
High-fidelity gates in quantum dot spin qubits
Teck Seng Koh, S. N. Coppersmith1, and Mark Friesen

Department of Physics, University of Wisconsin, Madison, WI 53706

Contributed by Susan N. Coppersmith, October 24, 2013 (sent for review July 30, 2013)

Several logical qubits and quantum gates have been proposed for
semiconductor quantum dots controlled by voltages applied to top
gates. The different schemes can be difficult to compare mean-
ingfully. Here we develop a theoretical framework to evaluate
disparate qubit-gating schemes on an equal footing. We apply the
procedure to two types of double-dot qubits: the singlet–triplet
and the semiconducting quantum dot hybrid qubit. We investigate
three quantum gates that flip the qubit state: a DC pulsed gate, an
AC gate based on logical qubit resonance, and a gate-like process
known as stimulated Raman adiabatic passage. These gates are all
mediated by an exchange interaction that is controlled experimen-
tally using the interdot tunnel coupling g and the detuning e,
which sets the energy difference between the dots. Our procedure
has two steps. First, we optimize the gate fidelity (f) for fixed g as
a function of the other control parameters; this yields an fopt(g)
that is universal for different types of gates. Next, we identify
physical constraints on the control parameters; this yields an upper
bound fmax that is specific to the qubit-gate combination. We
show that similar gate fidelities (∼ 99:5%) should be attainable
for singlet-triplet qubits in isotopically purified Si, and for hybrid
qubits in natural Si. Considerably lower fidelities are obtained for
GaAs devices, due to the fluctuating magnetic fields ΔB produced
by nuclear spins.

quantum computing | Heisenberg exchange | decoherence

The fundamental building block of a quantum information
processor is a two-state quantum system, or qubit. Solid-state

qubits based on electrons confined in top-gated quantum dots in
semiconductor heterostructures (1) are promising, due to the
promise of manipulability and the overall maturity of semicon-
ductor technology. In a charge qubit, the information is stored in
the location of an electron in a double quantum dot. Because
charge qubits are subject to strong Coulomb interactions, they
can be manipulated quickly, at gigahertz frequencies, using control
electronics (2–5); however, they also couple strongly to envi-
ronmental noise sources, such as thermally activated charges on
materials defects, leading to short, subnanosecond decoherence
times (6). Spin qubits, which couple more weakly to environmental
noise, have much longer coherence times (1, 7–15). However, be-
cause magnetic couplings are weak, gate operations between spin
qubits are slow. For this reason, in most gating protocols, spin
qubits adopt a charge character briefly during gate operations.
Successful gate operations generally entail a tradeoff: charge-like
for faster gates vs. spin-like for better coherence.
Several types of logical qubits have been designed to enable

electrically controlled manipulation and measurement of qubits
encoded in spin degrees of freedom formed of two or more
electrons in two (7, 9, 16) or three (11) coupled dots. These
logical qubits share experimental control knobs; however, their
spin-charge characteristics vary widely, yielding variations in
gating speeds, dephasing rates, and gating protocols.
When characterizing quantum gates, instead of considering

the gating time and decoherence time separately, it is important
to consider the gate fidelity, a measure of the fraction of the
wave function that is in the targeted state, which depends on the
ratio of the gating time to the decoherence time. Here we argue
that achieving meaningful comparisons between logical qubits
and gating schemes is greatly facilitated by first optimizing the

specific gate operations, taking into account the different dephasing
rates of the spin and charge sectors. We compute and optimize
gate fidelities for different qubits and gating protocols using a
master equation approach.
We consider two types of logical qubits in a double quantum

dot: a singlet–triplet (ST) qubit formed with two electrons,
one in each dot (7, 8), and a quantum dot hybrid qubit formed
with three electrons, two in one dot and one in the other (9,
17). Logical qubit states for the ST qubit are j0iST = j↑iLj↓iR
and j1iST = j↓iLj↑iR, where j↑i and j↓i are spin-up or -down
states, and L and R refer to the left or right dots. Logical
qubit states of the quantum dot hybrid qubit are j0ihy = jSiLj↓iR
and j1ihy =

ffiffiffiffiffiffiffiffi
1=3

p jT0iLj↓iR −
ffiffiffiffiffiffiffiffi
2=3

p jT−iLj↑iR, where jSi; jT0i=ffiffiffiffiffiffiffiffi
1=2

p ðj↑↓i∓j↓↑iÞ and jT−i= j↓↓i are singlet (S) and triplet (T)
states. Energy differences between the qubit states drive z-rota-
tions around the Bloch sphere. For ST qubits, the energy split-
ting ΔEB is caused by a magnetic field difference ΔB on the two
sides of the double dot. ΔB occurs naturally in GaAs and natural
Si, and may be enhanced by nuclear polarization (18, 19), or with
micromagnets (20) or striplines (10). Typical values of ΔB are in
the range 10−6 − 10−2 T. Hybrid qubits do not require local
magnetic fields; the qubit energy splitting ΔE10 is dominated by
the ST energy splitting of the two-electron dot. ΔE10 is typically
of order 0.1 meV (21), yielding much faster z-rotations than in
ST qubits.
Although z-rotations can never be extinguished in ST or hybrid

qubits, the rotation axis may be varied in the x–z plane by ad-
justing the tunnel coupling between the two sides of the double
dot. As Fig. 1 indicates, the main experimental parameters are
g and the detuning e, which characterizes the energy difference
between different charge configurations [(1,1) vs. (0,2) for the ST
and (2,1) vs. (1,2) for the hybrid qubit]. We use analytical and
numerical calculations to find the relationship between e and g
that maximizes the fidelity f ðe; gÞ of x- and z-rotations. Physical
limits on e and g for a given qubit scheme then determine the
maximum achievable fidelity.
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We consider three different schemes for performing x-rota-
tions: (i) DC pulsed gates (8), in which the detuning is changed
suddenly between different values; (ii) logical qubit resonance
(LQR), an AC resonant technique analogous to electron spin
resonance (ESR) for single spins (22), and (iii) stimulated Raman
adiabatic passage (STIRAP) (23), another AC resonant tech-
nique in which each qubit state is coupled to an auxiliary excited
state. Given a tunnel coupling g, pulse-gating and LQR are op-
timized over the detuning e, whereas STIRAP is optimized over
the duration of the pulses used. Remarkably, we find that the
g-dependence of the optimal fidelity f optðgÞ is very similar for all
three gating schemes. However, physical constraints that differ
between the gating schemes limit the achievable fidelity fmax.
The paper is organized as follows. The following section pro-

vides relevant details concerning ST and hybrid qubits and their
decoherence rates. We describe the physical mechanisms for
implementing x-rotations (transitions between qubit states) and
z-rotations (changes in the phase difference between the qubit
states). We discuss the “slow” or “pure” spin-dephasing rate γ,
arising from dephasing of the qubit states themselves, and the
“fast” charge-dephasing rate Γ, involving the intermediate state
(26, 27). We then present the calculations and results for qubit
fidelities, based on the master equations presented in Materials
and Methods (see SI Text for further details). Figs. 2 and 3 show
the key results, plots of optimized fidelities as a function of the
tunnel coupling g. In Discussion, we describe the physical con-
straints that determine the upper bounds on f opt for each type of
qubit, gate operation, and materials system (Si vs. GaAs).

Logical Qubits, Gates, and Decoherence Mechanisms
Fig. 1 shows gating schemes and energy levels for ST and hybrid
quantum dot qubits. The horizontal energy levels in the e< 0
portion of Fig. 1 B and C correspond to the logical qubit states.
Only states that can be reached by spin-conserving processes are
shown. A third state with a different charge configuration that
plays a prominent role during gating is shown for both ST and
hybrid qubits (jei= jS02i or jEi, respectively). At (or near) the

detuning value e= 0, states with different charge configurations
are energetically degenerate [(1,1) and (0,2) states for the ST
qubit and (2,1) and (1,2) states for the hybrid qubit]. We focus on
the regime e≤ 0.

A B C

D E

Fig. 1. Physics of x- and z-rotations of ST and hybrid qubits in a double quantum dot. Transitions between qubit states yield x-rotations, whereas z-rotations
change the relative phase of the qubit states. (A) Schematics of processes underlying x-rotations for ST and hybrid qubits, which are implemented by changing
the detuning to turn on an exchange interaction by mixing in an excited state with different charge character. (Left and Right) Qubit states. (Center) In-
termediate states. Increasing the strength of the exchange interaction increases the gate speed but also increases dephasing from charge fluctuations.
Reducing the gate speed increases the exposure to spin dephasing. In this paper, we determine the optimal gate speeds that maximize the gate fidelity.
(B and C) The three lowest energy levels for ST and hybrid qubits, including the two qubit states and the excited charge state, as a function of the detuning, e.
The energy splitting of the qubit states drives z-rotations, and is typically much smaller for ST qubits than for hybrid qubits (i.e., ΔEB � ΔE10). For a given value
of the tunnel coupling g, the exchange interaction J is large when jej is small. Large J causes faster gate speed but also faster decoherence from charge noise.
For ST qubits, optimum fidelity is obtained when e< 0. For hybrid qubits, AC gates are optimized with e< 0, whereas DC pulsed gates are optimized when e is
set to the energy level anticrossings (24). (D) LQR is performed by oscillating the tunnel coupling gðtÞ [and therefore JðtÞ] at the primary resonant frequency
ω=ΔE=2Z, or at the secondary harmonic ω=ΔE=Z. (The secondary period is identified in the figure.) (E) STIRAP (25) is implemented at the resonant fre-
quencies, ω= Eea=Z and Eeb=Z, using overlapping Gaussian envelopes known as Stokes and pump pulses.
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Fig. 2. Fidelities for LQR and STIRAP† x-rotations in ST and hybrid qubits for
isotopically pure 28Si (see legend at top left) using material parameters given
in the main text. We assume a magnetic field difference of ΔB= 0:3 mT,
from an external micromagnet. Data points are numerically optimized fi-
delities fopt = fðeoptÞ vs. g0. Solid lines are analytical estimates for foptLQR (Eq. 2).
The corresponding gate speeds increase with g0. (Lower, Left Inset) At fixed
g0, the optimized value eoptðg0Þ is found by minimizing the infidelity 1 − f as
a function of e. Data points are numerical results for g0=h=0:3=π GHz, and
solid lines are analytical estimates (SI Text). The numerically obtained eoptLQR
agree with the analytical estimate (Eq. 1). (Upper, Right Inset) A cartoon
showing the tunnel barrier and detuning in a double dot, which are both
controlled electrostatically.

19696 | www.pnas.org/cgi/doi/10.1073/pnas.1319875110 Koh et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319875110/-/DCSupplemental/pnas.201319875SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319875110/-/DCSupplemental/pnas.201319875SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1319875110


Implementations of x-Rotations. The implementations of x-rota-
tions for ST and hybrid qubits discussed here involve the exchange
interaction, which is mediated by the excited state jei. Fig. 1A
demonstrates the exchange process for ST and hybrid qubits.
Decreasing jej increases the occupancy of jei, which enhances the
speed of x-rotations, but also increases the coupling to external
charge noise (28). For both ST and hybrid qubits, the rate Γ of
charge dephasing between jei and the qubit states is much faster
than the rate γ of pure dephasing between the qubit states, so
changing e strongly affects the gate fidelity. Charge noise couples
to both e and g, yielding distinct dephasing mechanisms (29).
However, as shown below, the highest fidelities are obtained when
e � 0, in the region where fluctuations in g are dominant, because
the qubit energy levels have very nearly the same dependence on
detuning.* Therefore, we consider only g-noise here.

DC Pulsed Gates. ST qubit experiments typically keep the tunnel
coupling fixed and use e to tune the exchange coupling (8, 13), as
indicated in Fig. 1. z-rotations are obtained when JðeÞ � ΔE,
whereas x-rotations are obtained when JðeÞ � ΔE. In pulsed-
gating protocols, e is switched between these two positions quickly,
so that the quantum state does not evolve significantly during the
switching time.
In a hybrid qubit, the energy splitting between the qubit states

is much larger than the tunnel couplings ðΔE10 � gÞ. The energy
level diagram then has two distinct anticrossings, as indicated by
vertical dotted lines in Fig. 1C. The pulse-gating scheme pro-
posed in ref. 24 to implement an arbitrary rotation on the Bloch
sphere has five steps, three of which are at anticrossings. Below,
we show that this requirement leads to serious constraints on
gate fidelities using current technology.

Logical Qubit Resonance. In conventional ESR (30), a DC mag-
netic field applied along ẑ induces a Zeeman splitting, ΔE. A

small AC transverse magnetic field applied along x̂ at the reso-
nant frequency ω=ΔE=Z induces transitions between states with
different values of spin component Sz. In the analogous LQR
scheme (Fig. 1D), the qubit energy splitting ðΔE=ΔEB or ΔE10Þ
plays the role of the Zeeman energy, whereas an oscillating ex-
change interaction JðtÞ plays the role of the transverse field. As
for pulsed gates, e is increased from a value << 0 to a value closer
to zero, where an increase in tunnel coupling g creates a signifi-
cant exchange interaction. e is then held constant, whereas
gðtÞ= g0½1+ cosðωtÞ� is modulated. Here, we assume that g oscil-
lates between zero and a positive value 2g0, as indicated in Fig.
1D. The amplitude of the AC component of JðtÞ determines the
speed of the x-rotation.
LQR differs from conventional ESR in two main ways. First,

because the oscillating exchange interaction J has a nonzero DC
component (JDC), the precession axis tilts slightly away from ẑ.
Within the rotating wave approximation discussed below (SI
Text), this leads to infidelity in the LQR gate because the ef-

fective B-field has a shifted magnitude
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔE2 + J2DC

q �
. (This error

is accounted for in all of the calculations shown here.) Second, the
primary resonance occurs at half the Larmor frequency ω=ΔE=2Z;
this is because the tunnel coupling, gðtÞ∼ 1+ cosðωtÞ, generates two
different AC components. For example, J ∼ g2=U yields a pri-
mary component, ∼ cosð2ωtÞ=2, and a secondary component,
∼ 2 cosðωtÞ (SI Text). The numerical results reported here all
correspond to the secondary resonance, because it yields slightly
higher fidelities.

Stimulated Raman Adiabatic Passage. The STIRAP protocol (23)
generates x-rotations on the Bloch sphere by inducing tran-
sitions between the qubit states jai and jbi. A simple STIRAP
protocol is shown in Fig. 1E. The tunneling processes jai↔jei
and jbi↔jei are controlled independently by oscillating gðtÞ at
the resonant frequencies ZωP =ΔEea and ZωS =ΔEeb. Again, we
assume the tunnel coupling is nonnegative, with a DC com-
ponent g0, and an AC amplitude 2g0. Counterintuitively, an
adiabatic pulse sequence with g2ðtÞ= gSðtÞ followed by g1ðtÞ= gPðtÞ
produces a rotation from jai to jbi that never populates jei
and therefore never experiences charge dephasing. Realistic
pulse sequences have a finite duration however; this yields
a small population of jei, and therefore dephasing. Similar to
pulsed gates and LQR, we anticipate there will be an optimal
gate speed that maximizes the process fidelity. We note that
the standard STIRAP protocol shown in Fig. 1E is not a true
qubit gate.† True gates can be achieved by using longer,
STIRAP-like pulses (31), which must be optimized over many
more parameters. We only study the standard, two-pulse se-
quence here, to focus on the fundamental physics limiting the
fidelity of the protocol.

Decoherence Mechanisms. The key physics incorporated in our
calculations is that the qubit states, which have a spin character,
often have a much lower dephasing rate than the states accessed
during a gate operation, which typically have a substantial charge
character (26). To understand the achievable fidelities of real
devices, our calculations use experimentally realistic numbers,
which we list here.
Charge qubit experiments indicate that the fast charge noise-

dephasing rate Γ is very similar in Si and in GaAs (2, 4, 5). Here,
we adopt the value Γ= 1 GHz. The much slower pure dephasing
rate γ depends significantly on the material host and the type of
qubit. For ST qubits, pure dephasing is caused by the slow dif-
fusion of nuclear spins. We adopt the values γST = 0:2 MHz for
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Fig. 3. Optimized fidelities for pulsed gate x-rotations in ST and hybrid
qubits, for isotopically pure 28Si. Numerical results for the infidelity vs. tunnel
coupling g0 for an ST qubit with ΔB= 0:03 mT (magenta squares) and
ΔB= 0:3 mT (red circles). The solid black line is an upper bound on the
fidelity, obtained when ΔEB = 0. The analytical form is the same as for LQR
gates in ST qubits at the secondary resonance (solid black curve in Fig. 2). The
numerical results deviate from this limiting behavior most significantly at
small g0, in the regime where J(ΔEB and the rotation axis points away
from x̂. The horizontal lines describe the infidelity of z-rotations for the
same ΔB. (Inset) Numerical results for the infidelity of a pulse-gated hybrid
qubit, using the five-step pulse sequence described in ref. 24 (green tri-
angles). As a comparison, the solid line is the analytical estimate for an LQR
gate in a hybrid qubit at the secondary resonance (solid blue curve in Fig.
2). Pulsed gates in hybrid qubits have relatively poor fidelity because e

cannot be optimized.

*The only exception is for pulsed gates in hybrid qubits, where gating occurs at energy
level anticrossings. At these anticrossings, the qubits are also protected against e-noise
due to the quadratic dependence of the energy gap on detuning (29).

†The standard, Stokes-pump STIRAP protocol yields jai→ jbi but not jbi→ jai, and is
therefore not an x-rotation.
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99.99% isotopically purified 28Si, 4.5 MHz for natural Si, and
0.14 GHz for GaAs, which are obtained as quadrature sums of
contributions from the nuclear hyperfine coupling (32) and the
electron–phonon coupling (27, 33). For hybrid qubits, we use
γhy = 1 MHz for 99.99% isotopically purified 28Si, 4.6 MHz
for natural Si, and 5.9 GHz for GaAs, with the main con-
tributions to dephasing coming from charge noise and optical
phonons (26, 27).
Though application of echo sequences can be used to greatly

increase the coherence times of quiescent qubits (34) and of
z-rotations, it is nontrivial to correct for low-frequency noise
during a gate sequence. Though several correction schemes
have been proposed (35, 36), and noise suppression schemes
have been implemented (37), the required pulse sequences are
rather complicated. Here, we only study short sequences, so
the dephasing rates in our calculations must include the low-
frequency noise.

Calculations and Results
We now present our results for the optimized fidelity of single-
qubit gate operations in the presence of both fast and slow
dephasing mechanisms. We first focus on the fidelity of x-rota-
tions. As described in Materials and Methods, we solve a master
equation for the density matrix ρ. For both ST and hybrid qubits,
the coherent evolution is governed by a three-state Hamiltonian,
H, involving the two logical qubit states, jai and jbi, and the
excited charge state, jei, with a fast dephasing rate Γ between the
excited state and each of the qubit states, and a slow dephasing
rate γ between the qubit states. The pulsed, LQR, and STIRAP
protocols are implemented by modulating the detuning eðtÞ and
the tunnel coupling gðtÞ. Dephasing is introduced through a
Markovian phenomenological term D (38) that incorporates
dephasing associated with charging transitions in a double
quantum dot (28).
We present the fidelities of different gating schemes for the

specific gate operation of a π-rotation about the x-axis from the
initial state jai [initial density matrix ρaað0Þ= 1] to the final state jbi
[target density matrix ρbbðτÞ= 1], for a gate that is implemented in
a time τ. Our fidelitymeasure is the distance between the actual and
ideal density matrices for a π-rotation (39), which is the calculated
value of ρbbðτÞ (SI Text). For pulsed gates, we consider a one-step
pulse sequence for ST qubits (8, 13), and a five-step sequence for
hybrid qubits (24). For the AC gates, we solve the master equation
within the rotating wave approximation (RWA) (25).
We first optimize the LQR gates. For a fixed value of g0, the

value of e at which the fidelity f is maximized, eoptðg0Þ, is found.
(Fig. 2, Lower, Left Inset shows the infidelity 1 − f, which exhibits
a minimum.) For small jej−1 (large detuning), the gate speed is slow
and the fidelity is limited by the pure dephasing rate γ. For large
jej−1, the gate speed is fast and the fidelity is limited by the charge-
noise dephasing rate Γ. The optimum fidelity, which is achieved at
the cross-over between the two regimes, is determined numerically.
SI Text presents the derivation of analytical estimates for the fidelity
as a function of e (Fig. 2, Lower, Left Inset) and of the optimal
detuning and fidelity for LQR gates driven at the secondary reso-
nance (solid lines in the main panel of Fig. 2):

jeoptLQRj ’ g0
ffiffiffiffiffiffiffiffiffiffi
8Γ=γ

p
[1]

and

f optLQR ’ 1− ðπZ=g0Þ
ffiffiffiffiffiffiffiffiffiffi
Γγ=2

p
’ 1

3
+
2
3
e−ð3h=4g0Þ

ffiffiffiffiffiffiffi
Γγ=2

p
: [2]

Numerical results are also shown. Results for the fidelity of LQR
at the primary resonance can be obtained by replacing g0 → g0=2
in Eqs. 1 and 2, yielding a lower fidelity.

Pulsed gates in ST qubits are optimized similarly to LQR
gates, yielding similar results. Fig. 3 shows numerically optimized
fidelities for two different interdot magnetic field differences,
ΔB. In the low-field regime ΔEB � J, the rotation axis points
nearly along x̂. When ΔB= 0, we can obtain analytical estimates
for the optimized detuning and fidelity, obtaining the same
results as Eqs. 1 and 2, with e

opt
LQR → e

opt
ST;DC and f optLQR → f optST;DC (SI

Text). In Fig. 3, we see that the numerically optimized fidelities
approach this limiting behavior for large g0 or small ΔB. For
smaller g0, the fidelity is suppressed by a combination of dephasing
effects, and a misalignment of the rotation axis from x̂. A three-
step pulse sequence that corrects the rotation angle (40) yields
only small improvements in the fidelity (SI Text).
Pulsed gates in hybrid qubits differ significantly from the other

gating schemes because the optimal value of e does not depend
on g0. To understand this, we note that a general, pulsed-gate
rotation sequence for a hybrid qubit requires five steps (24), with
three of these steps occurring at anticrossings. Dephasing errors
are minimized by maximizing the transition speed, i.e., by tuning
e directly to the level anticrossings in Fig. 1C; this yields the
results shown in Fig. 3 Inset. The inset also shows the optimal
fidelity for an LQR gate in a hybrid qubit; LQR typically achieves
a much higher fidelity.
We next present results for optimized fidelities of the STIRAP

protocol for ST and hybrid qubits.† The pulse shape determines
the gate speed of STIRAP (Fig. 1E). For a given value of 2g0,
the pulse shape parameters twidth and tdelay are optimized for
maximum fidelity. There are no simple analytical methods for
treating the STIRAP protocol, so the optimal fidelities are obtained
numerically, yielding the results shown in Fig. 2. Remarkably, we
find that the optimal fidelities for STIRAP and LQR gates exhibit
the same dependence on g0, differing only by a small factor (SI
Text). The various gate speeds are indicated by the calibration
bars at the top of Fig. 2.
The analysis of the fidelity of z-rotations is considerably sim-

pler than the analysis of x-rotations presented above. For both
ST and hybrid qubits, the fidelity of a z-rotation should be un-
derstood simply as a competition between the pure dephasing
rate γ, and the gate speed, where the latter is determined by the
energy splitting ΔE between the qubit states.

Discussion
The previous section presents relations between the control
parameters that yield optimized gate fidelities f optðg0Þ. In prin-
ciple, the fidelity can be made arbitrarily close to 1 by increasing
g0. In practice, physical constraints on the experimental control
parameters bound the fidelity. We now list the constraints that
bound the fidelity of x-rotations.

Level Spacing.The anticrossings in the qubit energy level diagram
should be well separated; otherwise, transitions may occur be-
tween three levels rather than two. The g0 should therefore be
smaller than the spacing between single-particle levels in the
dots. Recently, this condition was found to be satisfied in an
electrostatically defined SiGe double dot for which g0 ’ 40 μeV
(41). We therefore assume a bound of g0=h< 10 GHz for sys-
tems of this type. For hybrid qubits, g0 should also be smaller
than the qubit energy splitting, or g0 <ΔE01=2. When this con-
straint is not satisfied, the infidelity rises, as on the right-hand
side of Fig. 3 Inset.

RWA.Resonant gating requires that many fast, resonant oscillations
fit inside a single pulse envelope; this is the basis for the RWA,
and it yields the following constraints (SI Text): g0 �

ffiffiffiffiffiffiffiffiffiffiffiffijejΔEp
=2 for

the secondary resonance of LQR, and g0 � 2jej= ffiffiffi
π

p
for STIRAP.

When e= eoptðg0Þ, the LQR requirement further simplifies to
g0 � ΔE

ffiffiffiffiffiffiffiffiffiffi
Γ=2γ

p
. For ST qubits, the constraint is quite strict and
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yields relatively low fidelities. Our numerical calculations sug-
gest that in this situation the fidelity can be improved by de-
viating from Eq. 1. For the STIRAP scheme, there is no
analogous relation between eopt and g0, and the RWA is far
less restrictive.

Adiabaticity. Pulsed gating methods require instantaneous pulses.
However, rise times in real experiments are finite. For pulsed
gates, the evolution is effectively instantaneous when the time
dependence of the energy difference at an anticrossing ΔðtÞ
satisfies g20 � ZðdΔ=dtÞ (42). Using experimental measure-
ments and numerical calculations, and assuming a realistic rise
time of ∼100 ps for currently available pulse generators (4, 5),
we deduce a bound of g0=h � 3 GHz for pulsed gates.

Misorientation. If z-rotations cannot be turned off, the fidelity of
an x-rotation will be limited by the misorientation of the rotation
axis; this is always true for simple pulsed gates in hybrid and ST
qubits because of the energy splitting between the qubit states.
For ST qubits, the problem is mitigated by reducing the magnetic
field difference ΔB (e.g., by modifying the micromagnets) or by
increasing g0 (and therefore the x component of the rotation). In
the latter case, the fidelity can be improved by increasing both
e and the charging energy, as described below. Alternatively, a
three-step pulse sequence can be used to correct the misori-
entation (40). For hybrid qubits, the problem is more severe, and
a single-step sequence is untenable (24). For LQR gates, the
misorientation of the rotation axis occurs because the tunnel
coupling has a DC component. If all of the DC components of
the rotation axis are known, a three-step sequence could also be
used to correct the misorientation in LQR.

Charging Energy. When g0 satisfies Eq. 1, constraints on e trans-
late into constraints on g0. In the far-detuned regime, for the dot
occupation to remain constant, jej must satisfy jej<U, where U
is the charging energy. When jej ’ U, numerical optimization
indicates that we may improve the fidelity slightly by deviating
from Eq. 1.
The results in Table 1 were obtained by numerically maxi-

mizing the fidelity. The reported values of fmax were obtained by
using the most restrictive of the constraints described above.
In Table 1, we list the dominant constraints, and corresponding
modifications that could enhance the fidelity. Generally, we ob-
serve different constraints for different types of gates. The STIRAP
scheme appears particularly promising because optimization
does not involve Eq. 1. (Hence, the charging energy constraint

does not apply.) Additional work is needed to clarify this
scheme, however.†

Next, we consider z-rotations. Because g0 (and hence J) can
be turned off completely and the pure dephasing rate γ is fixed,
the gate fidelity can only optimized by maximizing the gate
speed. For a π-rotation, the gate period is τ= h=2ΔE and the
fidelity is fmax = ð1+ e−γτÞ=2, where ΔE= gμBΔB for ST qubits
and ΔE=ΔE10 for hybrid qubits. Here, we use ΔEnuc = 0:136 neV
for isotopically pure 28Si (0.01% 29Si), 3.0 neV for natural Si,
and 92 neV for GaAs (32). Our results for fmax are presented
in Table 1.
The simulations reported here are for simple gating schemes,

including a one-step pulsed gate sequence for ST qubits, a five-
step pulsed gate sequence for hybrid qubits, and a simple STIRAP
scheme, which does not provide a true gate. More sophisticated
pulse sequences have also been proposed. A three-step pulsed
gate sequence was proposed to correct for the misorientation
of the x-rotation axis in ST qubits (40). For pulsed gates, we find
that this sequence does improve the fidelity over a small range
of control parameters (SI Text). However, the procedure in-
corporates an intermediate z-rotation step, so the final fidelity
is bounded by the fidelity of the z-rotation. Similar consid-
erations should apply to LQR gates in ST qubits, although we
do not study that problem here. For hybrid qubits, the mis-
orientation effect is quite weak for LQR, and corrective pulses
have little effect.
For z-rotations of ST qubits, because the noise spectrum of the

nuclear spins is dominated by low frequencies (43), pulse sequences
similar to spin echoes (34) can improve the fidelity. For hybrid
qubits, the noise spectrum of optical phonons (27) and charge
fluctuators (44) has weight at higher frequencies, so echo-type
pulse sequences may be less effective. In principle, the fidelity of
spin echoes can always be improved by increasing the sophisti-
cation of the pulse sequence (45); in practice, however, they are
constrained by pulse imperfections and by dephasing that occurs
during the x-rotations in the sequence.
In conclusion, we have presented a method for optimizing the

fidelity of gate operations of logical ST and hybrid qubits in the
presence of both spin and charge dephasing, and we have iden-
tified upper bounds on the fidelity for simple gating schemes.
We obtain the following general results. The fidelity of z-
rotations in hybrid qubits in Si is high because their gate speeds
are much greater than their rate of pure dephasing. The fidelity
of z-rotations in ST qubits in dots without external field gra-
dients is low but can be improved greatly using spin echo meth-
ods. Therefore, the limits on overall performance are those of
the x-rotations.
For x-rotations in 28Si, the maximum achievable fidelities of

ST qubits (pulsed and LQR gates) and hybrid qubits (LQR
gates) are similar, with fmax > 99%. STIRAP gates appear quite
promising, although further work is required to clarify this
scheme. Hybrid qubits are probably not viable in GaAs due to
fast pure dephasing (27). For ST qubits, the maximum fidelities
for x-rotations are considerably larger in Si than in GaAs. There
are two reasons for this: (i) the large, intrinsic ΔB in GaAs
causes a misorientation of the x-rotation axis, and (ii) the large
γST in GaAs makes it difficult to implement corrective protocols
involving z-rotations (40). Hence, the nuclear spins that com-
plicate the implementation of z-rotations in GaAs also ultimately
constrain the x-rotations.

Materials and Methods
The dynamical evolution of the logical qubit density matrix ρ is governed by
the master equation (38)

Table 1. Numerically maximized gate fidelities

Qubit z-gate x: Pulsed LQR STIRAP*

ST, natural Si† 97‡ 99.6§ 98§,{ 99.8║

ST, purified 28Si† 99.4‡ 99.6§ 99.3§,{ 99.9║

ST, GaAs† 66‡ 98§ 92§,{ 98║

Hybrid, natural Si† 99.995‡ 83** 99§ 99.6║

Hybrid, purified 28Si† 99.999‡ 83** 99.4§ 99.8║

Hybrid, GaAs† 94‡ 83** 89§ 96║

*The standard, Stokes-pump STIRAP protocol yields jai→ jbi but not
jbi→ jai, and is therefore not an x-rotation.
†For the ST qubits we use ΔB= 0:3, 0.3, and 10 mT, respectively; for the
hybrid qubits we use ΔE10 = 0:1 meV.
‡Constrained by the z-gate speed. Improve by increasing ΔB or ΔE10.
§Constrained by the charging energy ðU= 1 meVÞ and/or the misorientation
of the rotation axis. Improve by decreasing ΔB or increasing U.
{Constrained by the RWA. Improve by increasing ΔB, ΔE10, or U.
║Constrained by gmax

0 =h= 10 GHz. Improve by increasing gmax
0 .

**Constrained because anticrossings must be distinct. Improve by increasing
ΔE10.
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dρ
dt

=−
i
Z
½H,ρ�−DðΓ,γÞ, [3]

where H is the Hamiltonian describing coherent evolution, and D describes
the fast (Γ) and slow (γ) dephasing processes. Though D is phenomenological,
its formcanbe justified in a bosonic environment, assumingMarkoviandynamics,
as has been argued for the double quantum dot system (28). The analytical
and numerical methods used for solving Eq. 3 are described in SI Text.

To treat the ST and hybrid qubits on equal footing, we define our logical
qubit basis states jaæ and jbæ in the far-detuned limit, jej � g0. (Note that for
ST qubits, this basis choice differs from that of ref. 8.) We also consider
a third, excited charge state jeæ that is tunnel-coupled to the logical qubit
states for both the ST and hybrid qubit systems. In the jaæ,jbæ,jeæ ordered
basis, we have

H=

0
@

−ΔE=2 0 g1

0 ΔE=2 −g2

g1 −g2 −e

1
A,  D=

0
@ 0 γρab Γρae

γρba 0 Γρbe
Γρea Γρeb 0

1
A: [4]

In principle, the tunnel couplings g1 and g2 are independently tunable (9);
here we take them to be equal, with g=g1 =g2.
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SI Text
Resonant Gating: Formalism. The interaction picture. We consider a
Hamiltonian H that contains a time-independent component H0

and a time-dependent part V ðtÞ. In the Schrödinger picture, the
dynamics of the system are specified by the time-dependent wave
function jψðtÞi, obtained by solving the Schrödinger equation
iZ∂tjψðtÞi=HjψðtÞi. To study resonant phenomena, it is conve-
nient to switch to the interaction picture (1), defined by

jψðtÞi = e−iH0t=ZjψðtÞiI ; [S1]

where jψð0ÞiI = jψð0Þi. Here, we do not include any special la-
bels to indicate Schrödinger operators or states; interaction
quantities are indicated with the superscript I. The interaction
wave function obeys the equation of motion

iZ∂tjψðtÞiI =HIðtÞjψðtÞiI ; [S2]

where

HIðtÞ= eiH0t=ZV ðtÞe−iH0 t=Z: [S3]

Expanding jψðtÞiI in an arbitrary basis fjnig,

jψðtÞiI =
X
n

cnðtÞjni; [S4]

yields the equations of motion

iZ _cmðtÞ=
X
n

VmnðtÞeiωmntcnðtÞ: [S5]

Here, the matrix elements are defined as VmnðtÞ≡ hmjV ðtÞjni and
ωmn ≡ωm −ωn = ðEm −EnÞ=Z.
For both the singlet–triplet (ST) and hybrid qubits, the resonant

Hamiltonian involves the three-state basis, fjai;jbi;jeig, corre-
sponding to the three-level systems shown in Fig. 1. In this ordered
basis, the Hamiltonian described in the main text is given by

H =

0
@

Zωa 0 g1ðtÞ
0 Zωb −g2ðtÞ

g*1ðtÞ −g*2ðtÞ Zωe

1
A; [S6]

whereas the dephasing matrix is given by

D=

0
@

0 γρab Γρae
γρba 0 Γρbe
Γρea Γρeb 0

1
A: [S7]

Dividing up the terms in Eq. S6, we arrive at the following
definitions for the interaction picture:

H0 =

0
@

Zωa 0 0
0 Zωb 0
0 0 0

1
A; V ðtÞ=

0
@

0 0 g1ðtÞ
0 0 −g2ðtÞ

g*1ðtÞ −g*2ðtÞ Zωe

1
A;

[S8]

yielding

HIðtÞ=
0
@

0 0 g1ðtÞeiωat

0 0 −g2ðtÞeiωbt

g*1ðtÞe−iωat −g*2ðtÞe−iωbt Zωe

1
A: [S9]

Here, we have chosen to include Zωe in V ðtÞ as a matter of
convenience, although it is not time-dependent. For both types
of qubits, we define the energy zero to be halfway between Zωa
and Zωb, as indicated in Fig. 1A. Similarly, Zωe = − e, whereas
Zωa;b =∓ΔEB=2 for ST qubits, and Zωa;b =∓ΔE10=2 for hybrid
qubits. We have included indices on the tunnel couplings
g1;2ðtÞ for completeness, because they should be independently
tunable in hybrid qubits (2). However, in the following analysis,
we assume they are equal, with gðtÞ= g1ðtÞ= g2ðtÞ. Resonance is
achieved by modulating the tunnel coupling with a tunable driv-
ing frequency ω. As discussed in the main text, we assume the
sign of the tunnel coupling remains fixed, with the form

gðtÞ= g0½1+ cosðωtÞ�: [S10]

Note that this expression includes both AC and DC components.
Derivation of the conditions for resonance. It is helpful to solve the
time evolution of the three-level system, to identify the reso-
nances that emerge. In general, the problem cannot be solved
exactly. However, it is possible to identify resonant terms using
time-dependent perturbation theory.
We expand the basis coefficients in Eq. S4 in powers of the

interaction:

cnðtÞ= cð0Þn + cð1Þn ðtÞ+ cð2Þn ðtÞ+ . . . ; [S11]

where cðiÞn ∼OðV iÞ and cð0Þn represents the initial state at time
t= 0. The next two terms in the expansion are

cð1Þn ðtÞ= −
i
Z

Z t

t0

dt′eiωni t′Vni
�
t′
�
; [S12]

cð2Þn ðtÞ= −
1
Z2

Z t

t0

dt′
Zt′

t0

dt″eiωnmt′+iωmit″Vnm
�
t′
�
Vmi

�
t″
�
: [S13]

The probability of transitioning from the initial state jii to state jni
(for n≠ i) is then given by Pi→nðtÞ= jcnðtÞj2 = jcð0Þn +cð1Þn ðtÞ+
cð2Þn ðtÞ+ . . . j2.
We calculate to second order in the couplings, so for initial

state jai, we approximate the probability of transitioning to the
final state jbi as

Pa→bðtÞ ’
���cð0Þb + cð1Þb ðtÞ+ cð2Þb ðtÞ

���
2
: [S14]

For the initial state cð0Þa = 1, cð0Þb = 0, the first term on the right-
hand side of Eq. S14 vanishes. The second term, cð1Þb ðtÞ, also
vanishes because Vba = 0. The third term, which is second order
in the perturbation expansion, is given by

cð2Þb ðtÞ= −
1
Z2

Z t

0

dt′
Zt′

0

dt″e−iωebt′+iωeat″Vbe
�
t′
�
Vea

�
t″
�

=
g20
Z2

Z t

0

dt′
Zt′

0

dt″e−iωebt′+iωeat″
�
1+ cos

�
ωt′

���
1+ cos

�
ωt″

��

= β1 + β2 + β3 + β4;

[S15]
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where

β1 ≡
g20
Z2

Z t

0

dt′
Zt′

0

dt″e−iωebt′+iωeat″; [S16]

β2 ≡
g20
Z2

Z t

0

dt′
Zt′

0

dt″e−iωebt′+iωeat″ cos
�
ωt′

�
cos

�
ωt″

�
; [S17]

β3 ≡
g20
Z2

Z t

0

dt′
Zt′

0

dt″e−iωebt′+iωeat″cos
�
ωt″

�
; [S18]

β4 ≡
g20
Z2

Z t

0

dt′
Zt′

0

dt″e−iωebt′+iωeat″ cos
�
ωt′

�
: [S19]

Integration yields

β1 =
g20
Z2

�
i

ωea

��
−
1− e−iωebt

ωeb
+
1− eiωbat

ωba

�
; [S20]

β3 =
g20
2Z2

	
1

ωea +ω

�
−
1− e−iωebt

ωeb
−
1− eiðωba+ωÞt

ωba +ω

�

+
1

ωea −ω

�
−
1− e−iωebt

ωeb
−
1− eiðωba−ωÞt

ωba −ω

�

; [S22]

β4 =
g20
2Z2

1
ωea

�
1− eið−ωeb+ωÞt

−ωeb +ω
+
1− eið−ωeb−ωÞt

−ωeb −ω

−
1− eiðωba+ωÞt

ωba +ω
−
1− eiðωba−ωÞt

ωba −ω

�
: [S23]

Many of the individual terms appearing in Eqs. S20–S23 are
rapidly oscillating and small (of order g20=Z

2ωeaωba or smaller).
However, Pa→b is strongly peaked at special resonant values of ω.
Several resonances can be identified. The expression for β2
contains the conventional resonant terms, arising from the
purely AC modulation of the tunnel coupling, corresponding to
the cosðωt′Þcosðωt″Þ term in Eq. S17. In Eq. S21, we see that this
“primary” resonance occurs when ω=ωba=2. In conventional
electron spin resonance, the primary resonance would occur at
the frequency ωba ; for logical qubit resonance (LQR), it occurs
at ωba=2 because the process is not directly between the states jai
and jbi —rather, it is mediated by the excited state jei. The re-
sulting β2 resonance terms are resonant when 2ω=ωba. In β2, we
also observe resonances at the excitation frequencies ωea and
ωeb, which are used to drive the stimulated Raman adiabatic
passage (STIRAP) protocol, discussed below. The tunnel cou-
pling in Eq. S10 also contains a DC component. The purely DC
contribution to Pa→b is contained in β1, and it causes no resonant

excitations, as expected. The AC–DC cross-terms in Pa→b are
found in β3 and β4. Here, we observe a new secondary resonance
occurring at ω=ωba.
In the limit of weak coupling ðg0 � ZωeaÞ and large detuning

ðωba � ωeaÞ, we can identify the leading terms in the transition
probability arising from the primary and secondary resonances:

lim
ω→ωba=2

Pa→bðtÞ ’ g40
16Z4ω2

ea

�
sin½ðω−ωba=2Þt�
ðω−ωba=2Þ

�2

; [S24]

lim
ω→ωba

Pa→bðtÞ ’ g40
Z4ω2

ea

�
sin½ðω−ωbaÞt=2�
ðω−ωbaÞ=2

�2

: [S25]

In the long-time limit ðt � ðΔωÞ−1 ffiffiffiffiffiffiffiffi
3=2

p Þ, the resonance
function fsinðΔω  tÞ=Δωg2 is peaked at Δω= 0, with a height of
t2, and a full width at half maximum (FWHM) of

ffiffiffi
6

p �
t. Similar

results can be obtained for the ωea and ωeb resonances.
Rotatingwave approximation.When performing simulations involving
fast driving frequencies, it is convenient to explicitly account for
resonant effects by applying the rotating wave approximation
(RWA) (3). The idea is to drop the small fast-oscillating terms
in the time evolution, which average to zero, while retaining
the large constant terms. For example, at the primary resonance,
we can compute the time-averaged component of Eq. S9 by

plugging in Eq. S10. The calculation is more straightforward
when we use −Zωa = Zωb = Zωba=2=ΔE=2, yielding the time-
independent form

HI ’

0
B@

0 0 ~g
0 0 −~g
~g −~g Zωe

1
CA; [S26]

where ~g= g0=2. We have confirmed the validity of this approxi-
mation by comparing numerical time evolutions obtained using
the exact form, Eq. S9, and the approximate form, Eq. S26.
The RWA approximation should be accurate if many cycles of

resonant oscillations occur inside a single LQR pulse. This re-
quirement can be quantified, as follows. The gate time for an
LQR π-pulse is given by τπ ’ πZ2ωe=2~g2, whereas the time for
a single resonant oscillation is τr = 4π=ωba. The requirement that
τr � τπ can then be expressed as g0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZωeÞðZωbaÞ=2
p

for the
primary resonance.
The secondary resonance ω=ωab also yields an approximately

time-independent interaction Hamiltonian. Numerical investi-
gation indicates that the effective HI takes the same form as Eq.
S26, except with ~g= g0. In this case, τr = 2π=ωba, so the validity
requirement for the RWA becomes g0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðZωeÞðZωbaÞ=4
p

for
the secondary resonance. All numerical simulations of LQR
reported in this work use the time-independent form for HI,
given in Eq. S26.

Analysis of LQR. In this section we focus on the LQR resonant gate.
Our goal is to calculate the fidelity of a π-rotation around the

β2 =
g20
4Z2

	
1

ωea +ω

�
1− eið−ωeb+ωÞt

−ωeb +ω
+
1− eið−ωeb−ωÞt

−ωeb −ω
−
1− eiðωba+2ωÞt

ωba + 2ω
−
1− eiωbat

ωba

�

+
1

ωea −ω

�
1− eið−ωeb+ωÞt

−ωeb +ω
+
1− eið−ωeb−ωÞt

−ωeb −ω
−
1− eiðωba−2ωÞt

ωba − 2ω
−
1− eiωbat

ωba

�

;

[S21]
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x-axis. We first discuss the definition of fidelity used in this work.
We then describe the analytical estimates of the fidelity reported
in the main text and the procedure used to optimize the fidelity.
Based on experimental observations in semiconducting qubits

(4–7), the results reported in the main text incorporate two
different dephasing rates reflecting different dephasing mecha-
nisms. For small detuning values, the fast dephasing (Γ) due to
charge noise dominates because of the mixing with the excited
state with different charge character, whereas for large detuning,
the slow (pure) dephasing (γ) associated with the spin sector
dominates. Below, we treat these two regimes separately.
Definition of fidelity. We define the state fidelity f in terms of the
actual density matrix ρ (obtained by solving a master equation)
and the target state jϕi :

f = hϕjρjϕi: [S27]

The results presented in the main text for x-rotations are all for
π-rotations beginning with the initial state ρð0Þ= jaihaj. (The
trends for other rotation angles and other initial states are sim-
ilar.) We use the master equation described below to compute
the actual density matrix ρðτπÞ. In this case, a perfect π-rotation
in a gate period τπ yields the target state jbi. The state fidelity is
therefore given by

f = hbjρðτπÞjbi= ρbbðτπÞ: [S28]

The fidelity for a perfect gate operation is f = 1. Below, we com-
pute the optimal fidelity f opt, as well as the infidelity 1− f opt.
Incorporation of dephasing into the calculation.As described above, we
solve for the density matrix in the interaction picture, defined as

ρIðtÞ= eiH0 t=ZρðtÞe−iH0t=Z: [S29]

The master equation in the interaction picture is given by (8)

_ρIðtÞ= −
i
Z

�
HIðtÞ; ρIðtÞ�−DI ; [S30]

where HI is the time-independent Hamiltonian obtained in the
RWA (Eq. S26), and DI = eiH0t=ZDe−iH0 t=Z captures the dephasing
effects. The dephasing matrix given in Eq. S7 describes double-
occupation errors occurring during the exchange interaction (9),
which can be understood as charge noise associated with the tunnel
coupling g. The noise considered in ref. 9 is strictly Markovian.
As argued in the main text, our focus on g-noise rather than
e-noise is appropriate in the far-detuned regime, which is the
regime of interest because it is where the maximum fidelity fmax

is largest. In the far-detuned regime, the effects of e-noise are
suppressed because the energies of the qubit states depend very
similarly on detuning. For the D matrix in Eq. S7, which incor-
porates dephasing with fast decay rate Γ (between the excited
charge state and each qubit state) and dephasing with slow decay
rate γ (between the two qubit states), we obtain

DI =

0
@

0 γρIab ΓρIae
γρIba 0 ΓρIbe
ΓρIea ΓρIeb 0

1
A: [S31]

Analytic approximation for the fidelity in LQR.The results presented for
LQR in the main text are numerical solutions of Eqs. S30 and
S31. We assume that the tunnel-coupling pulse in Eq. S10 is
turned on and off suddenly, taking g0 to be a step function pulse
envelope:

g0ðtÞ=
�
g0 ð0≤ t≤ τπÞ
0 ðotherwiseÞ : [S32]

Fig. 1D shows a softer pulse envelope, which is more physically
realistic; however, for simplicity, we consider Eq. S32 here. This
approximation is reasonable because we are focusing on the
contribution at the resonant frequency using the RWA. (We
consider smooth, Gaussian pulse envelopes for the STIRAP cal-
culations described below.)
In the next two subsections, we obtain analytical estimates

for the fidelity in the regimes where fast dephasing and slow
dephasing dominate.

Fast dephasing: Γ-Dominant regime. We first consider the hybrid
qubit in the regime where fast dephasing dominates. In this re-
gime, we can approximate γ→ 0 in Eq. S31, which allows us to
make analytical progress. We will show later that these results
are in excellent agreement with exact numerical results.
We first perform a change of basis:

jui= 1ffiffiffi
2

p ðjai− jbiÞ; [S33]

jvi= 1ffiffiffi
2

p ðjai+ jbiÞ; [S34]

jwi= jei: [S35]

In this basis, Eq. S27 can be rewritten as

f =
1
2
�
ρIuuðτπÞ+ ρIvvðτπÞ− ρIuvðτπÞ− ρIvuðτπÞ

�
: [S36]

Henceforth, unless otherwise noted, we drop the I superscript to
simplify the notation.
Eqs. S30 and S31 yield the following set of six independent

equations:

_ρvv = 0; [S37]

_ρvu =
i
Z

ffiffiffi
2

p
  ~g  ρvw; [S38]

_ρvw =
i
Z

h ffiffiffi
2

p
  ~g  ρvu + jejρvw

i
−Γρvw; [S39]

_ρuu =
i
Z

ffiffiffi
2

p
  ~g 

�
ρuw − ρ*uw

�
; [S40]

_ρuw =
i
Z

h ffiffiffi
2

p
  ~g  ðρuu − ρwwÞ+ jejρuw

i
−Γρuw; [S41]

_ρww = −
i
Z

ffiffiffi
2

p
  ~g 

�
ρuw − ρ*uw

�
: [S42]

Here, we make the replacement Zωe = − e, as consistent with the
main text, including Fig. 1. Because e≤ 0 in this work, we will
often use an absolute value sign to avoid confusion ðjejÞ.
Eqs. S37–S42 can be separated into three decoupled blocks.

Eq. S37 is trivially decoupled from the others. Eqs. S38 and
S39 form a twofold coupled block, whereas Eqs. S40–S42 form
a threefold coupled block. Within a given block, the partial
density (i.e., the sum of the diagonal terms in ρ) is conserved. We
now solve the separate blocks of equations analytically. For the fi-
delity calculation specified in Eq. S36, the initial conditions are
given by ρuuð0Þ= ρvvð0Þ= ρvuð0Þ= 1=2 and ρwwð0Þ= ρvwð0Þ=
ρuwð0Þ= 0.
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The fully decoupled Eq. S37 trivially yields the result

ρvvðtÞ= ρvvð0Þ=
1
2
: [S43]

The twofold block of Eqs. S38 and S39 can be solved, yielding
an exact solution:

ρvuðtÞ=
1
4ξ

	�
ξ−Γ+

ijej
Z

�
+ eξt

�
ξ+Γ−

ijej
Z

�

e−

1
2 tðξ+Γ−ijej=ZÞ;

[S44]

where

ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Γ−

ijej
Z

�2

− 8
�
~g
Z

�2
s

: [S45]

Working to leading order in the weak-tunneling, slow-dephasing
limit, ~g;Γ � jej, we obtain

ρvuðtÞ ’
1
2
e−
�
~Γ+iJ=Z

�
t; [S46]

where

~Γ=Γ
2~g2

e2
and J =

2~g2

jej : [S47]

The threefold block of Eqs. S40–S42 can also be solved ex-
actly, following the method of ref. 9. We parameterize the
density matrix elements ρuu, ρuw, and ρww in terms of a state
vector in the 2D fjui; jwig manifold. We have noted that the
fjui; jwig manifold is closed; however, the radius of the corre-
sponding Bloch sphere is less than 1 because the density of the
hybrid qubit does not lie entirely within the manifold. To remedy
this, we can make use of the conserved quantity ½ρuuðtÞ+ ρwwðtÞ�
to define

�
ρuu ρuw
ρ*uw ρww

�
= ½ρuuð0Þ+ ρwwð0Þ�

ðI + n · σÞ
2

: [S48]

Here, n represents a state in the fjui; jwig manifold on a unit
Bloch sphere. From Eqs. S40–S42, we then obtain a compact
description of the damped precession of the Bloch vector about
an effective magnetic field:

_n=Ω×n−Γnt: [S49]

Here, nt ≡ ðnx; ny; 0Þ is the transverse component of the Bloch
vector, and the effective magnetic field is given by Ω=
ð2 ffiffiffi

2
p

  ~g=Z; 0; jej=ZÞ. Because ~g � jej, the effective field makes
a very small angle with the z axis. The first term on the right-
hand side of Eq. S49 describes the coherent precession of the
Bloch vector about the effective field. The second term describes
the damping of the transverse component of the Bloch vector.
The initial state corresponds to n0 = ð0; 0; 1Þ.
If the gate operation is implemented adiabatically and the

dephasing rate is low enough to satisfy hΓ � jej, the Bloch vector
precesses around Ω with a small angle during the entire time
evolution (9); in this small-angle limit we can obtain an analytical
solution to Eq. S49. Taking the dot product with Ω on both sides
of Eq. S49 and applying the small-angle approximation, the
equation simplifies to

_n ’ −Γ sin2 θ n ’ −
�
8~g2

e2
Γ
�
n; [S50]

where n is the length of the Bloch vector and θ ’ arcsin ð8~g2=e2Þ
is the angle between the effective field Ω and the z axis of the
Bloch sphere. Averaged over many precession cycles, the Bloch
vector n makes an angle of approximately θ with the z axis.
Because angle θ is small, we can approximate nz ’ n. Solving
Eq. S50 in the small-angle approximation for θ, we obtain

nzðtÞ ’ exp
�
−
8~g2

e2
Γt
�
: [S51]

Eq. S48 then yields

ρuuðtÞ=
1
4
½1+ nzðtÞ� ’ 1

4

"
1+ exp

�
−
8~g2

e2
Γt
�#

: [S52]

Finally, from Eq. S36 we obtain

f f ’ 3
8
+
1
8
e−4πZΓ=jej +

1
2
e−πZΓ=jej; [S53]

where we have used τπ = πZ=J. Here, the superscript “f” refers to
the fast dephasing regime. For high fidelities, Eq. S53 can be
rewritten as

f f ’ 1− hΓ=2jej: [S54]

Some typical results for the infidelity are shown in Fig. S1, for
both ST and hybrid qubits. We see that the form derived in
Eq. S53 approximates the numerical results very well at larger
values of jej−1. In this regime, the fidelity of the LQR gate is
nearly independent of the tunnel coupling; it depends only on
the ratio ZΓ=jej. At smaller values of jej−1, Eq. S53 is inaccurate
because pure dephasing with decay rate γ ≠ 0 dominates, as
discussed in the following subsection.

Slow dephasing: γ-Dominant regime. We now consider the regime
where slow, pure dephasing dominates. In this limit, we make the
approximation Γ= 0 in Eq. S31. Because charge noise is ignored,
and because the tunnel coupling to the excited state jei is weak,
we may apply a Schrieffer–Wolff transformation (10) to elimi-
nate jei. In the remaining two-state system (i.e., fjai; jbig), the
second-order tunneling process is replaced by an effective ex-
change coupling, J = 2~g2=jej. The effective interaction Hamilto-
nian is given by

HI;eff =
1
2

�
0 J
J 0

�
: [S55]

In the two-state system, the master equation is still given by Eq.
S30, and the dephasing matrix is given by

DI;eff =
�

0 γρIab
γρIba 0

�
: [S56]

The master equation yields two coupled differential equations
for the density matrix elements. Again dropping the I superscript,
we have

_ρbb = −
iJ
2Z

�
ρ*ba − ρba

�
; [S57]

_ρba = −
iJ
2Z

ð1− 2ρbbÞ− γρba; [S58]

these yield an approximate solution that is accurate up to first or-
der in Zγ=J, given by
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ρbbðtÞ ’
1
2

h
1− e−γt=2 cosðJt=ZÞ

i
: [S59]

The fidelity for a π-rotation is then given by

f s = ρbbðτπÞ= ρIbbðτπÞ ’
1
2

"
1+ exp

�
−
πZγjej
4~g2

�#
; [S60]

where, again, τπ = πZ=J. Here, the superscript “s” refers to the
slow dephasing regime.
In Fig. S1, we plot the limiting behavior corresponding toEq. S60,

together with exact numerical results. We see that fs approximates
the numerical results very well at smaller values of jej−1.
Optimal fidelity of LQR.As discussed in the main text, the numerical
results for the infidelity at fixed tunnel coupling exhibit a mini-
mum as a function of detuning e, as observed in Fig. S1. For small
jej−1, the curves are well approximated by fs in Eq. S60, whereas
for large jej−1, the curves are well approximated by ff in Eq. S53.
Phenomenologically, we observe that the whole range of the
numerical infidelity is well approximated by the sum of the two
limiting behaviors, so that

f ðeÞ ’ f sðeÞ+ f fðeÞ− 1: [S61]

This approximation is plotted as solid curves in Fig. S1.
The optimal value of the detuning can be computed as the

intersection point of the two infidelity curves. Expanding Eqs. S53
and S60 in small values of the arguments of the exponential
functions, we obtain

jeoptj ’ ~g
ffiffiffiffiffiffiffiffiffiffi
8Γ=γ

p
: [S62]

From Eq. S61 we then obtain

f opt ’ 1−
�
πZ=~g

� ffiffiffiffiffiffiffiffiffiffi
Γγ=2

p
: [S63]

For the limiting, fully mixed state of the three-level system, we
should have f = 1=3. Eq. S63 can be rewritten to reflect this limit
as follows:

f opt ’ 1
3
+
2
3
e−ð3h=4~gÞ

ffiffiffiffiffiffiffi
Γγ=2

p
: [S64]

For the secondary resonance, ~g= g0. For the primary resonance,
with ~g= g0=2, we have

f opt ’ 1
3
+
2
3
e−ð3h=2g0Þ

ffiffiffiffiffiffiffi
Γγ=2

p
: [S65]

As described in the main text, when certain physical constraints
apply to the tunnel coupling, it may be possible to improve the
gate fidelity by working away from the optimal point, such that
e< eopt. The improved fidelity is then located on one of the f f

curves on the right-hand side of Fig. S1 A or B, as described by
Eq. S54.

Analysis of STIRAP. STIRAP formalism. The STIRAP procedure
involves two resonant pulses, known as the Stokes (S) and the
pump (P) pulses (11). The pulsing scheme is shown in Fig. 1E.
The Stokes pulse is modulated at the resonant frequency ωeb,
whereas the pump pulse is modulated at the resonant frequency
ωea. The pulses are applied in a counterintuitive sequence, with
the Stokes pulse coming before the pump pulse.

We adopt a Gaussian shape for the pulse envelopes, with

gSðtÞ= g0 exp

"
−
�
t+ tdelay=2

twidth

�2
#
; [S66]

gPðtÞ= g0 exp

"
−
�
t− tdelay=2

twidth

�2
#
: [S67]

As for LQR, we assume that the same signal is applied to the tun-
nel couplings between the states jai and jei as between the states
jbi and jei; in other words, gðtÞ= g1ðtÞ= g2ðtÞ. Moreover, the
Stokes and pump pulses are both included in gðtÞ, with

gðtÞ= gSðtÞ½1+ cosðωebtÞ�+ gPðtÞ½1+ cosðωeatÞ�: [S68]

For the STIRAP protocol, we adopt a different transformation
for the interaction picture with the definitions

H0 =

0
@

Zωa 0 0
0 Zωb 0
0 0 Zωe

1
A   and   V ðtÞ=

0
@

0 0 gðtÞ
0 0 −gðtÞ
gðtÞ −gðtÞ 0

1
A:

[S69]

Applying the RWA, we obtain

HI =

0 0
1
2
gPðtÞ

0 0 −
1
2
gSðtÞ

1
2
gPðtÞ −

1
2
gSðtÞ 0

0
BBBBBBB@

1
CCCCCCCA
: [S70]

Note that the only time dependence in HI appears in the pulse
envelopes; the resonant oscillations have been suppressed by the
RWA. The individual pulse envelopes gPðtÞ and gSðtÞ are associ-
ated with different tunneling processes, because of their distinct
resonant conditions.
Similarly to LQR, the RWA is valid when many resonant

oscillations occur inside a pulse envelope. The Stokes pulse
generates a π-rotation from jbi to jei (or vice versa) whenR∞
−∞ gSðtÞdt= πZ, yielding the relation twidth =

ffiffiffi
π

p
Z=g0. (Similar

considerations apply to the probe pulse.) The characteristic
width of the pulse is τπ =

ffiffiffi
2

p
twidth, whereas the time needed for

a full resonant oscillation is τr = 2π=ωeb. The RWA requirement
that τr � τπ can then be expressed as g0 � 2Zωeb=

ffiffiffi
π

p
. For the

regime of interest, this is equivalent to g0 � 2jej= ffiffiffi
π

p
.

We have noted that the STIRAP protocol described here is not
a true qubit gate because it transforms jai to jbi, but not vice
versa. It is possible to achieve a true gate by implementing more
sophisticated STIRAP-like pulse sequences (12). For simplicity
here, we consider only the sequence specified in Eqs. S66–S68.
Hence, for a π-rotation, we take the initial condition to be ρaað0Þ= 1;
the final process fidelity is given by f = ρbbðτπÞ, analogous to LQR.
We solve for ρðtÞ using the master equations given in Eqs. S30
and S31, with the interaction Hamiltonian given by Eq. S70. As
evident from Eq. S70, the STIRAP protocol does not depend
directly on e, so the optimization is not over e but instead is done
by obtaining an appropriate numerical relation between tdelay and
twidth. The resulting fopt depends on g0 through the relation
twidth =

ffiffiffi
π

p
Z=g0. Some typical fidelity results are shown in Fig. 2.

There are no obvious approximations that could help us to find
an analytical relation between tdelay, twidth, and fopt. However,
there is strong numerical evidence that such a relation exists, as
discussed in the next subsection.
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Finally, we mention two technical details. First, our numerical
simulations were performed by truncating (chopping) the Gaussian
tails in Eqs. S66 and S67 at times t= ± ðtdelay + twidthÞ, measured
from the center of the double Gaussian. Second, for the gate-
speed conversion shown at the top of Fig. 2, we define the
STIRAP gate speed as ðtdelay+twidthÞ−1.
Numerical scaling relations for the STIRAP process fidelity. In Eq. S64,
we derived an analytical estimate for the dependence of the
optimal LQR gate fidelity fopt on the tunnel coupling g0, and the
fast and slow dephasing rates, Γ and γ. Here, we present nu-
merical evidence that fopt for the STIRAP process follows a very
similar form. The first piece of evidence is found in Fig. 2, where
the optimized infidelities for STIRAP and LQR are nearly co-
incident over a wide range of tunnel couplings g0, up to a con-
stant scaling factor of order 2. In that calculation, we assumed
fixed dephasing rates Γ and γ.
Here, we perform a similar calculation of fopt as a function of Γ,

keeping γ and g0 fixed, yielding the results shown in Fig. S2. We
again observe good agreement between STIRAP and LQR, with
roughly the same scaling factor of order 2 as before. We also
compute fopt as a function of g0, Γ, and γ, in the scaling analysis
shown in Fig. S3. In this case, the control parameters are all
simultaneously varied while keeping the argument of the expo-
nential function in Eq. S64 held fixed. Because the infidelity
remains nearly constant under these conditions, we conclude
that the scaling relation lnð1− f optÞ∝ ðZ=g0Þ

ffiffiffiffiffi
Γγ

p
is also satisfied

for the STIRAP process.

Pulsed Gating. In typical pulsed-gating implementations (4), the
tunnel couplings are held fixed while jeðtÞj is suddenly pulsed
from the far-detuned regime (corresponding to a z-rotation) to
a much smaller value (corresponding to an x-rotation). In our
simulations, the detuning pulses are assumed to occur in-
stantaneously. As consistent with our AC gating analyses, we
adopt ~g= g= g1 = g2 = g0 for both the hybrid and ST qubits.
For pulsed gates, we work in the Schrödinger picture. The

master equation is given by

_ρðtÞ= −
i
Z
½HðtÞ; ρðtÞ�−D; [S71]

where

H =

0
B@

−ΔE=2 0 ~g
0 ΔE=2 −~g
~g −~g −eðtÞ

1
CA  and  D=

0
@

0 γρab Γρae
γρba 0 Γρbe
Γρea Γρeb 0

1
A:

[S72]

In the limit ΔE→ 0, these equations are identical in form to Eqs.
S26, S30, and S31, which describe the dynamical evolution of the
LQR gate. In this limit, the x-rotation is therefore optimized by
choosing eopt according to Eq. S62, with the resulting f opt given
by Eq. S64. In other words, for ~g= g0, the ΔE→ 0 limit for pulsed
gates gives the same optimized results as the secondary reso-
nance for LQR gates.
The presence of a nonzero energy splitting between the qubits

ðΔE> 0Þ produces a phase difference between the qubits (i.e.,
a z-rotation); it does not generate x-rotations. The effect of in-
cluding ΔE> 0 in Eq. S72 is therefore to add a small z-compo-
nent to the x-rotation; the latter is governed by the effective
exchange coupling between the qubits, J = 2~g2=jej. Hence, ΔE> 0
can only reduce fopt below the value given in Eq. S64, due to the
misorientation of the rotation axis away from x̂. This suppression

of fopt is demonstrated in the main panel of Fig. 3, which is the
same as the main panel of Fig. S4.
The energy splitting ΔE is nonzero for all real devices. Indeed,

for hybrid qubits, ΔE is large enough that a one-step pulse se-
quence is untenable. In that case, a different type of five-step
pulse sequence has been proposed, as discussed in ref. 13 and the
main text. For ST qubits, ΔE= gμBΔB is much smaller than for
hybrid qubits. In this case, the formal definition of small is
ΔE � J; for an optimized gate with e= eoptð~gÞ, this can be re-
written as ΔE � ~g

ffiffiffiffiffiffiffiffiffiffi
γ=2Γ

p
, which can be quite restrictive, par-

ticularly for GaAs devices.
The problem of misoriented x-rotations is well known, and alter-

native gating schemes have been proposed as a solution (14). Han-
son and Burkard (HB) have proposed a specific three-step pulse
sequence that uses a combination of x and z-rotations (15). In their
scheme, the x-like component is split in half, and an intermediate
z-rotation is inserted to compensate for the x misorientation.
A potential problem with the HB proposal is that the three-step

procedure could inherit the underlying flaws of both the x and z
components of the protocol; indeed, this is what we find in our
simulations. We have implemented the HB sequence for pulsed
gates in ST qubits, as shown in Fig. S4 Inset. For small g0 and
large ΔE, the HB procedure provides slight improvements in
fidelity. However, fopt never reaches the upper bound suggested
by Eq. S64, and for large g0, the optimized fidelity is limited
by the fidelity of the z-rotation component (evident by compar-
ing the Fig. S4 Inset with the main panel). Overall, the HB
procedure is not found to give significant improvements in the
gate fidelity.
Finally, we comment on other possible sources of error asso-

ciated with pulsed-e gates. (i) In the simulations performed here,
we assumed perfect (instantaneous) square wave pulses. How-
ever, the pulses used in real quantum dot experiments have finite
rise times, due to filtering and other hardware limitations. As
discussed in the main text, the criterion for satisfying the sudden
approximation is given by ZðdΔ=dtÞ � g2 (16). We note that finite
rise times are more limiting for hybrid qubits, because of their
relatively large tunnel couplings. Such limitations are purely
hardware related. (ii) Pulsed gates in hybrid qubits involve pulses
to two different energy level anticrossings. The operations at each
anticrossing are accurate when they are distinct and separate.
When the qubit energy level splitting ΔE01 is not small, or the
tunnel coupling g is large, this condition is not satisfied. In this
case, the system evolution is coherent, but potentially compli-
cated and difficult to control. Fig. 3 Inset shows reduced fidelity
due to this effect. Another complication of pulse gating of hybrid
qubits arises because of additional energy-level anticrossings
that may be present (17). If these anticrossings are not distinct
and separate, then pulsed gating can cause other nonqubit states
to be populated. Such effects can be addressed by appropriate
pulse-shaping. For simplicity, we have not considered such leakage
effects in the calculations reported here. (iii) Low-frequency noise
due to the motion of surface charge and other defects in the
semiconductor causes uncertainty in the values of e and g during
pulsed gate operations, and ultimately suppresses the fidelity. In
this work, we have focused on the uncertainty in the tunnel cou-
pling g, which causes dephasing when we implement exchange in-
teractions (9). Uncertainty in the detuning e also causes errors. The
errors are most prominent near e= 0 because ∂J=∂e is large, and
they are relatively unimportant in the far-detuned regime ðe � 0Þ,
where ∂J=∂e is small (18). Our simulations indicate that the highest
gate fidelities are obtained in the far-detuned regime, where e er-
rors are suppressed.
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Fig. S1. Plots of the infidelity (1 − fidelity) vs. inverse detuning ðjej=ZÞ−1 for an LQR gate, while keeping the tunnel coupling fixed with g0=h= 0:3=π GHz. (A)
ST qubit. (B) Hybrid qubit. The same numerical results (indicated by markers) were presented Fig. 2, Lower, Left Inset. The dashed magenta curves on the right-
hand side of the plots correspond to the “fast” dephasing-dominated behavior, ff, given in Eq. S53. The dashed orange curves on the left-hand side of the plots
correspond to the “slow” or “pure” dephasing-dominated behavior, fs, given in Eq. S60. The solid curves represent the sums of the fast and slow infidelity
curves. This simple approximation matches the numerical results quite well, and the intersection of the fast and slow infidelity curves provides a good ap-
proximation for the optimal detuning eopt.
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Fig. S2. Optimized infidelities (1 − fopt) vs. the charge dephasing rate Γ for the LQR and STIRAP gating protocols, holding the following quantities fixed: the
tunnel coupling g0=h= 10=π GHz and the pure dephasing rates γST = 2× 105 Hz and γhy = 1×106 Hz. Numerical results are shown for the LQR gate, for the
hybrid qubit (solid black triangles) and the ST qubit (solid blue circles). The solid lines show the corresponding analytical estimates of Eq. S64 for the two cases.
Numerical results are also shown for the STIRAP protocol, for the hybrid qubit (open triangles), and the ST qubit (open squares). We see that the STIRAP
infidelities follow those of LQR over a wide range of Γ, up to a small, overall scaling factor. A quantitative comparison of the optimized pulse parameters for
STIRAP and LQR is provided in the boxes, for the charge dephasing rate Γ=7:5× 108 Hz.

Fig. S3. Scaling analysis of the optimized infidelity (1 − fopt), for the STIRAP protocol, for a range of Γ, γ, and g0, holding the following quantity fixed:
ðπZ=g0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2Γγhy

p
= π=1,000 for the hybrid qubit. The fact that the infidelity remains constant under these conditions indicates that the scaling relation

lnð1− foptÞ∝ðZ=g0Þ
ffiffiffiffiffi
Γγ

p
is satisfied for the STIRAP process. The horizontal black line at 0.0031 corresponds to Eq. S64, which was derived for LQR gates.
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Fig. S4. Investigation of the HB three-pulse sequence for correcting the misorientation of the x-rotation axis (13). We plot the optimized infidelity (1 – fopt) vs.
tunnel coupling for a one-step pulsed gate in an ST qubit. The results are obtained for isotopically purified 28Si, assuming two different interdot magnetic field
differences: ΔB= 0:03 mT (magenta squares) and ΔB= 0:3 mT (red circles). The solid colored lines connect the markers. The horizontal colored lines show the
fidelities of the corresponding z-rotations, for the same ΔB values. The bold black curve shows the upper bound on fopt for x-rotations, from Eq. S64, which is
achieved in the limit ΔB→ 0. (Inset) Calculated infidelity for the same system and the same ΔB values using the HB three-step pulse sequence (13) to correct for
the misorientation of the x-rotations. The solid black curve again shows the upper bound on fopt for x-rotations, from Eq. S64. The HB procedure does not
improve the fidelity significantly over that obtained using the one-step procedure, and the HB fidelity plateaus at large g0 as it approaches the fidelity limit of
the z-rotations.
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