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Quantum properties of a strongly interacting frustrated disordered magnet
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We compute the low-energy quantum states and low-frequency dynamical susceptibility of a quantum
generalization of the two-dimensional Edwards-Anderson spin glass, obtaining exact numerical results for
system sizes much larger than previously accessible. The ground state is a complex superposition of a sub-
stantial fraction of all the classical ground states, often having large connected regions of spins all exhibiting
strong quantum fluctuations, and yet the dynamical susceptibility exhibits sharp resonances reminiscent of the
behavior of single spins. The dependence of the energy spectra on system size differs qualitatively from that of
the energy spectra of random undirected bipartite graphs with similar statistics, implying that strong interac-
tions are giving rise to these unusual spectral properties.
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I. INTRODUCTION

The promise and difficulty of quantum dynamics bo
arise because the amount of information needed to spec
quantum state grows exponentially with the system size—N

complex numbers are needed to specify a general quan
state ofN quantum-mechanical two-state spins~or qubits!. A
classical computer performing 1014 floating point operations
per second1 would take 108 years to perform a single opera
tion on the state whenN5100 and 1021 years whenN
5144.

Here we study a frustrated spin model that is a quan
generalization of the two-dimensional6J Edwards-
Anderson~EA! spin-glass model,2 a canonical example of a
classical system whose competing interactions give rise
many low-energy states. The essential physical ingredien
the EA model arise in a wide variety of optimization pro
lems in many fields:3 the system cannot satisfy simulta
neously all its constraints, and many different configuratio
are equally effective in minimizing the energy. Though t
two-dimensional6J EA model is simpler than the three
dimensional version—it is disordered at all nonze
temperatures4 and individual ground states can be found in
time that scales polynomially with system size5—it has a
large ground-state degeneracy and a complex en
landscape.4,6,7 We study the quantum system obtained
adding a small quantum tunneling term to the tw
dimensional6J EA model.

By exploiting a fast algorithm for finding all the groun
states of the classical model,8 we calculate numerically exac
eigenstates and dynamical response functions of quantum
models with up to 144 spins in the limit of strong interacti
strength. The quantum ground states typically have subs
tial connected regions of spins all exhibiting strong quant
fluctuations, and yet at low frequencies the excitation sp
trum is remarkably sparse. The number of excitations
unit energy at low energies does not vary significantly w
system size, even though the number of eigenvalues gr
exponentially with system size while the energy bandwi
only grows polynomially. The eigenvalues and eigenvect
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of each realization are obtained by diagonalizing the ad
cency matrix of a graph, and we demonstrate that str
correlations play a vital role by comparing the spin-gla
excitation spectra to spectra of graphs with similar conn
tivity statistics but randomly chosen connections.

The paper is organized as follows. Section II defines
model and the calculational method, Sec. III describes
results, and Sec. IV discusses the results and their pos
relationship to recent experimental observations of the
namical behavior of the quantum spin liqu
LiY 0.955Ho0.045F4.9

II. MODEL AND METHODS

We study two-dimensional systems with periodic boun
ary conditions in which spin-1/2 spins interact with near
neighbors onAN3AN square lattices. The quantum Ham
tonian is

HQ52(̂
i j &

Ji j s i ,zs j ,z1G(
i

s i ,x , ~1!

wheres i ,x and s i ,z are Pauli matrices:s i ,x5(1 0
0 1) and s i ,z

5(0 21
1 0 ). The sum^ i j & is over all nearest neighbor pairs.

given sample has a fixed realization of bonds in which e
bondJi j is chosen to be2J and1J with equal probability.
This Hamiltonian, which has been studied by many group10

is believed to have relevance to the experimental sys
LiY xHo12xF4,9,11,12 where the coefficientG is tunable be-
cause it is proportional to an applied transverse magn
field. TheG→0 limit is the two-dimensional6J EA model.2

The calculation uses standard degenerate perturba
theory13 to compute the low-energy quantum states. We
the energy zero to be the ground-state energy of the clas
model. The diagonal terms of the Hamiltonian matrix are
classical energies of the different configurations—zero
the ground states, 4J for the first excited states, etc. Th
off-diagonal terms describing the transitions between th
configurations are justG, so they do not depend onJ at all.
As G/J→0 the contribution to the quantum ground state
©2004 The American Physical Society16-1
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JAMES W. LANDRY AND S. N. COPPERSMITH PHYSICAL REVIEW B69, 184416 ~2004!
states that are not classical ground states tends to zero
the low-energy quantum statesucn& become superposition
of states corresponding to ground-state configurationsua& of
the classical model,

ucn&5(
a

canua&. ~2!

Therefore, in the strongly interacting limitG→0 the quan-
tum ground state can be obtained if one can findall the
ground states of the classical model. To illustrate the pro
dure, consider the simple three-spin triangle shown in Fig
The spins are connected by three bonds, two ferromagn
and one antiferromagnetic.32 This system has eight classic
configurations: (u↑↑↑&, u↑↑↓&, u↑↓↑&, u↓↑↓&, u↓↓↑&,
u↓↓↓&, u↑↓↓&, and u↓↑↑&). With the energy zero set as th
classical ground-state energy, the first six configurations h
classical energyE50, and the final two configurations hav
classical energyE54J. The Hamiltonian matrix using the
basis

1
u↑↑↑&

u↑↑↓&

u↑↓↑&

u↓↑↓&

u↓↓↑&

u↓↓↓&

u↑↓↓&

u↓↑↑&

2 ~3!

is

1
0 G G 0 0 0 0 G

G 0 0 G 0 0 G 0

G 0 0 0 G 0 G 0

0 G 0 0 0 G 0 G

0 0 G 0 0 G 0 G

0 0 0 G G 0 G 0

0 G G 0 0 G 4J 0

G 0 0 G G 0 0 4J

2 . ~4!

FIG. 1. Three-spin example used to illustrate method.
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Standard degenerate perturbation theory to lowest~linear!
order inG/J consists of discarding the rows and columns
configurations with nonzero classical energy from the Ham
tonian matrix.33

The number of ground states of the classical tw
dimensional6J EA model grows withN much more slowly
than the number of configurations~though still expo-
nentially!.6,8 For each realization, we find all ground states
the classical system using the algorithm of Ref. 8. All grou
states are found, in contrast to previous work where onl
few ground states were determined.14 Before the work in
Ref. 8, there was no efficient, reliable method to determ
all the ground states of these systems, so enumeratio
ground states was limited to very small systems ofN516 or
smaller. The requirement that all classical ground states m
be obtained naturally limits the size of the systems we m
consider, since the number of ground states grows expo
tially with system size. However, findingall the classical
ground states is necessary for obtaining the quantum gro
state.

We studied randomly generated system realizations w
equal numbers of ferromagnetic and antiferromagnetic bo
and periodic boundary conditions. We only computed
quantum states for systems with less than 400 000 clas
ground states; in principle this cutoff could have been
creased slightly~but not greatly because of memory limits!,
but at the cost of much slower computations. Performing
computations for realizations with 400 000 classical grou
states typically took a few days on a 1 GHz PC. Because th
distribution of the number of ground states is log-normal6,8

some realizations have orders of magnitude more gro
states than the mean for the given system size. ForN564,
for a sample of 1000 realizations, the median number
classical ground states was 568, and 997/1000 realizat
had less than 400 000 classical ground states, our upper
off size. ForN5100, for 1000 realizations the median num
ber of classical ground states was 9461, with 901/1000 r
izations having less than 400 000 classical ground states.
N5144, for 100 realizations the median number of classi
ground states was 409 794, and 49/100 realizations had
than 400 000 classical ground states.

Once the complete set of classical ground states is de
mined for a given realization, we use standard degene
perturbation theory13 to compute the low-energy quantum
states. In the limitG/J→0, each low-energy quantum eigen
state is a superposition of classical ground-state config
tions related to each other by serial flipping of individu
flippable spins, where a flippable spin is one with an eq
number of satisfied and unsatisfied bonds.15 Changing a flip-
pable spin from up to down or vice versa has no effect on
total energy. We thus construct the quantum tunneling ma
with elementŝ au(( is ix)ub&, where the basis statesua& and
ub& are classical ground states. The matrix element is n
zero only if the two states differ by a single spin flip. T
lowest order, only statesua& and ub& with the same energy
contribute, which means that the single spin flip must be o
flippable spin. Since the number of flippable spins clea
cannot exceedN, the number of spins in the system, and t
number of ground states grows exponentially withN, the
6-2
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QUANTUM PROPERTIES OF A STRONGLY . . . PHYSICAL REVIEW B69, 184416 ~2004!
matrix of possible transitions between classical ground st
is extremely sparse, and thus well suited for diagonaliza
using Lanczos techniques.16–18 To compute the dynamica
magnetic susceptibility, we find low-energy eigenvalues a
eigenstates using the sparse matrix ARPACK numer
library19 with C11 bindings.20

When the Hilbert space is truncated so that it includ
only classical ground states, the quantum energies are
portional toG. Including the configurations with higher clas
sical energy lead to corrections to this linear-in-G behavior
that are higher order inG/J; we expect these corrections
be small so long as the energy arising from the quan
perturbation (&GN) is smaller than the energy gap betwe
the classical ground state and lowest classical excited s
(5J), so that the procedure is valid only forG&J/N. Exact
diagonalizations of very small (333 and 434) systems are
consistent with this expectation.

III. RESULTS

It is difficult to obtain meaningful averages over disord
for this system because for a given system size there
enormous sample-to-sample variations in the number of c
sical ground states in the classical model.8 We have found it
useful to subdivide the sampling further by keeping track
the number of classical ground states for each realizat
The usefulness of this subdivision is illustrated by Fig.
which shows the clustering coefficients~defined below! for
about one-hundred 10310 realizations. The clustering coe
ficient varies by over a factor of 2, but the figure demo
strates that most of this variation is due to a systematic
pendence of the clustering feature on the number of class
ground states or nodes. However, considering systems
the same number of classical ground states does not rem
all the variability between realizations. This point is illu
trated by Fig. 3~b!, which shows three different realization
with similar numbers of classical ground states but differ
numbers of bunches, which are defined as contiguous se
flippable spins.8 Bunches are significant because they are

FIG. 2. Clustering coefficientsC of spin-glass graphs, of bipar
tite random graphs with the same number of nodes and edges
of graphs for noninteracting quantum spins, vs number of no
The clustering coefficients of the spin-glass graphs are significa
larger than those of random bipartite graphs, and close to thos
graphs for noninteracting spins.
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dependent in the sense that the set of different class
ground states is given by all possible combinations of
different ground states of the individual bunches. There
significant variability in the number of bunches and of th
sizes, as illustrated by the three realizations shown, wh
systems have four bunches, nine bunches, and one bu
respectively. The spectra and clustering coefficients for
three of these cases are qualitatively similar, but the par
pation ratios~defined below! for the three cases do diffe
significantly.

The ground-state dynamical magnetic susceptibi
x9(v) characterizes the response of a system at zero t
perature to a magnetic field applied alongz oscillating at
angular frequencyv.21 The susceptibility consists of sets o
Dirac d-function peaks~that in physical systems spread o
into a finite width in frequency due to decoherence p
cesses!; \v for each peak is the energy difference betwe
an excited state and the ground state. For the6J spin glass,
asG/J→0 the value ofJ affects only the energy zero and th
susceptibility at frequenciesv satisfying \v!J depends
only on the ratio\v/G.

Figure 4 shows the zero-temperature dynamic magn
susceptibility of systems of size 636, 838, 10310, and
12312. The density of low-energy excitations increases
tremely slowly with system size. This result is surprisin
because the number of energy eigenvalues grows expo
tially with the number of spinsN, while these energies all lie
within a bandwidth that grows roughly linearly withN.

To obtain context for these results, we interpret t
Hamiltonian matrix for the quantum spin glass as the ad
cency matrix of an undirected bipartite graph22–24 in which
each classical ground state is a node and edges connect
pair of classical ground states coupled by the quantum t
in the Hamiltonian. The graph is bipartite because the ed
connect states that differ by a single spin reversal, one
which has an even and the other an odd number of up sp
The spin-glass graphs have a modest number of disconne
pieces called clusters.25 Figure 5 compares the density o
energy levels of the largest cluster of a 10310 spin-glass
realization~with 17 040 nodes and 77 684 edges! to the den-
sity of energy levels of a symmetric bipartite random mat
with 10 000 nodes and 50 000 edges. The random bipa
matrices are constructed by dividing the nodes into t
groups of equal size. First, each node is connected to a
domly chosen node in the other group~this ensures that the
graph has no disconnected pieces!, and then links are adde
between a randomly chosen vertex in each group until
total number of edges is reached. The bipartite random
trix has a large energy gap between the ground state and
excited state, and once this gap is exceeded the densi
energy levels is much greater than at low energies in the
glass. The energy-level spacing between the excited state
the random matrix is approximately inversely proportional
the number of nodes.

We have compared other properties26 of the graphs under-
lying the quantum spin glass to those of random bipar
graphs. The degree distribution27 describing the number o
links emanating from the nodes of the spin-glass graph
even narrower than the Poisson distribution of a bipar
random graph with the same mean degree. Figure 2 sh

nd
s.
ly
of
6-3
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FIG. 3. ~a! Cumulative probability of the sorted participation ratiosPa for three-spin-glass realizations and for bipartite random grap
Here,Pa5uca0u2, with thecan defined in Eq.~2!. The number of states contributing 50% and 100% of the total probability are 2996/21
5762/68 000, and 986/17 040. The spin-glass participation ratios are significantly less evenly distributed than for the random bipart
still, many spin-glass configurations contribute significantly to the quantum ground state.~b! Flippable spins in the quantum ground state
three different realizations of bonds. Spins denoted byn have u^Si&u,1, 1 for u^Si&u,0.999, s for u^Si&u,0.99, andd for u^Si&u
,0.9. The black lines denote antiferromagnetic bonds connecting the spin sites. The quantum ground state has relatively large c
clusters of spins that exhibit strong quantum fluctuations, so it cannot be thought of as noninteracting isolated ‘‘free’’ spins.
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the clustering coefficientC,28 which for bipartite graphs is
the probability that two nodes with a common second nei
bor are themselves second neighbors.29 The clustering coef-
ficients of spin-glass graphs are significantly larger th
those of bipartite random graphs with the same numbe
nodes and edges,29 and are close to those of graphs descr
ing N noninteracting spins, which have 2N nodes, each node
with degreeN, and clustering coefficientsC54/(N11) ~see
Appendix!. This result demonstrates that the graphs unde
ing the quantum spin glass have local connectivity proper
that differ significantly from random graphs. Thus, both loc
~clustering coefficients! and nonlocal properties~eigenvalue
spectra! of the graphs reflect correlations induced by the
ergy minimization procedure.

Though some statistical properties of the spin-gl
graphs are similar to those of graphs for noninteracting qu
tum spins, the ground state of the quantum spin glass dif
significantly from that of noninteracting quantum spins. Th
point is illustrated by Fig. 3~b!, which displays for three
different realizations~the 10310 realization is the same a
18441
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that in Fig. 5! the flippable spins in the quantum groun
state. Shown are the spins withu^Siz&u,0.9, 0.99, 0.999, and
1, wherê Siz& is the expectation value of thezth component
of the i th spin. The figure demonstrates that the ground s
has a relatively large connected region of strongly fluctuat
spins. Figure 3~a! shows the cumulative probability of th
participation ratiosPa of different classical ground states i
the quantum ground state, wherePa5uca0u2, with the ca0
defined in Eq.~2!. The spin-glass participation ratios diffe
both from those of a bipartite random matrix and those oN
noninteracting quantum spins, whose cumulative probab
is a straight line~since the participation ratio is 1/2N for all
classical configurations!. For the spin glass, between 5% an
14% of the states contribute 50% of the probability, indic
ing that many classical basis states contribute significantl
the quantum ground state.

IV. DISCUSSION

Our results demonstrate that typical ground states of t
dimensional6J Ising spin glasses with quantum tunnelin
6-4
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QUANTUM PROPERTIES OF A STRONGLY . . . PHYSICAL REVIEW B69, 184416 ~2004!
cannot be viewed simply as a collection of isolated two-st
systems, and yet nonetheless the density of low-energy e
tations is very low. We expect the sparse spectrum at
energies to lead to saturable dynamical response, since
perturbation induces a resonant transition from the gro
state to an excited state, in general the perturbation is
resonant for a transition from the excited state to a third s
of higher energy. The experimental signature of spectra

FIG. 4. Zero-temperature dynamic magnetic susceptibi
x9(v) of systems of size 636, 838, 10310, and 12312. The
peaks in the susceptibility occur at frequenciesv that satisfy\v
5En2E0, whereEn is the energy of an excited state andE0 is the
energy of the ground state. The density of low-energy excitati
does not increase appreciably as the system size increases,
though an exponentially increasing number of states are in an
ergy bandwidth that grows approximately linearly with the syst
size.

FIG. 5. Density of states as a function of energy at low energ
for the largest connected component~with 17 040 nodes and 77 68
links! of the graph characterizing a 10310 spin glass realization
and of a bipartite random matrix with 10 000 nodes and 50 0
links. The quantum ground-state energyE0 for the spin glass is
E0 /G5210.1949, and for the bipartite graphE0 /G5210.2335.
The ordinate shows the number of eigenvalues in a bin of w
0.01. The bipartite random matrix has a large gap between
ground state and first excited state, and, once the gap is exceed
much larger density of states than the spin glass.
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this type is the observation of hole burning, where appli
tion of a perturbation at a given frequency results in suppr
sion of the response at this frequency.30 Indeed, sharp, satu
rable resonances resulting in hole-burning have been fo
experimentally in the quantum spin liqui
LiY 0.955Ho0.045F4.9 However, the model we study differs sig
nificantly from the experimental system in importa
ways—it is a two-dimensional model with specially tune
short-range interactions, while the experimental system
three-dimensional system with dipolar interactions. Unfor
nately, generalizing our methods to three-dimensional s
tems and to systems with long-range interactions is com
tationally prohibitive.
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APPENDIX: CLUSTERING COEFFICIENT
FOR GRAPHS DESCRIBING

NONINTERACTING QUANTUM SPINS

The clustering coefficientC is defined as the fraction o
pairs of states that are second neighbors to a reference
that are also second neighbors to each other. To calculaC
for the graph for noninteracting quantum spins, first we fi
the number of pairs of distinct second neighbors of a giv
reference state. By symmetry, all states are equivalent, so
can without loss of generality assume that the reference s
has all spins up. All second neighbors to this reference s
have two spins down, which can occur inM5N(N21)/2
distinct ways. The number of distinct pairs of second neig

bors is M (M21)/2, or 1
2 @ 1

2 N(N21)#@ 1
2 N(N21)21#. To

count the number of pairs of states that are second neigh
to the reference state and also second neighbors to
other, we note that each state in the pair has two spins
differ from the reference state, and they are second neigh
to each other if one of these spins is in common. For a gi
reference state, there areN(N21)/2 ways to choose the firs
state of the pair. If the second state of the pair is a sec
neighbor, then one of the two flipped spins is the same in
second state of the pair also. There areN22 possible loca-
tions of the second flipped spin in the second state, sinc
can be anywhere except for the locations of the two flipp
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spins of the first state of the pair. Each pair is counted tw
by this process, so the number of ways to choose a pa
states that are second neighbors to each other as well a

reference state is (1
2 )@ 1

2 N(N21)#(2)(N22), and the clus-
tering coefficientC is
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