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Two-electron dephasing in single Si and GaAs quantum dots
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We study the dephasing of two-electron states in a single quantum dot in both GaAs and Si. We investigate
dephasing induced by electron-phonon coupling and by charge noise analytically for pure orbital excitations in
GaAs and Si, as well as for pure valley excitations in Si. In GaAs, polar optical phonons give rise to the most
important contribution, leading to a typical dephasing rate of ∼5.9 GHz. For Si, intervalley optical phonons
lead to a typical dephasing rate of ∼140 kHz for orbital excitations and ∼1.1 MHz for valley excitations. For
harmonic, disorder-free quantum dots, charge noise is highly suppressed for both orbital and valley excitations,
since neither has an appreciable dipole moment to couple to electric field variations from charge fluctuators.
However, both anharmonicity and disorder break the symmetry of the system, which can lead to increased dipole
moments and therefore faster dephasing rates.
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I. INTRODUCTION

Both Si and GaAs quantum dot technologies are now
well established as candidates for the implementation of
scalable quantum computation.1,2 Working qubits have been
fabricated with several different architectures involving singly
occupied dots, including the single-spin qubit architecture,3–11

the singlet-triplet scheme,2,12–15 and three-dot logical
qubits.16,17

Recently, we proposed a “hybrid” qubit architecture18

with three electrons in two quantum dots that is potentially
advantageous because fast qubit operations can be performed
in a relatively simple nanostructure. Because the hybrid
design is capable of all-electrical, fast qubit gates, the qubit
wave functions have some charge character that gives rise
to decoherence mechanisms that are not present in pure spin
qubits. This means that characterizing decoherence becomes a
more pressing issue, because charge decoherence is typically
much faster than spin decoherence. In GaAs, the single-spin
decoherence time T2 has been measured to be 1 ns for charge
qubits,19,20 while T2 for single-spin qubits has been measured
to be greater than 100 μs.21

In the singlet-triplet qubit, when there is a finite exchange-
induced energy splitting between the singlet and triplet states,
the dominant sources of decoherence have been found to be
charge noise22–24 and electron-phonon coupling.25 Much of the
physics of the hybrid qubit is similar to that of the singlet-triplet
qubit, with the main differences in the decoherence properties
arising because one of the dots contains two electrons. In the
doubly occupied dot, both electrons in a singlet can occupy the
orbital ground state, while at least one of the triplet electrons
must lie in an excited state. A further complicating factor in
silicon-based quantum dot devices is the presence of two nearly
degenerate, low-lying valley states.26–33 These levels are split
near a sharp interface by an amount that is typically comparable
to the orbital energy spacing. Hence, single-electron first
excited states have two characteristic types: orbital, where
the electron occupies the same valley state but the p-like first
excited state of the lateral confinement potential, and valley,
where the electron is in the orbital ground state and a higher
valley state.

In this paper, we calculate singlet-triplet dephasing rates in
a doubly occupied quantum dot, extending the spin relaxation
calculations previously done for both GaAs34 and Si35 due to
finite spin-orbit coupling and hyperfine coupling to nuclear
fields. For GaAs, the singlet-triplet relaxation rate has been
measured to be on the order of kHz for applied magnetic fields
up to 6 T.36 In Si, this rate has been measured to be on the order
of Hz.18 Unlike relaxation, pure dephasing is due to processes
that conserve spin and do not involve energy exchange with the
environment. For both electron-phonon coupling and charge
noise, we consider the limiting cases of purely orbital (for both
GaAs and Si) and purely valley (for Si) excited states.

We find that for GaAs, polar optical phonons are the
main source of dephasing, leading to a decoherence rate
of ∼5.9 GHz. For Si, the phonon-mediated dephasing rate
depends on the type of excitations supported by the quantum
dot. For a first excited state that is orbital-like, intervalley
optical phonons lead to a decoherence rate of ∼140 kHz.
For a valley-like first excited state, this same phonon channel
results in a faster decoherence rate of ∼1.1 MHz. For a
perfectly harmonic, disorder-free dot, we find that dephasing
due to charge noise is strongly suppressed. This is because
the effective dipole moment between the singlet and triplet
states vanishes for both orbital- and valley-like excitations. If
we allow for anharmonicity and an effective dipole moment,
we find that both phonon and charge noise dephasing channels
are of similar strengths in Si, but phonons are the limiting
mechanism in GaAs. Assuming a gate operation speed of
10 GHz (quite feasible for the hybrid qubit), the decoherence
rate in silicon is consistent with the achievement of 104

operations per coherence time, while the decoherence rate in
GaAs is too fast for viable hybrid qubit operation.

This paper is organized as follows. In Sec. II, we briefly
review the quantum states that are relevant to the system
considered in this paper. Next, in Sec. III we formulate
the problem of intradot singlet-triplet dephasing due to the
electron-phonon coupling, following the formalism of Ref. 25.
We consider first GaAs, then both pure orbital and valley
excitations in Si. In Sec. IV, we calculate dephasing due
to charge noise, and compare to phonon-induced dephasing.
Finally, in Sec. V we discuss the role that the dephasing
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mechanisms we have addressed are likely to play for qubits
and suggest methods for mitigating decoherence.

II. TWO-ELECTRON STATES IN A QUANTUM DOT

The lowest energy eigenstates of two electrons in a single
quantum dot (neglecting spin-orbit interaction) are the singlet

|S〉 = |ψ0〉 |↑↓〉 − |↓↑〉√
2

(1)

and the three triplet states

|T 〉 = |ψ1〉 ×

⎧⎪⎨
⎪⎩

|↑↑〉 (T+),

(|↑↓〉 + |↓↑〉)/√2 (T0),

|↓↓〉 (T−),

(2)

where |ψ0〉 is the two-electron spatial ground state and |ψ1〉
is the first excited state. If spin-orbit interaction is included,
the charge density fluctuations considered in this paper would
have led to singlet-triplet relaxation as well, in addition to the
calculated pure dephasing. However, based on existing spin
relaxation calculations,35 we believe such relaxation would be
a much weaker decoherence channel, especially considering
that spin-orbit interaction is very weak in Si. We work within
the Heitler-London approximation;25 in this approximation,
|ψ0〉 ≈ |00〉, indicating that both electrons are in their single-
electron ground states, and |ψ1〉 ≈ (|01〉 − |10〉)/√2, where
one electron is in its ground state and the other is in
its first excited state. This paper considers dephasing due
to the electron-phonon coupling and charge noise, both of
which conserve spin, so from here on we will focus on the
spatial component, with the appropriate spin wave function
understood. We refer to the triplets collectively as |T 〉 when
the particular spin configuration is not important.

In GaAs, the wave functions of the ground and first
excited states have identical dependence on z (the direction
perpendicular to the quantum well), but have s- and p-like
transverse envelopes in the x-y plane (the plane of the quantum
well). For a quadratic quantum dot confinement potential,
the effective mass approximation for the ground state wave
function is

ψGaAs
0 (r) = u(r)

F (z)√
πL

e−(x2+y2)/(2L2) (3)

while the first excited state wave function is

ψGaAs
1 (r) = u(r)

F (z)(x + iy)√
πL2

e−(x2+y2)/(2L2), (4)

where u(r) is the periodic (with the lattice periodicity)
component of the Bloch function at the conduction band
minimum (the � point in GaAs), F (z) is the envelope function
along z, and L is the lateral extent of the wave function.

For silicon, we write the ground-state wave function as

ψSi
0 (r) = φ−(r)

F (z)√
πL

e−(1/2L2)(x2+y2), (5)

where

φ±(r) = u+(r)eik0z ± u−(r)e−ik0z

√
2

, (6)

and u±(r) is the periodic part of the Bloch function evaluated at
the conduction band minimum located at ±k0ẑ. In a quantum
dot fabricated in a strained silicon quantum well, k0 ≈ 0.82 ×
2π/a, with a = 0.543 nm the length of the Si cubic unit cell.30

Depending on the magnitude of the valley splitting introduced
by the sharp interfaces and the electric field in the z direction,
the lowest energy excited states can either be valley-like or
orbital-like. For the case of an orbital-like excitation (large
valley splitting), the wave function is

ψ
Si,O
1 (r) = φ−(r)

F (z)(x + iy)√
πL2

e−(1/2L2)(x2+y2). (7)

When the valley splitting is smaller than the orbital splitting,
both the ground state and first excited state have s-like
transverse wave functions, but their z-direction wave functions
are different valley states. The ground-state wave function is
still given by Eq. (5), but the first excited state is now

ψ
Si,V
1 (r) = φ+(r)

F (z)√
πL

e−(1/2L2)(x2+y2). (8)

The periodic parts of the Bloch functions, u(r), have dis-
crete Fourier spectra, with contributions occurring at reciprocal
lattice vectors G. Hence, when performing calculations with
the full wave functions, as we do in this paper, it is convenient
to decompose u(r) into the sum32,33,37

u(r) =
∑

G

α(G)eir·G, (9)

where the expansion coefficients α(G) are independent of
r. For low-frequency dephasing channels such as acoustic
phonons and charge noise only the G = 0 mode contributes
significantly.38 For high-frequency processes such as optical
phonon couplings, contributions with G �= 0 can also be im-
portant. We assume that the electron-optical phonon couplings
are independent of G. With this assumption, one can prove
that the calculation of dephasing rates is independent of the
form of the periodic part of the Bloch functions. Hence, for all
instances we consider in this paper, we may ignore the periodic
part of the Bloch functions.

In a real system, disorder would cause the excited states to
have mixed valley and orbital characteristics,39 for which pure
orbital-like and pure valley-like first excited states represent
limiting cases. Hence, it is important to consider both the pure
valley and orbital excitations described above.

III. DEPHASING VIA THE ELECTRON-PHONON
INTERACTION

We now consider the dephasing of two-electron states in
a single quantum dot due to the electron-phonon interaction,
following the techniques of Ref. 25. In Sec. III A, we consider
dephasing in GaAs due to deformation potential, longitudinal
and transverse piezoelectric, and polar optical phonons. In
Sec. III B, we turn to silicon, where we may have either valley
or orbital excitations, and the relevant dephasing channels
are through intravalley deformation potential and intervalley
optical phonons.

The general form of the electron-phonon interaction is38

Vep(r) =
∑

q,G,λ

Mλ(q + G)ρ(q + G)(aq,λ + a
†
−q,λ), (10)
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where each G is a reciprocal lattice vector, q is constrained
to the first Brillouin zone, ρ is the electron density operator,
aq,λ and a

†
q,λ annihilate and create, respectively, phonons with

wave vector q, and λ indexes the phonon mode. Since we will
treat the the relevant modes separately, we will suppress this
sum over phonon modes in the calculations that follow. The
electron-phonon coupling, Mq+G, is defined by

M(q + G) = −Vei(q + G)[(q + G) · ξ ]

√
h̄

2ρm	ωq
, (11)

where Vei is the electron-ion potential, ξ is the phonon
polarization vector, ρm is the crystal mass density per unit
volume, 	 is the crystal volume, and ωq is the phonon
frequency. Since the singlet and triplet have different charge
distributions, they are dressed differently by the phonons.
The phonons can themselves decohere, which in turn causes
dephasing between the singlet and triplet states. Following
Ref. 25, the singlet-triplet dephasing rate due to the electron-
phonon coupling is

�ST = 	

2π3h̄2

∑
G

∫
d3q

|M(q + G)A(q + G)|2
ω2

q + (γq/2)2

γq

2
, (12)

where γq is the phonon relaxation rate, and A is a Fourier
component of the charge density difference between triplet
and singlet states:

A(q + G) = 1
2 (〈T |ρ(q + G)|T 〉 − 〈S|ρ(q + G)|S〉). (13)

Using the approximate forms for the singlet and triplet states
detailed in Eqs. (1) and (2), we have

A(q + G) = 1
2 (〈1|ei(q+G)·r|1〉 − 〈0|ei(q+G)·r|0〉), (14)

where |1〉 is the single-particle first excited state and |0〉 is the
single-particle ground state. In the following subsections, we
evaluate Eq. (12) for the different types of phonons in both
GaAs and Si.

A. Phonon-induced dephasing in GaAs

For the purely orbital excitations supported by GaAs, the
ground-state transverse wave function is an s orbital, while the
first excited state transverse wave function is a p orbital, as
given in Eqs. (3) and (4). The three types of phonon couplings
that contribute to decoherence are deformation potential,
piezoelectric, and polar optical. These differ only in the form of
the electron-phonon coupling M , so their calculations proceed
similarly.

In all cases, we assume a Gaussian form for the wave
function in the z direction:

F (z) = 1

π1/4
√

d
e−z2/(2d2), (15)

where d is the confinement length along the growth axis, which
is typically a few nanometers. Choosing this form for the
wave function represents an approximation, but it captures the
relevant physics and allows us to obtain analytic results. Using
this approximation and Eqs. (3) and (4), we use Eq. (14) to
obtain

|AGaAs(q)|2 = L4
(
q2

x + q2
y

)2

4
e−[(q2

x +q2
y )L2+q2

z d2]/2. (16)

Here, we have taken G = 0, since |A|2 goes to zero rapidly for
|q| = q � 1/d,1/L, both of which are much smaller than the
size of the first Brillouin zone.

We first consider deformation potential phonons, for which
the electron-phonon coupling M has the form25,40

MDP
GaAs(q) = Dq

(
h̄

2ρm	ωq

)1/2

, (17)

where D = 8.6 eV is the deformation potential constant and
ρm = 5.33 × 103 kg/m3 is the mass density of GaAs. The
angular frequency ωq is given by the standard relationship
for acoustic phonons: ωq = vsq, where vs = 5.2 × 103 m/s
is the longitudinal speed of sound in GaAs, averaged over
direction.41

The last piece of information we need to compute the
dephasing rate is the phonon relaxation rate γq . Equation (16)
implies that |A|2 is strongly peaked, so it determines the q
values that contribute to the integral in Eq. (12). In GaAs, |A|2
goes to zero both as q goes to zero and when q 
 1/d,1/L.
Hence, the low- and high-frequency behaviors of γq are not im-
portant. For sufficiently high frequencies at low temperature, it
is expected that two frequency-dependent phonon attenuation
channels will become relevant: anharmonic decay and isotope
scattering.42 However, the frequencies we consider here are
low enough that these mechanisms are unimportant, and the
dominant source of phonon relaxation is due to interface
scattering.43

To obtain an estimate for the phonon relaxation rate,
we use experimental measurements of phonon attenuation
due to interface scattering, which were performed at low-
temperatures in Si.44 To convert between attenuation and
relaxation, one uses γq = 2αqvs ,45 where αq is attenuation
and vs = 8.49 × 105 cm/s is the speed of sound in Si along
[100]. For LA phonons in Si, low-temperature measurements
have shown that at low frequencies (up to 100 GHz), phonon
attenuation is roughly frequency independent, and is about
2.5 cm−1 along the [100] direction.44 This translates to a
low-frequency experimental limit of γ LA

0 = 4.25 MHz, which
will serve to give us an estimate on the phonon relaxation rate.
Since this mechanism is due to the geometry (i.e., the finite
extent of the sample and presence of heterostructure interfaces)
rather than the particular material properties of Si, we will also
use the above relaxation time for acoustic phonons in GaAs.

By switching to polar-cylindrical coordinates, evaluation
of the integral in Eq. (12) is straightforward. We set ω2

q +
(γq/2)2 ≈ ω2

q, which is valid because the frequencies that
contribute to the integral satisfy ωq 
 γ0. Electrostatically
defined quantum dots typically obey L 
 d, so we ex-
pand the integration result to first order in d/L, obtaining
an expression for �

GaAs,DP
ST , the singlet-triplet decoherence

rate in GaAs due to deformation potential electron-phonon
coupling:

�
GaAs,DP
ST ≈ D2[4 ln(2L/d) − 3]γ LA

0

16π2L2v3
s ρmh̄

≈ 6.9

L2
MHz nm2.

(18)
Here, the dependence on L and d can be understood by power
counting in Eq. (12). For the polar couplings we consider next,
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the L and d dependencies can be understood by examining the
qz integral in Eq. (12) over the range where |qz| � |qx |,|qy |,
followed by power counting.

We next consider piezoelectric coupling, which contribute
in both longitudinal and transverse phonon modes. In this case,
the electron-phonon coupling is25,40

MPE
GaAs(q) = 2iee14

q2

(
h̄

2ρm	ωq

)1/2

(19)

×(qxqyξz + qyqzξz + qzqxξy),

where e is elementary charge and e14 = 1.38 × 109 V/m is
an elasticity tensor component. For longitudinal phonons,
ξ = q/q. Integration of Eq. (12), expanded to lowest order
in d/L, yields �

GaAs,PE,LA
ST , the singlet-triplet dephasing rate

in GaAs due to piezoelectric coupling between electrons and
longitudinal acoustic phonons:

�
GaAs,PE,LA
ST ≈ 3e2e2

14γ
LA
0

140π2v3
s ρmh̄

≈ 6.0 kHz. (20)

In the limit when the media is considered isotropic and homo-
geneous, the two transverse phonon branches are degenerate,
and we can choose any two orthogonal polarizations. One
possible polarization is

ξ =
⎡
⎣ qy√

q2
x + q2

y

,− qx√
q2

x + q2
y

,0

⎤
⎦ , (21)

and any rotation of this vector about q is also a valid transverse
polarization. We average over this plane before integrating
over q. This complicates the resulting integral, but it can still be
carried out analytically, yielding �

GaAs,PE,TA
ST , the singlet-triplet

dephasing rate in GaAs due to piezoelectric coupling between
electrons and transverse acoustic phonons:

�
GaAs,PE,TA
ST ≈ e2e2

14γ
LA
0

70π2v3
s ρmh̄

≈ 22 kHz (22)

per transverse mode.
For polar optical phonons, the electron-phonon coupling

is25,40

MPO
GaAs(q) =

√
2πe2h̄ω0

q2	

(
1

ε∞
− 1

ε0

)
, (23)

where ε∞ = 10.89εvac and ε0 = 12.9εvac are the high- and
low-frequency limits of the GaAs dielectric function, and
εvac is the vacuum permittivity. The frequencies of optical
phonons are essentially q independent, with h̄ω0 = 36.35 meV.
Since optical phonons are much higher in frequency than
acoustic phonons, they also have much shorter lifetimes,
with measurements indicating γ LO

0 ≈ 160 GHz.46 The in-
tegration proceeds similarly to the acoustic cases, and the
resulting singlet-triplet dephasing rate �

GaAs,PO
ST in GaAs due

to polar optical electron-phonon coupling is, to first order
in d/L,

�
GaAs,PO
ST ≈ e2 (ε0 − ε∞)

ε0ε∞

(3πL − 16d)γ LO
0

16
√

2πL2h̄ω0

≈ 240

L
GHz nm.

(24)
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FIG. 1. (Color online) Calculated singlet-triplet dephasing rates
of two electrons in a single dot via the phonon mechanisms considered
in Sec. III and the charge noise mechanism considered in Sec. IV.
(a) Plot of dephasing rates versus the lateral extent of the electron
wave functions for the mechanisms pertinent for GaAs: polar optical
phonons [Eq. (24)], deformation potential phonons [Eq. (18)], trans-
verse piezoelectric phonons [Eq. (22)], and longitudinal piezoelectric
phonons [Eq. (20)]. (b) Plot of singlet-triplet dephasing rates versus
lateral wave function extent for different mechanisms in Si: intervalley
phonons for valley excitations [Eq. (33)], and intervalley phonons
[Eq. (32)], longitudinal acoustic phonons [Eq. (29)], and transverse
acoustic phonons [Eq. (30)] for orbital excitations. The dephasing
rates due to charge noise plotted for both materials systems are
determined from Eq. (40), using the energy fluctuations for orbital
excitations in a single dot [Eq. (36)], and assuming zero dipole
moment. In all cases, the vertical extent of the wave function d is
set to 3 nm.

In Fig. 1, we plot the four dephasing rates considered in
this section. Typical values and scalings are listed in Table I.
Polar optical phonons are the largest contribution to dephasing,
exceeding the others by at least five orders of magnitude. This
is mainly due to the extremely fast decay of the high-frequency,
optical phonons.

B. Phonon-induced dephasing in silicon

Unlike GaAs, Si quantum dots can support both valley and
orbital excited electron states. The ground and first excited
states in the case of an orbital excitation are given in Eqs. (5)
and (7). As we did for GaAs, we take the envelope in z

to be Gaussian with width d. Then, defining Q = q + G,
we evaluate Eq. (14) for orbital excitations in Si (ASi

O),
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TABLE I. Typical values for the dephasing rates of the phonon-induced channels discussed in Sec. III, assuming a lateral electron
confinement of L = 40 nm and a vertical confinement along the growth direction of d = 3 nm. The channels depend on material properties
and symmetry: Polar phonon couplings are absent in Si, transverse phonons do not couple to electrons via the deformation potential in GaAs
(Ref. 25), at low temperatures and biases GaAs has only one band minimum that participates in conduction, and valley excitations in Si are
not connected by low-frequency phonons. The scaling column describes the primary dependence of the dephasing rate on L, the lateral wave
function extent, and d , the vertical wave function extent. In the scalings, (∗) indicates a neglected logarithmic correction.

Typical dephasing rate (Hz)

Coupling mechanism GaAs Si: orbital excitations Si: valley excitations Scaling
LA phonons

Deformation potential 4.3 × 103 8.8 × 102 – L−2∗

Piezoelectric 6.0 × 103 – – –
TA phonons

Deformation potential – 5.2 × 101 – L−2

Piezoelectric 2.2 × 104 – – –
LO phonons

Polar optical 5.9 × 109 – – L−1

Intervalley – 1.4 × 105 1.1 × 106 L−2d−1

obtaining

∣∣ASi
O(Q)

∣∣2 = L4
(
Q2

x + Q2
y

)2

256
e−L2(Q2

x+Q2
y )/2

(
4e−d2Q2

z/2

+ e−d2(2k0+Q2
z )/2 + e−d2(2k0−Q2

z )/2
)
, (25)

where we used the fact that the three Gaussians are well
separated in Qz to drop cross-terms. If we instead have
excitations as given by Eqs. (5) and (8), we evaluate Eq. (14)
for valley excited states in Si (ASi

V ), obtaining∣∣ASi
V (Q)

∣∣2 = 1
4e−L2(Q2

x+Q2
y )/2

×(
e−d2(Qz+2k0)2/2 + e−d2(Qz−2k0)2/2). (26)

The expressions for |ASi
O |2 and |ASi

V |2 in Eqs. (25) and (26)
above select the types of phonons that contribute signifi-
cantly to dephasing through the integral in Eq. (12). For
orbital excitations, both phonons that couple electrons within
the same valley and across valleys contribute, and |ASi

O |2
contains contributions from three toroids, each with peak
radius

√
2/L, situated in the kx-ky planes centered at Qz = 0

and Qz = ±2k0. The phonons at the Qz = 0 toroid corre-
spond to intravalley processes, where G = 0. The remaining
two toroids at Qz = ±2k0 are intervalley processes, where
G = ∓(4π/a)ẑ. The regions of k space relevant to orbital
excitations are shown in Fig. 2(a). For valley excitations,
|ASi

V |2 contains contributions from two ellipsoids centered at
Q = (0,0,±2k0). Since the valley-like first excited state has the
same envelope function as the ground state, long-wavelength
phonons cannot contribute to the singlet-triplet dephasing.
This is clearly illustrated by the vanishing of |ASi

V |2 at small k

(or long wavelength). The regions of k space relevant to valley
excitations are shown in Fig. 2(b).

Now that we have identified the most important phonon
wave vectors for the different dephasing mechanisms, we
discuss which electron-phonon coupling mechanisms are most
relevant. Since Si is not polar, the deformation potential
electron-acoustic phonon coupling is the main contribution
near the zone center (G = 0, q � 2π/a). This coupling
connects electrons to both longitudinal acoustic phonons, with

matrix element25,40

|MLA(q)|2 = �2
d

h̄q2

2ρm	ωq

(
1 + �u

�d

q2
z

q2

)2

, (27)

and to transverse acoustic phonons, with coupling25,40

|MTA(q)|2 = �2
u

h̄ξ 2
z q2

z

2ρm	ωq
, (28)

where �d = 5.0 eV and �u = 8.77 eV are silicon deformation
potentials. As in Sec. III A above, for these acoustic modes we
take the phonon relaxation rate, believed to be due to interface
scattering, to be γ0 = 4.25 MHz.44 The intravalley piece of the
orbital excitation is found by integration of Eq. (12), which
proceeds very similarly to the GaAs deformation potential
case we considered in Sec. III A. For deformation potential

−2k0 +2k0

(b) k̂z

k̂y

k̂x

intravalley
intervalley

−2k0 +2k0

(a) k̂z

k̂y

k̂x

FIG. 2. (Color online) Cartoon of the absolute value of the Fourier
transform of the difference between the triplet and singlet charge
distributions, |A|2 [Eq. (13)] in Si. Here, the shaded regions indicate
the k values that contribute significantly to dephasing. Phonons that
couple electrons in the same valley (intravalley processes) lie near
the origin, while phonons that couple electrons in different valleys
(intervalley processes) lie near k = ±2k0k̂z. (a) The contribution
resulting from an orbital-like first excited state [Eq. (25)]. (b) The
contribution resulting from a valley-like first excited state [Eq. (26)].
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coupling between electrons and longitudinal phonons in Si,
the singlet-triplet dephasing rate �

Si,LA
ST , to first order in d/L,

is

�
Si,LA
ST ≈ γ0

192π2L2v3
s ρmh̄

[
3(�d + �u)2 ln(16L4/d4)

− 9�2
d − 42�d�u − 25�2

u

] ≈ 1.4

L2
MHz nm2. (29)

As was the case for GaAs, the dependence on L and d can be
understood by power counting in Eq. (12).

We perform the same averaging procedure as was done
for the transverse phonons in the previous section and obtain
�

Si,TA
ST , the singlet-triplet dephasing rate in Si due to defor-

mation potential coupling between electrons and transverse
acoustic phonons:

�
Si,TA
ST ≈ �2

uγ0

96π2L2v3
s ρmh̄

≈ 83

L2
kHz nm2. (30)

We next consider the intervalley contributions, which occur
at kz = ±2k0, outside the first Brillouin zone. The reciprocal
lattice vectors that contribute significantly to the relevant in-
tegrals are G = ±(4π/a)k̂z, which give qz ≈ ∓0.36(2π/a) =
∓4.17 × 109 m−1. The phonons that are responsible for this
transition in silicon are due to g-type Umklapp processes.40

Although symmetry restricts these to be longitudinal optical
phonons, experiments indicate that both transverse and lon-
gitudinal acoustic phonons participate through processes in
which M(q) is first order in q.40,47 However, the acoustic
phonons do not play a significant role here, both because their
deformation potential coupling to the electrons is weaker41

and they are much longer lived42 than optical phonons.
The LO phonons in Si have a nearly constant energy h̄ω0 =

62 meV.40 The electron-phonon coupling arises from an optical
deformation potential:40,41

|M(Q)LO|2 = D2
if

h̄

2ρm	ω0
, (31)

where the intervalley deformation potential Dif = 11.0 ×
108 eV/cm.41

Finally, we estimate the relaxation rate γq for optical
phonons in Si. As for optical phonons in GaAs, the short-
wavelength longitudinal optical phonons that cause interval-
ley coupling have a much shorter lifetime than the long-
wavelength acoustic phonons that are responsible for intraval-
ley coupling. The literature value we use for the relaxation
rate is γ LO

0 = 118 GHz.48 For the intervalley component of
the orbital excitation, we get

�
Si,Orbital,LO
ST = D2

if γ0

32
√

2π3dL2ρmh̄ω3
0

≈ 670

L2d
MHz nm3.

(32)

Similarly, for the case of valley excitations we have

�
Si,Valley,LO
ST = D2

if γ0

4
√

2π3dL2ρmh̄ω3
0

≈ 5.3

L2d
GHz nm3. (33)

Figure 1 shows the dephasing rates for both GaAs and Si.
Typical values and scalings with L and d are listed in Table I.
In Si, as in GaAs, most of the dephasing is due to the fast decay

of optical phonons: In silicon these high-frequency phonons
couple electrons across valleys.

So far, we have only considered pure valley and pure orbital
excitations. However, for nonideal interfaces such as those
with atomic steps, valley-orbit mixing occurs.29,31,39 Since
both of the limiting cases exhibit strong dephasing due to
intervalley phonons [with orbital excitations suppressed by a
factor of 8 from valley excitations; see Eqs. (32) and (33)],
we expect that valley-orbit mixing cannot be used to suppress
substantially this dephasing.

IV. DEPHASING DUE TO CHARGE NOISE

We now consider the other expected major dephasing
mechanism for our system: charge noise.22–24,49 This dephas-
ing arises because remote charge fluctuations induce random
variations of the energy splitting between singlet and triplet
levels by coupling to their nonequivalent charge distributions
via the Coulomb interaction. These variations in the energy
splitting lead to the accumulation of a random phase between
the singlet and triplet states. In turn, this introduces a phase
difference between the logical qubit states. The dephasing
mechanism and the estimated decay rates are essentially
equivalent for GaAs and Si quantum dots, so we do not treat
these two systems separately in this section.

Because the hybrid qubit has a potentially strong
charge characteristic, it can couple to remote charge traps.
We assume the simplest nontrivial charge fluctuation: a single,
remote charge trap with two states (occupied and empty). To
determine the dephasing rate, the first step is to compute the
effect of the change in the state of the charge trap on the singlet-
triplet energy splitting. We work to first order in perturbation
theory, where we may calculate the small change in energy
by using the unperturbed (spatial) wave functions. Using the
formalism of Sec. II, it is straightforward to show that the
first-order estimate of the variation in energy splitting �V (τ ) is

�V (τ ) = 〈T |V (τ )|T 〉 − 〈S|V (τ )|S〉
≈ 〈1|V (τ )|1〉 − 〈0|V (τ )|0〉, (34)

where |0〉 is the ground state, |1〉 is the first excited state,
and τ is time. Here, we assume that the energy fluctuations
are much smaller than the singlet-triplet splitting, and hence
also the confinement energy. At any instant in time, our
perturbing charge trap might be occupied or empty. If the
charge trap at the position r is occupied, and hence perturbing
the singlet-triplet energy splitting, we have

�V =
∫

d3r ′ e2

4πε0

|ψ1(r′)|2 − |ψ0(r′)|2
|r − r′| , (35)

where e is the elementary charge and ε0 is the (low-frequency)
dielectric constant of our material. We assume that the trap
is distant and calculate �V in a multipole expansion.50

For s- and p-like orbitals in a perfectly harmonic dot, the
lowest-order, nonvanishing term is of quadrupole order:

�VSP ≈ e2L2 [1 + 3 cos(2θ )]

32πr3ε0εb

, (36)

where L is the lateral electron confinement length and
(r,θ,φ) is the location of the noise source in polar-spherical
coordinates. Alternatively, for two valley states with identical
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envelope functions, we find that �V is exponentially
suppressed by a factor of e−d2k2

0 to quadrupole order, where
d is the z-envelope width and k0 is the location of the valley
minimum. To evaluate Eq. (36), we must estimate the typical
distance r between the charge trap and the qubit. To do this, we
consider a slightly different system composed of a double-dot
charge qubit in GaAs, for which the energy splitting
variation has been measured experimentally and found to
be �V exp ≈ 1.6 μeV.19 Although this system differs from a
two-electron dot, the statistics of the charge fluctuators should
be similar. Evaluating Eq. (35) for the double-dot geometry,
we find that the leading order term is a dipole contribution:

�VDD ≈ ep0 cos φ sin θ

4πr2ε0εb

, (37)

where p0 is the dipole moment ex0 associated with the dot
separation x0. Averaging over θ and φ with x0 ≈ 300 nm
(the distance between the dots considered in the experiment),
we solve Eq. (37) to find r ≈ 2.9 μm. Inserting this into
Eq. (36), we obtain �VSP ≈ 2 × 10−3 μeV for L = 40 nm
in Si. Note that this value for �VSP is likely an overestimate:
If the dephasing is due to multiple charge traps (instead of the
single trap we have assumed), �VSP will be decreased. This
is because matching to �V exp while increasing the number of
traps increases the average r . Since �VSP ∼ 1/r3 and �Vexp ∼
1/r2, �VSP decreases. Therefore, our estimate of the singlet-
triplet dephasing rate for an ideal orbital first excited state is an
overestimate, and may decrease due to multiple charge traps.

Now that we know the magnitude of the energy fluctuations,
we can calculate the dephasing time T2. The off-diagonal
elements of the density matrix decay as e−�φ(τ ), so the
time T2 is defined by �φ(T2) = 1.51 Following Ref. 23, the
time-dependent dephasing is given by

�φ(τ ) = 1

2h̄2

∫ ∞

ω0

dωS(ω)

(
sin ωτ/2

ω/2

)2

, (38)

where ω0 is a low-frequency cutoff that is the inverse
measurement time. Up to this point, we have only considered
the coherent evolution of the phase due to charge fluctuations.
However, true decoherence occurs due to the statistical nature
of the fluctuators. This effect is captured in the spectral density
S(ω) of the charge noise, through the definition

S(ω) = 1

2π

∫ ∞

−∞
dτeiωτ 〈�V (τ )�V (0)〉. (39)

As noted in Ref. 23, by examining the form of Eqs. (38) and
(39) we can deduce that T2 for 1/f noise should scale as 1/�V .
Thus, we can calibrate our T2 to the experimental measurement
via

T2 ≈
∣∣∣∣�V exp

�V

∣∣∣∣T exp
2 , (40)

where �V exp and T
exp

2 are the experimental charge qubit
measurements for the energy splitting fluctuation and the
dephasing time. For the double-dot charge qubit experiment
referenced above, T

exp
2 ≈ 1 ns, which leads to T SP

2 ≈ 0.8 μs
for our two electron dot with an orbital-like first excited
state. Thus, the dephasing rate for orbital excitations due to
charge noise in Si is �

Charge
ST ≈ 1.3 MHz, which is on the same

order as the phonon-induced dephasing in Si, and far slower
than the dominant dephasing mechanism in GaAs. We plot
this dephasing rate as a function of L alongside the phonon
dephasing mechanisms in Fig. 1.

This long dephasing time is due to the fact that for a
perfectly harmonic confinement potential, the dipole term
of �VSP vanishes. However, in realistic systems, potential
anharmonicity and interface roughness result in a nonvanishing
dipole moment that can be more important than the quadrupole
term in Eq. (36). If our confinement potential is severely an-
harmonic, we expect that we would have a dipole contribution
similar to Eq. (37), but with a moment of p0 � eL. Further, a
disordered interface might also introduce a dipole moment. As
an example, simulations of the typical devices used in Refs. 52
and 53 find p0/e = 1.8 nm.

Figure 3 shows the dephasing rate due to charge noise as a
function of dipole moment p0, obtained by using Eqs. (37) and
(40). The figure also shows the dominant dephasing rates from
phonons calculated in Sec. III and listed in Table I, which are

Charge noise (Si)
Phonons (GaAs)
Phonons (Si, valley)
Phonons (Si, orbital)

S
T
 (

H
z)

105

106

107

108

109

1010

p0 /e (nm)
0.01 0.1 1 10 100

FIG. 3. (Color online) Singlet-triplet dephasing rate �ST due to
charge noise and electron-phonon coupling as a function of effective
dipole moment p0. In this plot, a constant quadrupole contribution
of 1.3 MHz [Eq. (36)] is added to the dipole contribution, which
is the estimated dephasing rate from charge noise for a dot with a
purely harmonic confinement potential, for which p0/2 is zero. Here,
we have set the lateral electron confinement to be L = 40 nm, the
vertical confinement to be d = 3 nm, and have assumed an orbital
excited state. The charge noise curve for Si is estimated using a
dielectric constant εSi

0 = 11.7εvac. In a perfectly harmonic dot, p0 ≈
0, but anharmonicity and disorder can introduce a dipole moment of
p0 � eL. In GaAs we expect phonon-mediated dephasing to be most
important, but in Si quantum dots charge noise can easily dominate.
The circle marker indicates the dephasing due to charge noise at
p0/e = 1.8 nm, an estimated dipole moment for realistic devices
(Refs. 52 and 53).
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essentially independent of dipole moment because there is sub-
stantial electron-phonon coupling even for perfectly harmonic
confinement potentials. Within our approximations, we see
that phonon-mediated dephasing is the most important mech-
anism in GaAs, but in Si charge noise can easily dominate.

V. DISCUSSION

In this paper, we addressed dephasing due to electron-
phonon coupling and charge noise for two-electron states
in a single quantum dot in both GaAs and Si. For the
electron-phonon coupling, we found that in GaAs the main
contribution to dephasing is due to polar coupling to optical
phonons, and that the dephasing rate was of order gigahertz.
In Si, phonon-mediated dephasing rates are much lower than
in GaAs because there is no polar coupling to phonons.
Intervalley processes are more important than intravalley
processes, since phonons that couple valleys in silicon are
extremely short lived. The intervalley coupling to phonons
leads to a dephasing rate for silicon of order megahertz.

We found that charge noise for an orbital first excited
state in a perfectly harmonic quantum dot with no disorder is
strongly suppressed because the singlet-triplet energy splitting
fluctuations produced by a remote perturbing potential in
this case are of quadrupole order, while for a double-dot
charge qubit they are of dipole order. As has been noted
previously,54 pure valley states in Si are even more favorable,
as they are largely immune to charge noise, in that both
the dipole and quadrupole terms are suppressed by a factor
of e−d2k2

0 . However, the introduction of either anharmonicity
(for orbital excitations) or disorder (for valley excitations)
leads to nonvanishing dipole moments up to the order of the
lateral wave function extent. For either type of excited state
in Si, this can become the dominant dephasing mechanism.
Our estimated dephasing rate due to charge noise, based on
calculations in typical dots, is of order 10 MHz. This rate is
fast enough to dominate the dephasing in silicon, but likely
not in GaAs.

Our calculations suggest that two-electron, singlet-dot
systems in Si have substantially better dephasing properties
than those in GaAs. This is because the polar coupling for
optical phonons, which mediates fast dephasing in GaAs,
is absent in Si. Within Si, to reduce the dephasing in this
system, the critical figure to optimize is the effective dipole
moment of the charge density difference between the first
excited state and the ground state. As indicated in Fig. 3,
we estimate that unless this dipole moment is reduced below
p0/e ∼ 1 nm, charge noise is expected to be the dominant
dephasing mechanism. Below that threshold, the electron-
phonon coupling (for valley excitations) and quadrupole-order
charge noise (for orbital excitations) are expected to be the
dominant dephasing mechanisms.

Finally, we note that throughout this paper we focused on
conduction electron charge carriers, rather than holes. Since
there have been recent advances in quantum dot structures that
use holes,10,55 a detailed study of two-hole dephasing would
be useful, but is beyond the scope of the current work. Recent
studies of hole relaxation in the context of low-temperature
quantum dots56 do not rely on the exact character of the
spatial wave function, and so are not directly applicable to
decoherence. We expect that the techniques developed here
can be readily extended to study holes. The major challenges
in such an investigation would be determining the accurate
hole spatial wave functions and deformation potentials, which
would be affected around the valence band maximum by heavy
hole–light hole mixing.57
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