>>?’ providing crucial
insights and predictions for experiments that that may be
difficult to implement. For example, the valley splitting has
been predicted to oscillate as a function of the quantum well
width.2> These oscillations can be reduced, or even elimi-
nated, by applying an electric field.

Here, we develop an EM formalism, which corroborates
the atomistic results quite accurately, and which provides a
simple physical explanation for the intriguing oscillations.
Specifically, we show that the behavior occurs because of
valley coupling interference between the top and bottom in-
terfaces of the quantum well. In an electric field, the wave
function is squeezed to one side of the quantum well, thereby
eliminating the interference effect. We also use the EM
theory to move beyond simple one-dimensional (1D) geom-
etries. For example, quantum wells grown on a miscut sub-
strate represent an inherently 2D problem. Here, we show
that interference effects also play a crucial role for such mis-
cut geometries, causing a strong suppression of the valley
splitting at low magnetic fields.

The paper is organized as follows. In Sec. II, we review
the two predominant approaches to valley coupling. In Sec.
III, we describe an extension to the conventional effective
mass theory that provides a perturbative scheme to incorpo-
rate valley coupling. In Sec. IV, we use a tight binding theory
to calculate the new input parameter for the EM theory—the
valley coupling v,—as a function of the conduction band
offset AE,. In Sec. V, we apply the EM theory to a finite
square well geometry. In Sec. VI, we obtain an analytical
solution for a quantum well in an external electric field. In
Sec. VII, we consider the experimentally important problem
of a two-dimensional electron gas (2DEG). In Sec. VIII, we
study the valley splitting in a magnetic field, when the
quantum well is misaligned with respect to the crystallo-
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graphic axes. Finally, in Sec. IX, we summarize our results
and conclude.

II. EFFECTIVE MASS APPROACH

Earlier EM approaches for the valley splitting in a hetero-
structure include the “electric breakthrough” theory of Oh-
kawa and Uemura,?® and the surface scattering theory of
Sham and Nakayama.’! A review of these theories and other
related work is given in Ref. 20. The Ohkawa-Uemura for-
malism leads to a multi-valley EM theory based on a two-
band model involving the lowest two conduction bands at the
' point of the Brillouin zone |iT';(S)) and |T';5(Z)).*> The
resulting bulk dispersion relation has a local maximum at the
I' point, and it exhibits two degenerate valleys, at roughly the
correct positions in k space. The sharp confinement potential
at the heterostructure interface produces a natural coupling
between the two z valleys. For an infinite square well of
width L, the Ohkawa-Uemura theory obtains a valley split-
ting of the form E,~ sin(2k,L)/L>, where kyZ is the location
of the valley minimum in the Brillouin zone.>® This result
was later confirmed by TB theory.?>?® The theory therefore
captures the main qualitative aspects of the valley physics,
with no additional input parameters besides those describing
the bulk dispersion relation. In this sense, it is a first prin-
ciples theory of valley splitting.

However, some aspects of the Ohkawa-Uemura theory
have been called into question. First, it has been criticized
for its inaccurate description of the dispersion relation near
the bottom of the valleys,” leading to quantitative errors.
More importantly, the method relies on a closed EM descrip-
tion, which cannot easily incorporate microscopic details of
the quantum well barrier. This contradicts the fact that the
valley coupling arises from physics occuring within several
angstroms of the interface.?! Such distances are much
smaller than any EM length scale, and cannot be accurately
described within any EM theory.

A physically appealing description of the heterostructure
interface has been put forward by Sham and Nakayama.
These authors develop a theory in which the reflection, trans-
mission, and valley scattering of waves at a Si/SiO, inter-
face is built directly into the Bloch function basis states.
Since the confinement is incorporated into the basis set, it
does not also appear as an external potential in the envelope
equation. Any additional potentials entering the envelope
equation (e.g., electrostatic potentials) are therefore smooth,
and easily accommodated in an EM approach. The analytical
results for the valley splitting are similar to those of Ohkawa
and Uemura. Indeed, the two approaches have been shown to
be closely related.®?

The Sham-Nakayama theory has also been criticized.
First, the theory is not self-contained—a single input param-
eter « is introduced to characterize the microscopic width of
the interface. Although Sham and Nakayama provide an es-
timate for «, the parameter is phenomenological. More im-
portantly, the resulting EM theory is somewhat cumbersome,
and cannot provide simple analytical solutions for the hetero-
structure geometries considered here.

In this paper, we develop an EM theory which retains the
desirable qualities of both the Ohkawa-Uemura and Sham-
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Nakayama approaches. We introduce a valley coupling pa-
rameter v,, which efficiently describes the valley coupling
for any type of interface, and which enables simple analytical
results for the valley splitting that are in agreement with
atomistic theories.

III. EFFECTIVE MASS THEORY

The EM theory of Kohn and Luttinger'® provides an ex-
cellent description of electrons in a semiconductor matrix
under the influence of a slowly varying confinement poten-
tial V(r).>* Here, “slowly” is defined with respect to the crys-
talline unit cell of length a:

V(r)/|[VV(r)| > a. (1)

In practice, the EM approach is extremely robust, often prov-
ing accurate well outside its range of validity. Indeed, the
standard textbook descriptions of shallow donors and quan-
tum wells are both based on an EM theory,>* despite the
singular nature of their confinement potentials.

When the validity criterion (1) is not satisfied, it is a good
idea to compare the EM results with microscopic or atomis-
tic approaches, such as the TB theory of Sec. IV. For GaAs
quantum wells, the EM theory provides quantitatively accu-
rate results in most situations. The approach only breaks
down for very narrow quantum wells, or for high subband
indices.? On the other hand, for indirect gap semiconductors
like silicon, the EM theory must be extended if valley split-
ting becomes an important issue. A singular confinement po-
tential causes valley coupling, and calls for a more sophisti-
cated treatment. Here, we provide a discussion of both the
general multivalley EM approach, and of the valley cou-
pling, which arises from a sharp quantum barrier.

In the standard EM theory, the wavefunction for a con-
duction electron in bulk Si can be written as a sum of con-
tributions from the six degenerate X valleys. However, when
a Si quantum well is grown on strain-relaxed Si;_,Ge, [001],
the lattice mismatch induces tensile strain in the Si layer. As
a result, four of the six valleys rise in energy, while the two
z valleys fall in energy.® The strain splitting is on the order
of 200 meV for the composition corresponding to x=0.3.%’
Consequently, only the z valleys play a role in typical low-
temperature experiments.

The EM wave function for strained silicon can then be
expressed as

V(r)= 2 o’ (0)F(r). )

J=z

The constants «; describe the relative phase between the two
z valleys, with |a,,|=|a_|=1/2. The functions eiu (r)
are Bloch functions, where k. = +k(Z are the conduction val-
ley minima. We shall see that the envelope functions F(r)
are the same for the two z valleys.

A central feature of the EM formalism is that wavefunc-
tion separates neatly into atomic scale oscillations (Bloch
functions) and long wavelength modulations (the envelope
function). For strained silicon [001], with its two low-lying
valleys, we find that the eigenstates of the Hamiltonian occur
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in pairs with the same envelope functions but different valley
composition vectors a=(a_,, a,.). Since the envelope func-
tion is independent of the valley physics to leading order, the
a vectors may be obtained from first-order, degenerate per-
turbation theory, by treating the valley coupling as a
perturbation.®

We now describe the perturbation theory, following the
approach of Ref. 24, where shallow donors in silicon were
considered. We specifically avoid the question of what
causes valley splitting, since this lies outside the scope of the
EM theory. Instead, we introduce valley coupling through an
empirical contact term, based on the EM formulation of
Fritzsche and Twose.3*#? Although the accuracy of different
EM formalisms has been argued,”®*! particularly with re-
gards to the handling of kinetic energy terms,”® we note that
the present approach correctly includes all leading order
terms in the valley splitting. The previous criticisms relate to
higher order effects.

In the EM formalism, the strained silicon wave function

(2) is determined from the equation®#°
0= 2 a;e"Hy+V,(2) - €lF (). (3)
J=xz
Here,
Hy=T(z) + Vow(z) + V(2) 4)
and
2o 1 0
.
2 dz\m;dz

is the one-dimensional kinetic energy operator. The longitu-
dinal effective mass m; is materials dependent, and varies
from layer to layer in the heterostructure. However, for Si-
rich SiGe layers, m; depends only weakly on the composi-
tion. We therefore take m;=0.92m, to be a constant. Note
that the transverse effective mass m, does not appear in Eq.
(5), since we initially consider only one-dimensional prob-
lems. In Sec. VIII, a more complicated, two-dimensional
problem is studied, in which m, appears.

Three different potentials energies appear in Egs. (3) and
(4), as follows. The valley coupling V,(z) forms the pertur-
bation, as discussed below. VQW(z) describes the conduction
band offsets in the heterostructure. For a quantum well,
Vow(z) corresponds to a pair of step functions. The electro-
static potential energy V 4(z) describes any additional, slowly
varying potential. Typically, V,(z) ~—eEz is an electrostatic
potential caused by modulation doping in the heterostructure
or by external gates.

The EM approximation breaks down near a singular con-
fining potential such as Viow(z), leading to a valley coupling.
Very near the singularity, criterion (1) is not satisfied, and it
becomes impossible to fully separate the short-wavelength
physics of the crystal matrix from the long-wavelength con-
finement of the excess electron. However, we may neatly
capture the valley interaction in terms of an effective cou-
pling potential V,(z), which vanishes everywhere except
within about an atomic length scale of the interface. The
detailed form of such a coupling may be quite complicated.?
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However, because it is so strongly peaked, we may treat
V,(z) as a & function over EM length scales. Indeed, the
o-function formulation arises naturally from some first prin-
ciples theories of wvalley coupling at heterostructure
interfaces.*” We then have

Vy(2) =v,8(z-2), (6)

where z; is the vertical position of the heterostructure inter-
face. In Sec. VIII, we consider a case where z; depends on
the lateral position, x. However, in the other sections of the
paper, we assume that z; is constant. The valley interaction
potential V,(z) plays a role analogous to the central cell po-
tential for an electron near a shallow donor.>* The valley
coupling strength v, is a scalar quantity, which must be de-
termined from experiments, or from atomistic methods such
as TB.

At lowest order in the perturbation theory (zeroth order),
we set V,(z)=0 in Eq. (3). Because of the fast oscillations
associated with the exponential factors, the contributions
from the two valleys are approximately decoupled at this
level, reducing Eq. (3) the conventional Kohn-Luttinger en-
velope equation

2

- %% + Vow(2) + V(@) [FO2) = €VF ). (7)
l

Here, the superscript () denotes an unperturbed eigenstate.
Note that the effective mass is the same for both z valleys.
The corresponding envelopes are therefore equivalent, and
we shall drop the valley index.

We now solve for @ and € in Eq. (3) using first order
perturbation theory. By replacing F;(z) in Eq. (3) with its
zeroth order approximation, left multiplying by F(O(z)e =,
and integrating over z, we can express Eq. (3) in matrix form

(0)

€’ +A A a_, a_

SRR i B Vo
A € +A/ e, Xy

We have dropped small terms involving atomic scale oscil-

lations in the integrand. The perturbation terms are defined as
follows:

A= f V,(2)FO(2)dz, 9)

m:fﬂwn@ﬂwwﬂ. (10)

Diagonalizing Eq. (8) gives the first order energy eigen-
values

Et=6(0)+AOi|A1, (11)
and the valley splitting
Ev:2|Al|' (12)

In the valley basis (a_,, a,,), the eigenvectors corresponding
to €, are given by
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| )
a, = ’_5(610/2, + 6_10/2). (13)
Here, = refers to the even or odd valley combinations, and
we have defined the phases

= A/|A . (14)
For the case of a single interface at z=z;, we obtain
Bo=v,F@). Ay=v, P EEO ). (1)

We see that it is the magnitude of the envelope function at
the interface that determines the strength of the valley cou-
pling. The a, vectors for this geometry are obtained from
Eq. (13), with

0="2kyz;. (16)

The valley coupling integrals in Egs. (9) and (10) provide
a simple but economical characterization of the valley split-
ting. The coupling parameter v,, which we compute below,
provides a means to incorporate important microscopic de-
tails about the interface. The utility of the present theory is
demonstrated by the ease with which we obtain results in the
following sections. The accuracy of the theory is demon-
strated in terms of the agreement between the EM and TB
techniques.

IV. TIGHT-BINDING THEORY

We now discuss a tight binding method for modeling het-
erostructures in silicon. Our main goal is to compare the
solutions from such an atomistic technique with those of the
EM theory, and to compute the valley coupling parameter v,,
whose value cannot be determined within the present EM
theory. We focus on the two-band TB model of Boykin et
al.,>>?® because of its simplicity. This simple model has been
compared to more realistic models in full detail.>>?® The
simple theory is found to contain the essential physics of
valley splitting, with reasonable quantitive accuracy.

In the two-band model, the TB Hamiltonian includes
nearest-neighbor and next-nearest-neighbor tunnel couplings,
v and u, respectively. The values v=0.683 eV and u
=0.612 eV are chosen such that (i) the bulk dispersion rela-
tion e(k) has two valleys, centered at |k|=ky=0.82(27/a)
and (ii) the curvature of e(k) at the bottom of a valley gives
the correct longitudinal effective mass m;=0.91m,. The unit
cell in this theory consists of two atoms, with separation a/4
along the [001] axis, where a=5.431 A is the length of the
silicon cubic unit cell. These parameters correspond to bulk
silicon. A more sophisticated theory should take into account
compositional variations and strain conditions. However, for
most situations of interest, the modified parameters differ
only slightly from the bulk.

In addition to the tunnel couplings v and u, we can also
include onsite parameters \;, to provide a locally varying
confinement potential. Both the conduction band offset
Vow(2) and the electrostatic potential V4(z) can be expressed
as on-site terms. To avoid boundary errors, we choose a TB
lattice much larger than the confined electronic wave func-
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FIG. 1. (Color online) Comparison of effective mass and
tight binding results for the two lowest eigenstates in a
Siy,Gey3/Si/Siy,Gey 3 quantum well of width 9.5 nm. (Only half
the eigenfunctions are shown.) The solutions correspond to the
same orbital subband, but different valley states. Bottom: ground
state. Top: excited state. Solid lines: effective mass theory. Circles:
tight-binding theory. Dashed line: quantum well boundary.

tion. Diagonalization of the resulting TB Hamiltonian gives
energy eigenvalues, from which we can calculate the valley
splitting.

The two-band TB theory describes silicon valley physics
with a minimal number (2) of input parameters, which are
both fixed by fitting to measured band structure parameters.
More sophisticated techniques can provide numerical im-
provements, but they generally do not capture any new phys-
ics. In Ref. 25, a comparison of the valley splitting between
the two-band theory and a detailed many-band theory shows
excellent qualitative agreement. The more accurate treatment
gives results that are smaller by an approximately constant
factor of 25%.

Some typical TB eigenstates for a finite square well are
shown in Fig. 1. The data points correspond to the squared
TB amplitudes plotted at the atomic sites. Comparison with
the full EM wave functions requires knowledge of the Bloch
functions in Eq. (2). However, to make contact with the TB
results, we only need to evaluate the Bloch functions at the
atomic sites. According to Egs. (2) and (26) (see Sec. V,
below), the low-lying pair of EM wave functions can be
expressed as

V(o) = %[u_k0<r>e-fkoz £ (e IFG),  (17)
\

where the ground-state alternates between the + and —
cases, as a function of L. We can denote the two atoms in the
TB unit cell as A and B, with the corresponding Bloch func-
tions u; (A) and u; (B). By translational symmetry, we must
have u; (A)=+u (B). (Typically, we observe the — sign in
our TB analyses.) The Bloch functions satisfy time-reversal
symmetry, so that uZO(r)zu_kO(r). Thus, defining ukO(A)
=[uy,(A) €' and assuming proper normalization, we see that
the squared TB amplitudes must fall on the curves

|, (2)[* =2 cos(koz + @) F*(2), (18)
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FIG. 2. The valley coupling parameter v, and the quantum well
“set-back™ parameter &, defined in Eq. (27), as a function of the
conduction band offset AE,.. The results are obtained for a symmet-
ric, finite square well by comparing the EM and TB theories.

|W_(2)|* = 2 sin’(kyz + @) F*(2), (19)

where all information about the Bloch functions is reduced to
the unimportant phase variable ¢. Eqs. (18) and (19) are
plotted in Fig. 1, setting ¢=0. We see that these analytical
forms provide an excellent representation of the TB results.
However, we emphasize that Egs. (18) and (19) are accurate
only at the atomic sites. To describe the wave function be-
tween the atomic sites would require additional knowledge
of the silicon Bloch functions.*3-46

We can use the TB theory to determine the EM valley
coupling parameter v, by comparing corresponding results in
the two theories. This is accomplished in Sec. V for the finite
square well geometry, with results shown in Fig. 2.

V. FINITE SQUARE WELL

We consider a symmetric square well with barrier inter-
faces at z;=+L/2, corresponding to a quantum well of width
L. We assume that the two interfaces are equivalent, so the
same valley coupling v, can be used on both sides. Using
EM theory, the resulting valley splitting is

E, =4v,F*(L/2)|cos(kyL)|. (20)

An analytical solution of the EM equations for the enve-
lope function of a finite square well can be obtained by
matching wavefunction solutions at the interfaces,>* giving

1 k,L+sin(k,L) |72

F(L2)=|—+

, 21
k, 2k, cos’(k,L/2) @D

where

ky =k, tan(k, L/2). (22)

The wave vector k,, can be obtained numerically from the
transcendental equation
2 ZmlAEC

w h2

cos?(k,,L/2). (23)

Some typical results for the valley splitting as a function of
the well width are shown in Fig. 3.
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FIG. 3. (Color online) Valley splitting in a finite square well. We
compare effective mass results (solid curve) with tight binding re-
sults (circles), as a function of the quantum well widths L and L',
respectively (see text). The TB data points occur at integer mul-
tiples of the TB unit cell. We assume a Sij;Geg3/Si/Siy7Geq3
quantum well, corresponding to AE,=160 meV.

An approximate solution for Egs. (20)—(23) can be ob-
tained in the limit of a very deep or a very wide quantum
well. When 7°42/2m,L* < AE,, we find that k,,= 7/ L for the
first subband, leading to

i
FAL12) = ———. 24
(L/2) AEL (24)
The valley splitting is then given by
4v,mh?
E, = mIA—ECL3|COS(k0L)|. (25)

This agrees with the dependence on well width obtained in

Refs. 25 and 30, for an infinite square well.
Diagonalization of the perturbation Hamiltonian in Eq. (8)

gives the ground (g) and excited (x) valley state @ vectors

a, = (1,-sgn[cos(k,L)])/ \E (ground),
. (26)
a, = (1,sgn[cos(kyL)])/N2 (excited),

where we have defined sgn[x]=x/|x|. These results are
equivalent to Eq. (13), up to an overall phase factor. We see
that the oscillations in Fig. 3 correspond to alternating even
and odd ground states [a,=(1,1)/v2 and a_=(1,-1)/v2,
respectively], as a function of L. This alternating behavior
has been observed previously in TB analyses.?

The two lowest EM eigenstates for a finite square well are
plotted in Fig. 1, making use of Egs. (18), (19), and (26). As
noted above, these two wavefunctions form a pair with the
same envelope, but with their fast oscillations phase shifted
by /2. The corresponding TB results are also shown in the
figure. Although the EM and TB approaches are fundamen-
tally different (discrete vs continuous), their wave function
solutions are nearly identical, thus corroborating both ap-
proaches. Note that the fast oscillations arising from u (r) in
Eq. (2) (not pictured in Fig. 1) are commensurate with the
crystal lattice, while the oscillations from %7 are not, since
the valley minima do not occur at the Brillouin zone bound-
ary.

We can use the square well solutions to obtain an estimate
for the valley coupling parameter v,. For the EM case, we
first solve Eq. (23) numerically, to obtain k,,. We then solve
Eq. (21) for F(L/2), finally obtaining the valley splitting
from Eq. (20). For a given value of AE,, we fit Eq. (20) to
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the numerical TB results, as a function of L, using v, as a
fitting parameter. However, there is an ambiguity in relating
the quantum well width L in the continuous EM theory to the
discretized width L'=Na/2 in the TB theory, where N is the
number of silicon TB unit cells in the quantum well. For
example, is the interface located on the last atomic site in the
quantum well, the first atomic site in the barrier region, or
somewhere in between? We see that the two widths, L and
L', may differ on the scale of a single atomic layer, or a/4
=136 A. To allow for this, we introduce a second fitting
parameter &, as defined by

L=L"+ dal4. (27)

With these two fitting parameters, v, and J, we obtain nearly
perfect correspondence between the EM and TB theories, as
shown in Fig. 3.

In this manner, we can map out v, and ¢ as a function of
AE,, giving the results shown in Fig. 2. We find that v,(AE,)
is linear over its entire range, with

v,=72 %X 1071AE,. (28)

Here, v, is given in units of eV-m when AE, is expressed in
units of eV. As described in Sec. IV, a many-band TB analy-
sis obtains results for v, that are smaller by a factor of about
25%.

From Fig. 2, we see that =1.1 forms a reasonable ap-
proximation over the typical experimental range AE,
=50-200 meV. This corresponds to about one atomic layer,
or half an atomic layer on either side of the quantum well.
We can interpret § as the set-back distance for an effective
scattering barrier which causes valley coupling. A similar
interpretation was given for the parameter « in Ref. 31. We
see that this set-back distance increases for a shallow quan-
tum well.

Finally, we consider the asymptotic limits of our EM
theory. In the limit AE.— %, corresponding to an infinite
square well, Eq. (25) becomes exact. Since E, does not van-
ish, we conclude that v, AE, in this limit. This is precisely
the behavior observed in Fig. 2.

In the limit AE.— 0, corresponding to a shallow square
well, Eq. (25) is not valid. Instead, we obtain F2(L/2)
=AE.Lm,/%?, leading to E,=2AE_.Lv,m,cos(kyL)/%>. In
this limit, we expect the valley splitting to vanish, but we can
make no other predictions about v,. The numerical results,
however, suggest that the linear dependence of v,(AE,) ex-
tends smoothly to zero.

VI. QUANTUM WELL IN AN ELECTRIC FIELD

We now consider a quantum well in the presence of an
electric field oriented in the growth direction. The geometry
is shown in the inset of Fig. 4. For physically realistic fields,
caused by modulation doping or electrical top-gates, the re-
sulting electrostatic potential satisfies the EM criterion (1).
We therefore proceed as in Sec. V, using the numerical val-
ues for v,(AE,), obtained for a symmetric square well. The
electrostatic potential enters our analysis through the enve-
lope equation (8). Although there are no exact solutions for
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FIG. 4. (Color online) Effective mass results for the valley split-
ting in an electric field, as a function of the quantum well width.
Five E fields are shown, from bottom to top: E=0, 1.04, 2.08, 3.12,
and 4.16 MV/m. The well width L is scaled by the TB unit cell size
al/2=2.716 A. Results are shown for a Siy3Gey/Si/SiysGeg
quantum well, analogous to Fig. 1(a) of Ref. 25. Inset: E-field ge-
ometry, with confinement potential V(z)=Vqw(z)+V4(z) and varia-
tional wave function F(z) given in Eq. (29). Here, z,=z,— 7/k.

the problem of a tilted square well, the approximate treat-
ment described here provides analytic results that accurately
reproduce the results of TB theory.

We assume an electrostatic potential energy given by
V 4(z)=—€Ez, and a quantum well of width L and height AE,.
The top barrier of the well lies at z=0. We consider the
following variational envelope function:

Flz)=1~ \/Z: sin[k(z — z,)] (z,— 7—/: <z< Z;),

0 (otherwise).
(29)

For simplicity, we have chosen a wave function tail that ter-
minates abruptly. This approximation is satisfactory for a
variational calculation, since the tail, which is exponentially
suppressed, contributes very little to the energy expectation
value.

In our trial function, the parameter k accounts for the
finite barrier height by allowing the wave function to extend
into the barrier region. The upward shift of the wave function
in the presence of an electric field is given by z,. The solution
(29) becomes exact for an infinite square well at zero field,
suggesting that the trial function will be most effective in this
limit. We therefore define the small parameters

hia? q eEL
X=""5 an = .
2mL’AE, YT 4AE,

(30)

The energy expectation value, obtained from envelope
equation (2), can be expressed in terms of the dimensionless
variational parameters

0,=kL and 6,=kz, (31)

giving
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AE,

In the first case in Eq. (32), the wave function extends past
both barriers. For large enough electric fields (y>x), the
wave function only extends past one barrier (see inset of Fig.
4). Minimization of € with respect to 6, and 6, gives

!,_ /_
0 =m+\Vx—y—\x+y

— 1 >y, (33)
0, =\Nx+y
6, = m(y/x)"?
6, = (8210 (x=<y), (34)

where we have made use of the fact that #, < 7r. For the case
x>y, we have also used 77— 60, <.

To compute the valley splitting, we use the results
FX(=L)=2(m—6,-6,)*/L and F*(0)=26/L when x>y,
and F*(0)=2656,/ 7L when x<y to obtain

L 4o, leol(x — y) + ek (x +y)| (x>y),
T 8oy (x=<y).
(35)

These solutions are plotted in Fig. 4 as a function of the
quantum well width for several different E fields. In the fig-
ure, we have evaluated Eq. (35) only at integer multiples of
the TB unit cell, to facilitate comparison with Fig. 1(a) in
Ref. 25. The correspondence between the EM and TB theo-
ries is quantitatively and qualitatively accurate, particularly
for large well widths.

In Fig. 4, we see that the crossover to high field behavior
corresponds to E, becoming independent of L. The crossover
occurs when y>x or

27H?

E> 7
meL

(36)

At low fields, the valley splitting exhibits interference oscil-
lations, similar to Fig. 3. At high fields, the envelope func-
tion no longer penetrates the barrier on the bottom side of the
quantum well. The top and bottom barriers then no longer
produce interfering contributions to the valley splitting, caus-
ing the oscillations in E,(L) to cease. Since we have chosen
a trial wave function with no tail, the crossover to high field
behavior in Fig. 4 occurs abruptly. This is in contrast with
the TB results where small oscillations can still be observed
right above the crossover.

We now study the asymptotic behaviors of Eq. (35). In the
zero field limit y—0, Eq. (35) correctly reduces to Eq. (25)
for a symmetric square well. In the high field limit, we can
ignore the bottom barrier entirely. For an infinite barrier, the
problem is often analyzed using the Fang-Howard trial wave
function.’* To make contact with this approach, we shall now
perform a modified Fang-Howard analysis, and demonstrate
a correspondence between the two results.

e X0 — 412y (0, — 7/2)/6, + 27 6 — (0, + 6, — )13 (6, + 6, < m),
X6 — 472y (0, — 7/2)/ 6, + 2763
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32
(01+02>7T). ( )

The conventional Fang-Howard trial function does not
penetrate the barrier region. However, for a finite barrier
height AE,, it is the amplitude of the wave function at the
interface which determines the valley splitting. We must
therefore modify the Fang-Howard trial function to allow the
wave function to penetrate the top barrier, similar to Eq. (29).
An appropriately modified trial function is given by

Fo=1” Vb 12(z - z)explb(z — z)/2] for z<z,
Z =
0 forz=z,.

(37

This is just the usual Fang-Howard variational function,
shifted upward by z,. In the Fang-Howard approach, the
wave function tail decays exponentially into the lower por-
tion of the quantum well. This treatment is more physical
than the abrupt termination assumed in Eq. (29). However,
the tail contribution to the variational calculation is insignifi-
cant, to leading order. Following the conventional Fang-
Howard approach, but now using b and z, as variational pa-
rameters, we obtain

_ 2v,eE

v AE (38)

As in the case of a symmetric square well, we see that E,
«AE.'. We also find that Eq. (38) is equivalent to the high-
field limit of Eq. (35). Thus, the nonoscillating, high-field
portions of the curves in Fig. 4 correspond to the “Fang-
Howard limit” described by Egs. (37) and (38). This agree-
ment demonstrates that the variational form of Eq. (29) is
robust over the entire field range.

VII. VALLEY SPLITTING IN A 2DEG

In this section and the next, we consider problems of par-
ticular experimental importance. In both cases, conventional
techniques like TB theory are somewhat cumbersome. How-
ever, the EM formalism leads to straightforward solutions.
We first consider a two-dimensional electron gas (2DEG) in
a SiGe/Si/SiGe quantum well, which extends the single
electron senarios we have studied so far, by including many-
body interactions.

We consider the modulation-doped heterostructure shown
in Fig. 5(a). In this structure, we assume that the charge is
found only in the 2DEG and the doping layers. A more de-
tailed analysis could also include background charge and
charge trapped at an interface. Because the modulation dop-
ing field is large in a typical heterostructure, we will ignore
the bottom barrier in our calculations. The conduction band
profile is sketched in Fig. 5(b). We treat many-body interac-
tions using the Hartree approximation, as common for a
quantum well. However, other many-body interactions can
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FIG. 5. (Color online) Typical 2DEG structure for a

SiGe/Si/SiGe quantum well. (a) Heterostructure, left to right:
strain-relaxed SiGe substrate and barrier, strained silicon quantum
well, strain-relaxed SiGe barrier, n* SiGe doping layer, and SiGe
spacer layer. (b) Conduction band profile, showing the envelope
function F(z) and the Fermi energy Ep.

also be included, 2047

valley splitting.

The modified Fang-Howard approach gives a reasonable
approximation for an electron in a 2DEG.2° However, we
must include the electron-electron interactions self-
consistently. Within the Hartree approximation,* the 2DEG
charge density p(z) is given by

p(z) =—enF>(z), (39)

where n is the density of the 2DEG and F(z) is defined in Eq.
(37). The charge density is related to the electrostatic poten-
tial through the Poisson equation

Ly __p

_E 40
dz? e (40)

using similar techniques to calculate the

where ¢ is the dielectric constant of silicon. The boundary
conditions on Eq. (40) are given by

doyldz=0 (z— —»),

¢u=0, (z=0). (41)

The second boundary condition anchors the energy of the
confinement potential Vow(z) at top of the quantum well.*
The corresponding electrostatic potential is given by

() = = {[B2(z = 2% - 4b(z - 2) + 6]eH
2be

— [b%2% + 4bz, + 6]e7b71}. (42)

The variational parameters are determined by minimizing
the total energy per electron, given by

e=(T)+ %(Vd,) +(Vow)- (43)

Here, V4(z) corresponds to the Hartree potential —edy(z).
The factor of 1/2 in the Hartree term prevents overcounting
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of the interactions.>* Note that, in contrast with calculations
for Si/SiO, inversion layers, we do not include any contri-
butions from image potentials in Eq. (43), since the dielectric
constants for Si and SiGe are nearly equal, and any other
interfaces that could produce images are far away from the
2DEG.

We evaluate Eq. (43), obtaining

h2b? e2n<33 ) AE D7
—_ bz, +T

€= —+— - , (44)
8m; 4be\ 8

where we have made use of the dimensionless small param-
eters bz, and e’n/eAE_b. The first of these describes the shift
of the wavefunction towards +z, while the second describes
the relative magnitude of the electrostatic energy with re-
spect to the band offset AE,.. Minimization of € with respect
to b and z, gives

8h? 33e’nm,

2 3
4T BmaE, 842

(45)

We can now calculate the valley splitting for a 2DEG.
Under the previous approximations, we obtain a very simple
expression for the wave function at the top quantum well
interface

FX0) = 46
)= A, (46)
leading to the valley splitting
2
vy,en
= . 47
V= AL, (47)

[Note that this result is obtained for a perfectly smooth in-
terface. As we show in Sec. VIII, substrate roughness can
reduce this estimate considerably. However, the scaling de-
pendence in Eq. (47) remains valid.]

We can use our estimate for the valley coupling parameter
(28), to obtain a quantitative prediction for the valley split-
ting in a 2DEG. Expressing the valley splitting in units of
meV and the 2DEG density # in units of 10'> cm™2, we find
that

E,~1.14n. (48)

Here, we have used the low-temperature dielectric for silicon
e=11.4g,. It is interesting to note that the barrier height AE,
does not directly enter the final result.

We can compare Eq. (48) with the corresponding, non-
self-consistent calculation, by treating the system of 2DEG
and doping layer as a parallel plate capacitor with electric
field E=en/e. The valley splitting for an electron in such a
field is given in Eq. (38), with the result

E,=2.29n (non-self-consistent). (49)

The factor of 2 difference with Eq. (48) arises because the
electric field in a real 2DEG is not uniform, due to the pres-
ence of charge. The non-self-consistent procedure therefore
uses an electric field that is too large, overall, and it overes-
timates the valley splitting.

In Eq. (48), the prefactor 1.14 can be compared with simi-
lar estimates for silicon inversion layers. Ohkawa and Ue-
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FIG. 6. (Color online) Tilted quantum well geometry, with crys-
tallographic axes (x,y,z) and rotated axes (x’,y’,z’), assuming y
=y’. The effective tilt angle is ¥, and the atomic step size is s.

mura obtain a prefactor of 0.15,%? while Sham and Na-
kayama obtain 0.33.%% A recent experiment in a top-gated
Si0,/Si1/Si0, heterostructure has obtained a much larger
value of the valley splitting.*” However, several remarks are
in order. First, we do not specifically consider top-gated
structures here, so Eq. (48) does not directly apply to the
latter experiment. Second, we point out that depletion and
image charges, which were not considered here, play a more
significant role in an inversion layer than a quantum well
geometry. Finally, we note that a more accurate, many-band
estimate for v, would reduce the prefactor in Eq. (48) by
about 25%, as discussed in Sec. IV.

VIII. TILTED QUANTUM WELL IN A MAGNETIC FIELD

In high-mobility Si/SiGe devices, substrates are often in-
tentionally tilted away from [001] by up to several degrees,
to promote uniform epitaxial growth under strain conditions,
and to help reduce step bunching. Additional roughening oc-
curs during the growth of strained heterostructures. (Recent
advances in nanomembrane technology may help overcome
this difficulty.’®) Typical devices therefore contain atomic
steps at their surfaces and interfaces, associated with global
or local tilting. At the EM level, one might expect to ignore
such small, atomic-scale steps, and to work in the locally
tilted basis (x”,y’,z") shown in Fig. 6. However, when valley
coupling is taken into account, the problem becomes two
dimensional, since the tilted surface is misaligned with re-
spect to the crystallographic axes. In such high dimensional
geometries, there is an obvious scaling difficulty for atomis-
tic theories. However, the EM theory of valley splitting has a
definite, practical advantage. The following discussion ex-
pands upon our previous analysis in Ref. 51.

We consider a tilted quantum well in a magnetic field. In
the low-field limit, the electronic wave function covers many
steps, leading to interference effects in Eq. (10), and a near-
total suppression of the valley splitting. To see this, we note
that the vertical position of the interface z; becomes a func-
tion of the lateral position x. The phase factor in Eq. (10) is
therefore not a constant, in contrast with the case of a flat
interface. In Fig. 6, we assume that a single step corresponds
to a change of one atomic plane, or a/4=1.36 A. From Eq.
(10), the phase shift between neighboring steps is given by
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2ko(al/4)=0.827. So the steps are nearly 180° out of phase,
and the interference is severe.

At low magnetic fields, the experimental data are consis-
tent with this picture of suppressed valley splitting.® (The
experiments also suggest a nonvanishing zero-field extrapo-
lation, which we shall investigate elsewhere.’?) Some of the
characteristic features of the magnetic field dependence can
be explained in terms of the lateral confinement of the elec-
tronic wave function. Magnetic confinement over the length
scale [z=\%/|eB| reduces the number of steps that contribute
to the valley splitting integral. The interference effects and
the suppression of the valley splitting are similarly reduced.
To get a sense of the scales involved, we note that a wave
function of width 4/ will cover 16(lz/a)tan ¥ steps, where
¥ is the local tilt angle in Fig. 6 (Here, we have assumed a
wave function of diameter 2\/(r_2>=413, obtained using the
solutions described below.) For a typical ¥=2° miscut,® the
wave function covers about 26 steps when B=1 T, and 13
steps when B=4 T. The confinement provided by electro-
static top gates can also enhance the valley splitting by re-
ducing the step coverage.®

We can gain insight into the magnetic field dependence of
the valley splitting by considering a simple model. We first
express the envelope function equation in the tilted basis
(x",y",z"), giving

3 2
[E L(— iﬁ% + eA,,(r’)) + VQW(z')]F(r’) =€eF(r'),

n=1 2’nn Xn
(50)

where m;=my=m,;=0.19m, and m3;=m;=0.92m,, are the
transverse and lateral effective masses, respectively. We note
that the anisotropic effective masses are defined with respect
to the crystallographic axes (x,y,z), not the growth axes. The
full effective mass tensor in Eq. (50) should therefore include
off-diagonal terms. In particular, we should have a term pro-
portional to m;ZIZﬁ(mt_l—ml_l), where we have taken O
<m/2. For a 2° miscut, however, we find that m,/m,,
=0.028, so the off-diagonal term is much smaller than the
diagonal terms. If desired, the off-diagonal corrections could
be included, perturbatively. Here, we have considered only
the leading order (diagonal) mass terms.

In Eq. (50), the magnetic field is introduced through the
vector potential. We consider the symmetric gauge, with
A(r')=(-y’,x’,0)B/2. We also assume an approximate form
for the quantum well potential Vgw(z'), which is smoothly
tilted (i.e., not steplike). This will be adequate for our simple
estimate. Separation of variables then leads to solutions of
form F(r')=F,,(x",y")F.(z'), where F,(z') is the quantum
well wave function, studied elsewhere in this paper, and
F,(x',y’) is the lateral wave function given by**

n' ol
F(nl) I’,, 9') = ell()
5 (', 6) V w22 (4 1))

7\ |1l 2
% e_r,2/4l§<r_) Lilll)(r_z)' (51)
Ip 21y

Here, we use radial coordinates, defined as (x',y’)
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=(r' cos 0 ,r' sin 0'), while n=0,1,2,..., are the radial
quantum numbers (the Landau level indices), [
=0,+1,+2,..., are the azimuthal quantum numbers, and

Lgll)(x) are associated Laguerre polynomials.’® The energy
eigenvalues for Fi';l)(r’ ,0') are given by

2n+1+]l+1
€, =— _ hw,

, 52
nl 7 c ( )

where w.=e|B|/m, is the cyclotron frequency. Note that we
have ignored spin physics here.

To take an example, we now focus on the lowest Landau
level, with n=[=0. The behavior of the valley splitting in
higher Landau levels is considered elsewhere.3*>* Equation
(51) now becomes

1

12 12y/472
Fx ,()C’,y,) — e—(x +y )/413. (53)
! \271'112g

We assume a strong electric field, so that only one quantum
well interface contributes to the valley splitting. For a
smoothly tilted interface, the valley interaction potential is
given by

V(@) =v,0(z"). (54)
The valley splitting is then given by

vl)
E, = 2
Tlp

’ 2 e
f F?(z’)e_r 2/211,3,8—21/(())( ﬂ5(z')dx’dy'dz'

=20, F2(0)e 2kols?’ (55)

where we have used the fact that z=-x'sin 9+z' cos ¥
=—x'1, along the z'=0 interface.

The preceding results are obtained for perfectly uniform
steps at a quantum well interface, which we approximate by
a smooth, uniform tilt. The resulting magnetic field depen-
dence of the valley splitting, first reported in Ref. 51, is
shown in Fig. 7. The interference effect, arising from the
interfacial tilt, drives the valley splitting to zero at small
fields, as consistent with experimental observations. How-
ever, the exponential suppression of E, in Eq. (55) is an
anomalous feature caused by the absence of disorder. If we
consider more realistic step geometries, including disorder in
the step widths and profiles, the valley splitting will be
enhanced by orders of magnitude, as confirmed by
simulations.>!

We can obtain an estimate for the valley splitting en-
hancement due to fluctuations by considering a single step
wiggle, as shown in the inset of Fig. 7. The correction to Eq.
(55) is computed by noting that the area of the left step
increases by A, while the right step decreases by A. We have
shown that the phase difference between neighboring steps in
the valley splitting integral is kga/2. The perturbed valley
splitting integral is therefore given by

E, = |E,+4¢'%Av, F2(0)F; (rg)sin(koa/4)|.  (56)

Here, we have expressed the unperturbed result of Eq. (55)
as E,q, and we have assumed the amplitude of the envelope
function is approximately constant across the wiggle at po-
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Valley splitting, E, (arb. units)

Magnetic field, B (arb. units)

FIG. 7. (Color online) Valley splitting on a tilted quantum well,
in a magnetic field. The lower (blue) curve shows the exponential
suppression of the valley splitting, Eq. (55), arising from perfectly
uniform steps. The upper (green) curve shows the linear behavior
arising from the “plateau” model of disordered steps. Inset shows a
localized step fluctuation (or “wiggle”) of area A, as analyzed in the
text.

sition r'=rj. We also note that the two terms in Eq. (56)
enter the valley splitting integral with a phase difference ¢
that depends on r. Let us approximate F,(rg) =1/ 27l% and
sin(kga/4)=1. Then the fluctuation contribution is

vUFf(O)Z—AZ, (57)
wly

which has a linear dependence on the magnetic field. There-
fore, at low fields, the fluctuation contribution dominates
over the estimate obtained for a uniform tilt, (55). More re-
alistic fluctuation models would include a distribution of
fluctuations, with contributions that partially cancel out due
to interference effects. However, the assumption of one
dominant fluctuation loop (the “plateau” model’!), leads to
the linear dependence shown in Fig. 7, which is consistent
with experiments. (To obtain correspondence with Ref. 51,
we note that the “excess area” in that paper corresponds to
2A in our notation.)

IX. CONCLUSIONS

In this paper, we have developed an effective mass theory
for the valley splitting of a strained SiGe/Si/SiGe quantum
well. To compute the valley splitting of a perfect quantum
well with no steps, one needs two input parameters that de-
scribe the location and curvature of the band minimum as
well as the valley coupling constant v, that captures the rel-
evant microscopic details of the interfaces. These parameters
must be obtained from a more microscopic theory, or from
experiments. It is worth noting that, unlike bulk properties,
the interface can vary from system to system, so that v,
should be determined for each case. In this work, we have
used a simple tight binding theory to compute v,, as a func-
tion of the conduction band offset AE,, assuming a sharp
heterostructure interface. The results provide excellent agree-
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ment between the effective mass and tight binding theories.

Once v, is known, we may apply the effective mass
theory to a range of important problems. Here, we have con-
sidered the finite square well, with and without an applied
electric field. We have also performed a self-consistent
analysis of a 2DEG, using the Hartree approximation. Excel-
lent agreement between effective mass and atomistic theories
confirms our main conclusion, that the valley splitting in this
system can be fully explained through a single coupling con-
stant v,,.

The effective mass theory is particularly useful for two or
three-dimensional geometries, which cannot be easily treated
in atomistic theories, due to scaling constraints. Here, we
have applied the effective mass formalism to the inherently
2D problem of valley splitting in a magnetic field for a quan-
tum well grown on a miscut substrate. We find that interfer-
ence effects strongly suppress the valley splitting at low
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magnetic fields. However, this suppression is reduced by in-
troducing a small amount of disorder into the steplike geom-
etry of the quantum well interface, as consistent with experi-
mental evidence and simulations.

Note added. In the final stages of preparation of this
manuscript, we became aware of Ref. 57, which presents
some similar results to those reported here.
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