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Quantum properties of a strongly interacting frustrated disordered magnet
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We compute the low-energy quantum states and low-frequency dynamical susceptibility of a quantum
generalization of the two-dimensional Edwards-Anderson spin glass, obtaining exact numerical results for
system sizes much larger than previously accessible. The ground state is a complex superposition of a sub-
stantial fraction of all the classical ground states, often having large connected regions of spins all exhibiting
strong quantum fluctuations, and yet the dynamical susceptibility exhibits sharp resonances reminiscent of the
behavior of single spins. The dependence of the energy spectra on system size differs qualitatively from that of
the energy spectra of random undirected bipartite graphs with similar statistics, implying that strong interac-
tions are giving rise to these unusual spectral properties.
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[. INTRODUCTION of each realization are obtained by diagonalizing the adja-
cency matrix of a graph, and we demonstrate that strong
The promise and difficulty of quantum dynamics both correlations play a vital role by comparing the spin-glass
arise because the amount of information needed to specify @xcitation spectra to spectra of graphs with similar connec-
guantum state grows exponentially with the system siz8—?2 tivity statistics but randomly chosen connections.
complex numbers are needed to specify a general quantum The paper is organized as follows. Section II defines the
state ofN quantum-mechanical two-state spiios qubity. A~ model and the calculational method, Sec. Ill describes the
classical computer performing ¥floating point operations results, and Sec. IV discusses the results and their possible
per secontiwould take 18 years to perform a single opera- relationship to recent experimental observations of the dy-
tion on the state whemN=100 and 18" years whenN ~ hamical behavior —of the quantum spin liquid

=144, LiY o 95eH0p 044
Here we study a frustrated spin model that is a quantum
generalization of the two-dimensionat-J Edwards- Il. MODEL AND METHODS

Anderson(EA) spin-glass modél,a canonical example of a . . . o
classical system whose competing interactions give rise to Ve Study two-dimensional systems with periodic bound-
many low-energy states. The essential physical ingredients &Y conditions in which spin-1/2 spins interact with nearest
the EA model arise in a wide variety of optimization prob- Neighbors on/NX N square lattices. The quantum Hamil-
lems in many fieldS: the system cannot satisfy simulta- tonian is
neously all its constraints, and many different configurations
are equally effective in minimizing the energy. Though the __ I _
two-dimensional+J EA model is simpler than the three- He % J"U"ZU"ZJFFZ Tix: @)
dimensional version—it is disordered at all nonzero
temperaturesand individual ground states can be found in awhere i, and oy , are Pauli matriceso; x=(3 ¢) and o ,
time that scales polynomially with system sizét has a  =(5_%). The sum(ij) is over all nearest neighbor pairs. A
large ground-state degeneracy and a complex energgiven sample has a fixed realization of bonds in which each
landscapé:®” We study the quantum system obtained bybondJ;; is chosen to be-J and +J with equal probability.
adding a small quantum tunneling term to the two-This Hamiltonian, which has been studied by many grddps,
dimensional+=J EA model. is believed to have relevance to the experimental system
By exploiting a fast algorithm for finding all the ground LiY (Ho, _,F4,°*"*?where the coefficieni” is tunable be-
states of the classical modalye calculate numerically exact cause it is proportional to an applied transverse magnetic
eigenstates and dynamical response functions of quantum Eield. Thel'— 0 limit is the two-dimensionat- J EA model?
models with up to 144 spins in the limit of strong interaction  The calculation uses standard degenerate perturbation
strength. The quantum ground states typically have substamheory® to compute the low-energy quantum states. We set
tial connected regions of spins all exhibiting strong quantunthe energy zero to be the ground-state energy of the classical
fluctuations, and yet at low frequencies the excitation specmodel. The diagonal terms of the Hamiltonian matrix are the
trum is remarkably sparse. The number of excitations peclassical energies of the different configurations—zero for
unit energy at low energies does not vary significantly withthe ground states, Jfor the first excited states, etc. The
system size, even though the number of eigenvalues growaff-diagonal terms describing the transitions between these
exponentially with system size while the energy bandwidthconfigurations are judf, so they do not depend ahat all.
only grows polynomially. The eigenvalues and eigenvectord\s I'/J—0 the contribution to the quantum ground state by
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Standard degenerate perturbation theory to lovsear

order inI'/J consists of discarding the rows and columns for

configurations with nonzero classical energy from the Hamil-

tonian matrix®

The number of ground states of the classical two-

dimensional*J EA model grows withN much more slowly
2 than the number of configurationghough still expo-
nentially).5® For each realization, we find all ground states of
the classical system using the algorithm of Ref. 8. All ground
states are found, in contrast to previous work where only a
] few ground states were determinédBefore the work in
states that are not classical ground states tends to zero, apg¢. g, there was no efficient, reliable method to determine
the low-energy quantum statég,) become superpositions || the ground states of these systems, so enumeration of
of states corresponding to ground-state configuratief®f  5round states was limited to very small systemalef16 or
the classical model, smaller. The requirement that all classical ground states must
be obtained naturally limits the size of the systems we may
consider, since the number of ground states grows exponen-

3

FIG. 1. Three-spin example used to illustrate method.

|1,/fn>=2 Canl@). (2)  tially with system size. However, findingll the classical
“« ground states is necessary for obtaining the quantum ground
state.
Therefore, in the strongly interacting limit—0 the quan- We studied randomly generated system realizations with

tum ground state can be obtained if one can faldthe  equal numbers of ferromagnetic and antiferromagnetic bonds
ground states of the classical model. To illustrate the proceand periodic boundary conditions. We only computed the
dure, consider the simple three-spin triangle shown in Fig. 1quantum states for systems with less than 400 000 classical
The spins are connected by three bonds, two ferromagnetground states; in principle this cutoff could have been in-
and one antiferromagnetié.This system has eight classical creased slightlybut not greatly because of memory limits
configurations: [171), [TTL), [TLT), [LT1), |LIl1),  butatthe cost of much slower computations. Performing the
[LL1), [T11), and|[17)). With the energy zero set as the computations for realizations with 400000 classical ground
classical ground-state energy, the first six configurations havetates typically took a few days)a 1 GHz PC. Because the
classical energf=0, and the final two configurations have distribution of the number of ground states is log-norfifal,
classical energfe=4J. The Hamiltonian matrix using the some realizations have orders of magnitude more ground
basis states than the mean for the given system size.Ne64,

for a sample of 1000 realizations, the median number of

classical ground states was 568, and 997/1000 realizations

1Ry had less than 400 000 classical ground states, our upper cut-
[T11) off size. ForN=100, for 1000 realizations the median num-
1T11) ber of classical ground states was 9461, with 901/1000 real-
izations having less than 400 000 classical ground states. For
1LT1) 3 N= 144, for 100 realizations the median number of classical
[LL1) ) ground states was 409 794, and 49/100 realizations had less
than 400 000 classical ground states.
[LLL) Once the complete set of classical ground states is deter-
[T11) mined for a given realization, we use standard degenerate
1111) perturbation theorl? to compute the low-energy quantum

states. In the limif’/J— 0, each low-energy quantum eigen-
_ state is a superposition of classical ground-state configura-
IS tions related to each other by serial flipping of individual
flippable spins, where a flippable spin is one with an equal
number of satisfied and unsatisfied bofti€hanging a flip-

or r ooo oTr _ i

pable spin from up to down or vice versa has no effect on the
rooroornr o total energy. We thus construct the quantum tunneling matrix
r o oor orcT o with elements «|(Z;0i,)|8), where the basis statés) and
OT 00 OT 0 T |B) are classical ground states. The matrix element is non-

(4) zero only if the two states differ by a single spin flip. To

c or oor o r lowest order, only statelsy) and|g) with the same energy
00 OTTOT O contribute, which means that the single spin flip must be of a

flippable spin. Since the number of flippable spins clearly
orroora40 cannot exceedll, the number of spins in the system, and the
r o orr oo 4 number of ground states grows exponentially with the
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& dependent in the sense that the set of different classical
° & spin glass ground states is given by all possible combinations of the
o8- o O © random bipartite graph different ground states of the individual bunches. There is
o o 0 o noninteracting spins L 9 L e .
£ @ significant variability in the number of bunches and of their
° o . . o .
Sosl « 8¢ sizes, as illustrated by the three realizations shown, which
g ‘&&%&;’ systems have four bunches, nine bunches, and one bunch,
2.4k %W respectively. The spectra and clustering coefficients for all
é ' %%) Wnso 5 three of these cases are qualitatively similar, but the partici-
2 %% B o g pation ratios(defined below for the three cases do differ
02r ey, significantly.
oo . . L
° The ground-state dynamical magnetic susceptibility
055 100 1000 10600 x"(w) characterizes the response of a system at zero tem-
number of nodes perature to a magnetic field applied alomgoscillating at

angular frequencw.?! The susceptibility consists of sets of
a Oirac S-function peakdthat in physical systems spread out
g’nto a finite width in frequency due to decoherence pro-
The clustering coefficients of the spin-glass graphs are significantlgesse}’S hw for each peak is the energy difference between

larger than those of random bipartite graphs, and close to those ik excited state and the ground state. For-tiiespin glass,
graphs for noninteracting spins. asI'/J—0 the value of] affects only the energy zero and the

susceptibility at frequencies satisfyingzw<J depends

trix of ible t ii bet lassical around ttonly on the ratioh w/T".
matrix of possible transitions between classical ground states Figure 4 shows the zero-temperature dynamic magnetic

is extremely sparse, and thlfg well suited for diagonalizatiogusceptibility of systems of sizex66, 8x8, 10x 10, and
using L_anczos te_chmqué%. . To compute th_e dynamical 2x12. The density of low-energy excitations increases ex-
magnetic susceptibility, we find low-energy eigenvalues an

. . i - 1remely slowly with system size. This result is surprising
eigenstates using the sparse matrix ARPACK numeric ecause the number of energy eigenvalues grows exponen-

; 19\, i ine20
library™ with C-+ + bindings: tially with the number of spin#\, while these energies all lie

When the Hilbert space is truncated so that it |nclude§Ni,[hin a bandwidth that grows roughly linearly witk.
only classical ground states, the quantum energies are pro- To obtain context for these results, we interpret the

p_ortllonal tol .I Ingltidmg thet(.:onflgiurfﬁllor}ts W't%rlg?]er plas- Hamiltonian matrix for the quantum spin glass as the adja-
fﬁc? enef:g);] ca do c'%r/r\(]a.c lons to tlsthlnea € ?V'Ort cency matrix of an undirected bipartite graprf*in which
at are higner order 1/J, We eXpect these COrrections 10 50 ¢jagsical ground state is a node and edges connect every

be small_so long as the ﬁnerﬁ;y arki]sing from the bquanturrbair of classical ground states coupled by the quantum term
perturbation £I'N) is smaller than the energy gap between;, the Hamiltonian. The graph is bipartite because the edges

the classical ground state and lowest classical excited stat@s | Lact states that differ by a single spin reversal, one of

(.:‘])' SO th&.lt the procedure is valid only fbr<J/N. Exact which has an even and the other an odd number of up spins.
diagonalizations of very small (83 and 4<4) systems aré g gpin_glass graphs have a modest number of disconnected
consistent with this expectation. pieces called clustefS.Figure 5 compares the density of
energy levels of the largest cluster of aXl00 spin-glass
. RESULTS realization(with 17 040 nodes and 77 684 edyés the den-
sity of energy levels of a symmetric bipartite random matrix

It is difficult to obtain meaningful averages over disorderwith 10 000 nodes and 50000 edges. The random bipartite
for this system because for a given system size there ammatrices are constructed by dividing the nodes into two
enormous sample-to-sample variations in the number of claggroups of equal size. First, each node is connected to a ran-
sical ground states in the classical motiele have found it domly chosen node in the other gro(this ensures that the
useful to subdivide the sampling further by keeping track ofgraph has no disconnected piegemd then links are added
the number of classical ground states for each realizatiorbetween a randomly chosen vertex in each group until the
The usefulness of this subdivision is illustrated by Fig. 2,total number of edges is reached. The bipartite random ma-
which shows the clustering coefficientdefined below for  trix has a large energy gap between the ground state and first
about one-hundred 2010 realizations. The clustering coef- excited state, and once this gap is exceeded the density of
ficient varies by over a factor of 2, but the figure demon-energy levels is much greater than at low energies in the spin
strates that most of this variation is due to a systematic deglass. The energy-level spacing between the excited states of
pendence of the clustering feature on the number of classic#he random matrix is approximately inversely proportional to
ground states or nodes. However, considering systems witthe number of nodes.
the same number of classical ground states does not remove We have compared other propertfesf the graphs under-
all the variability between realizations. This point is illus- lying the quantum spin glass to those of random bipartite
trated by Fig. &), which shows three different realizations graphs. The degree distributidndescribing the number of
with similar numbers of classical ground states but differentinks emanating from the nodes of the spin-glass graphs is
numbers of bunches, which are defined as contiguous sets efen narrower than the Poisson distribution of a bipartite
flippable sping Bunches are significant because they are intandom graph with the same mean degree. Figure 2 shows

FIG. 2. Clustering coefficient€ of spin-glass graphs, of bipar-
tite random graphs with the same number of nodes and edges,
of graphs for noninteracting quantum spins, vs number of node
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FIG. 3. (a) Cumulative probability of the sorted participation rati®g for three-spin-glass realizations and for bipartite random graphs.
Here,P,=|c,0|?, with thec,, defined in Eq(2). The number of states contributing 50% and 100% of the total probability are 2996/21 168,
5762/68 000, and 986/17 040. The spin-glass participation ratios are significantly less evenly distributed than for the random bipartite graph;
still, many spin-glass configurations contribute significantly to the quantum ground(slafdéippable spins in the quantum ground state of
three different realizations of bonds. Spins denoted/byhave [(S;)|<1, + for [(S)]<0.999, O for [(S;)|<0.99, and® for [(S)]
<0.9. The black lines denote antiferromagnetic bonds connecting the spin sites. The quantum ground state has relatively large contiguous
clusters of spins that exhibit strong quantum fluctuations, so it cannot be thought of as noninteracting isolated “free” spins.

the clustering coefficien€,?® which for bipartite graphs is that in Fig. 9 the flippable spins in the quantum ground
the probability that two nodes with a common second neighstate. Shown are the spins wit{g;,)|<0.9, 0.99, 0.999, and
bor are themselves second neightfSr§he clustering coef- 1, where(S;,) is the expectation value of treh component
ficients of spin-glass graphs are significantly larger tharpf theith spin. The figure demonstrates that the ground state
those of bipartite random graphs with the same number ofas a relatively large connected region of strongly fluctuating
nodes and edgés,and are close to those of graphs describ-spins. Figure @) shows the cumulative probability of the
ing N noninteracting spins, which havé' 2iodes, each node Participation ratios,, of different classical ground states in
with degreeN, and clustering coefficient§=4/(N+1) (see  the quantum ground state, whePe,=[C,o|%, with the c,g
Appendiy. This result demonstrates that the graphs underlydefined in Eq.(2). The spin-glass participation ratios differ
ing the quantum spin glass have local connectivity propertieQ0th from those of a bipartite random matrix and thosélof
that differ significantly from random graphs. Thus, both local"°ninteracting quantum spins, whose cumulative probability
(clustering coefficientsand nonlocal propertiegeigenvalue 1S @ Straight line(since the participation ratio is Dor all
spectra of the graphs reflect correlations induced by the enclassical conf|gurat|0|)sl_:or the spin glass, betwe_e_:n 5.% _and
ergy minimization procedure. 14% of the states contribute 50% of the probability, indicat-

Though some statistical properties of the spin-glasé”g that many classical basis states contribute significantly to

graphs are similar to those of graphs for noninteracting quarii® guantum ground state.
tum spins, the ground state of the quantum spin glass differs
significantly from that of noninteracting quantum spins. This
point is illustrated by Fig. ®), which displays for three Our results demonstrate that typical ground states of two-
different realizationgthe 10< 10 realization is the same as dimensional+J Ising spin glasses with quantum tunneling

IV. DISCUSSION
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sl 6x6, 36 classical ground states, E/T=-3.2617 this type is the opservation of hole burning, whe(e applica-
2| tion of a perturbation at a given frequency results in suppres-
3— | L . i sion of the response at this frequerifyndeed, sharp, satu-
1 2 rable resonances resulting in hole-burning have been found
3 8x8, 4252 classical ground states, E /T'=-7.6087 experimentally in the guantum spin liquid
21: LiY o.054H0g g4 4.° However, the model we study differs sig-
30 '1| | L ; ' nificantly from the experimental system in important
= 3l 10x10, 35792 classical ground states, E,/T=-10.149 ways—it is a two—d_imensional model Wiffh specially tun?d
2 short-range interactions, while the experimental system is a
3 . e e fen e three-dimensional system with dipolar interactions. Unfortu-
1 2 nately, generalizing our methods to three-dimensional sys-
2:12"12' 184920 classleal.graund states E [I'==18.2370 tems and to systems with long-range interactions is compu-
1 | ‘ | | tationally prohibitive.
0 " | L1 1 | | | 1
0 1
ol
FIG. 4. Zero-temperature dynamic magnetic susceptibility ACKNOWLEDGMENTS

Xx"(w) of systems of size 86, 8x8, 10<10, and 1x12. The We have benefited greatly from discussions with J.
peaks in the susceptibility occur at frequencieghat satisfys w Brooke, S. Ghosh, T. F. Rosenbaum, S. Sabhapandit, and S.
=E,—Eo, whereE, is the energy of an excited state aglis the ' Trug’man. This ,\Nork was supportéd by the MRSEé pro-
znergy of .the ground Stat?'gl—he deﬂsny of low'?ner.gy excitation ram of the National Science Foundation under Grant No.
oes not increase appreciably as the system size increases, e . . .
though an exponentially increasing number of states are in an e éﬂﬂrﬁ-lgggzgrgfh ?:tu-lr;geogtw(\a/ifrgrigfar?gﬁeelgnc:cg?/ Stgiieietrgr; d
ergy bandwidth that grows approximately linearly with the systemby the National Science Foundation under Grant No I%/I,\/IR-
size. 0209630. Sandia is a multiprogram laboratory operated by
) ) ) ) Sandia Corporation, a Lockheed Martin Company, for the
cannot be viewed simply as a collection of isolated two-statg ited States Department of Energy under Contract No. DE-
systems, and yet nonetheless the density of low-energy exckc4-94AL85000. S.N.C. thanks the Aspen Center for

tations is very low. We expect the sparse spectrum at lovphysics for hospitality during the preparation of this manu-
energies to lead to saturable dynamical response, since 'fs"i‘:ript.

perturbation induces a resonant transition from the ground
state to an excited state, in general the perturbation is not
resonant for a transition from the excited state to a third state
of higher energy. The experimental signature of spectra of APPENDIX: CLUSTERING COEFFICIENT
FOR GRAPHS DESCRIBING
10 NONINTERACTING QUANTUM SPINS

spin glass

The clustering coefficienC is defined as the fraction of

51 pairs of states that are second neighbors to a reference state

that are also second neighbors to each other. To calcGlate

ol L 01 N for the graph for r)oninterac_:ting guantum §pins, first we find
95 the number of pairs of distinct second neighbors of a given

reference state. By symmetry, all states are equivalent, so one

can without loss of generality assume that the reference state

51 has all spins up. All second neighbors to this reference state

have two spins down, which can occur Mi=N(N—-1)/2

"[hﬂ distinct ways. The number of distinct pairs of second neigh-

L 5.5 bors isM(M—1)/2, or 5[ sN(N—1)][sN(N—1)—1]. To
count the number of pairs of states that are second neighbors

FIG. 5. Density of states as a function of energy at low energiest0 the reference state and also second neighbors to each

for the largest connected componéwith 17 040 nodes and 77 684 of[her, we note that each state in the pair has two spins that
links) of the graph characterizing a X0 spin glass realization differ from the_reference state, and _th_ey are second nelghbors
and of a bipartite random matrix with 10000 nodes and 50000 &ach other if one of these spins is in common. For a given
links. The quantum ground-state enerBy for the spin glass is 'eference state, there a§N—1)/2 ways to choose the first
Eo/T'=—10.1949, and for the bipartite grag,/T'=—10.2335.  State of the pair. If the second state of the pair is a second
The ordinate shows the number of eigenvalues in a bin of widttn€ighbor, then one of the two flipped spins is the same in the
0.01. The bipartite random matrix has a large gap between thgecond state of the pair also. There Bre 2 possible loca-
ground state and first excited state, and, once the gap is exceededj@ns of the second flipped spin in the second state, since it
much larger density of states than the spin glass. can be anywhere except for the locations of the two flipped

10
random bipartite matrix

number of eigenstates in bin
o
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spins of the first state of the pair. Each pair is counted twice 1\[1
by this process, so the number of ways to choose a pair of (5)[§N(N—l)}(2)(N—2)
states that are second neighbors to each other as well as the C= T I =N T (A1)
reference state is3([ sN(N—1)](2)(N—2), and the clus- _[_N(N_l)H_N(N_l)_l}
tering coefficientC is 2|2 2
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