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Abstract
The operation of solid-state qubits often relies on single-shot readout using a nanoelectronic
charge sensor, and the detection of events in a noisy sensor signal is crucial for high fidelity
readout of such qubits. The most common detection scheme, comparing the signal to a threshold
value, is accurate at low noise levels but is not robust to low-frequency noise and signal drift. We
describe an alternative method for identifying charge sensor events using wavelet edge detection.
The technique is convenient to use and we show that, with realistic signals and a single tunable
parameter, wavelet detection can outperform thresholding and is significantly more tolerant to
1/f and low-frequency noise.

Keywords: quantum information, charge detection, semiconductor quantum dots, quantum point
contacts, wavelet transform

(Some figures may appear in colour only in the online journal)

1. Introduction

Charge sensors with single-electron sensitivity are essential to
the operation of many solid-state qubits. These sensors can be
realized using nanoelectronic devices such as single-electron
transistors, quantum point-contacts (QPCs) and quantum dots,
all of which are highly sensitive to their local electrostatic
environment. The sensor can measure the state of a charge
qubit directly [1-5] or, via spin-to-charge conversion, the
state of a spin qubit [6-11]. If the sensor bandwidth is large
enough, the qubit state may be detected on a timescale shorter
than its lifetime. Such single-shot detection is essential for
implementing error correction in a quantum information
processing architecture [12]. It can also be used to observe
correlations between qubits [13, 14] and to measure the
dynamics of the environment [15, 16]. Single-shot readout
with a charge sensor has been realized for a variety of solid-
state qubit candidates, such as semiconductor quantum dots in
GaAs [6, 7, 17-26], InAs nanowires [27], carbon nanotubes
[28], graphene [29], silicon [30-35], and superconducting
charge qubits [4, 36]. In all cases the signal from the charge
sensor takes one of two or more discrete levels, where each
level corresponds to a different configuration of charge in the
qubit.

0957-4484/15/215201+06$33.00

Numerous sources of noise can pollute the charge sensor
signal. Sources of white noise include shot noise and John-
son—-Nyquist noise in warm parts of the measurement circuit.
Amplifier noise, which is often dominant, may be approxi-
mated as white noise over limited frequency ranges [22]. An
intrinsic source of 1/f noise is charge fluctuations in the
vicinity of the sensor and the qubit [37]. Other potential noise
sources include interference from ac power supplies, signal
drift due to instability in the measurement electronics, and
instability of the sensor itself. High fidelity readout of a qubit
must therefore rely on the adoption of a filter or algorithm that
can accurately identify real events in a noisy signal. Wavelet
signal processing is one promising solution to this challenge.

Wavelet signal processing is a joint time-frequency
analysis technique that is well-suited to identifying within a
signal localized events that posses particular spectral char-
acteristics. The technique has found numerous applictions
ranging from genetics to image compression and storage of
fingerprint data [38—40]. One common use of wavelet ana-
lysis is the detection of sharp edges in images [41]. The
problems of detecting edges in images and events in a charge-
sensor signal are very similar: in both cases the signal of
interest is a sharp step overlayed on a noisy background.

© 2015 I0OP Publishing Ltd  Printed in the UK
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Figure 1. Stages of wavelet edge detection. (a) First 200 ms of the
input signal. The full signal has 2'? data points sampled at a rate of
2 kHz. It was generated by adding simulated white and 1/f noise to
the ‘ideal” signal shown below the axis. (b) First 200 ms of the multi-
scale wavelet transform of the signal (see main text for details).
Local maxima and minima in the transform are tracked in the
direction of decreasing wavelet scale s. Two example tracks are
shown by green lines. A total ‘weight’ is calculated for each track (as
described in the main text) and the results are shown in (c).
Significant edges (open circles) are identified by tracks with a weight
above 200 (the dashed line). Other edges (closed circles) are ignored.
The position of an edge is the position of its track at the finest scale
(s = 2%). The edge direction (up or down) is given by the sign of the
transform.

In this paper we assess the performance of a wavelet edge
detection algorithm for identifying events in a single electron
charge sensor signal using both experimental data and
simulated signals. We compare wavelet detection to an
approach based on a threshold signal value. Thresholding,
and more sophisticated derivatives of this method, are com-
monly used to analyze charge sensor signals [4, 6, 7, 13—
15, 20, 21, 24, 30-32, 34, 42]. Below we show that, while
both techniques perform well at low noise, wavelet edge
detection has much better tolerance to 1/f and low-frequency
noise and is also more tolerant to white noise. The
wavelet algorithm described below has previously been used
to successfully analyze measurements of a Si/SiGe spin qubit
with a QPC charge sensor [32]. The noise spectra used here to
assess the detection techniques include examples that closely
resemble those found in that work. Both techniques are tested
over a range of noise profiles, and the results are applicable to
any sensor where events are characterized by switches
between discrete signal levels.

2. Method

Figure 1 outlines the stages of the wavelet edge detection
process. The approach is both a formalization and

generalization of Canny’s edge detection algorithm [43]. The
detection is based upon a multi-scale real wavelet transform
of the input signal. The transform W at a time ¢ and wavelet
scale s is found by convolving the signal I(f) with the scaled

mother wavelet y: W(z, s) = /_J:o I(t’)%y/(%)dt’ [41].
By analogy with the Canny edge detection algorithm, we
chose the mother wavelet y to be the first derivative of a
Gaussian. The scale s sets the width of this wavelet and in
figures 1 and 2 we express s as a number of data points. An
upwards (downwards) step in the signal will produce a local
maximum (minimum) in the wavelet transform, and sig-
nificant edges result in large, local maxima and minima that
persist across a broad range of wavelet scales [41].

Given a wavelet transform, the edge detection algorithm
tracks local maxima and minima across wavelet scales to cal-
culate a cumulative ‘weight’ for every maximum/minimum
present at the smallest scale. The weight of a point on a track is
defined as the square of the transform normalized by the
median value of the square of the transform at that scale.
Significant edges in the signal are identified by tracks with a
total weight above a cutoff value, and this is the only parameter
used to optimize the detection. Our implementation of the
algorithm is realized in MATLAB and the wavelet transfor-
mations are performed using the WaveLab850 library [44].

Both experimental data and simulated charge sensor
signals are used to investigate detection performance. The
simulated signals are chosen to mimic typical measurements
of Si/SiGe spin qubits using a QPC charge sensor [32, 34],
and for easy comparison with typical data we present our
results with a specific choice of time-scales on the abscissa;
however, the results remain valid if either time and/or
amplitude are scaled. The signals are generated by adding
noise to an ideal charge sensor output. We choose a sampling
rate of 2 kHz and a length of 2!? data points for all signals.
The ideal output has two discrete levels at +£0.5¢, where e is
the electron charge. Switches between the levels are generated
randomly according to a Poisson distribution with a char-
acteristic rate of 100 Hz. A 1 kHz low-pass filter is applied to
the ideal output, resulting in a signal rise-time that is common
in experiments. After filtering, simulated white noise and 1/f
noise are added to the signal.

The accuracy of the edge detection, when applied to a
given signal, is measured by the F-score of the results
F =2pr/(p + r), where the precision p is the fraction of
detected events that correspond to real events, and the recall r
is the fraction of events in the signal that were correctly
detected [45]. When calculating p and r, we allow the max-
imum difference in time between real and detected events to
be twice the time-constant of the low-pass filter (2 ms). F =1
indicates perfect detection. Both false negatives and false
positives reduce F.

3. Results and discussion

We investigate the performance of wavelet edge detection
using both simulated signals and experimental data. By using
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Figure 2. Comparative examples of wavelet and threshold edge detection. (a)—(c) Results for a signal with 1/f noise of rms amplitude Ap. (d)-
(e) Results for a signal with white noise of rms amplitude Ay. (a) and (d) show the input signals. The optimum levels for threshold edge
detection are shown by blue dashed lines. (b) and (e) show wavelet transforms of the signals. (c) and (f) show the location of events given by
wavelet and threshold edge detection, below the ideal sensor output. Correctly detected events are marked by green arrows. Detected events

that do not correspond to a real event are marked by red arrows.

artificial signals, the true position of every event in the signal
is known and the detection accuracy can be calculated. This
analysis is presented in section 3.1. In section 3.2 we inves-
tigate detection performance using measurements of a quan-
tum point-contact charge sensor adjacent to a Si/SiGe double
quantum dot. The measured signals are known to have
characteristics that enable the performance of the edge
detection to be estimated, without knowing the true positions
of the charging events.

3.1. Comparison between wavelet and threshold detection
using simulated signals

We compare wavelet edge detection to a simple alternative
thresholding algorithm in which an event is detected when the
signal crosses a threshold. We optimize both detection tech-
niques for each signal by varying a single parameter to
maximize F. In the case of threshold edge detection, this
parameter is the threshold level. In the case of wavelet edge
detection, the parameter is the final cutoff that determines
whether a track in the transform has a large enough weight to
be accepted as an event.

Figure 2 shows the results of applying wavelet edge
detection and the thresholding technique to two example
signals. The signal in figure 2(a) was generated with 1/f noise
of rms amplitude of Ap = 0.25¢ /</Hzat 1 Hz and zero white
noise. Wavelet edge detection performs well in this situation,
achieving a score of F' = 0.99 over the full length of the
signal. Threshold edge detection is significantly affected by
1/f noise, reaching only F = 0.79. This low score is easily
understood: large, low-frequency components of the noise
cause the signal to drift with respect to the threshold level,
resulting in false positives and missed events. In contrast, the
same noise does little to distort the sharp edges in the data and
these are easily identified in the wavelet transform.

The signal in figure 2(d) was generated with zero 1/f
noise and white noise of rms amplitude Ay, = 0.008¢ / JHz
(a peak-to-peak noise amplitude of 1.01e in this bandwidth).
Over the full length of the signal, the wavelet edge detection
has a score of F' = 0.88 and the threshold edge detection has
F = 0.40. The low score for thresholding is largely due to
false positive detections, which is unsurprising given the low
signal-to-noise ratio. The wavelet edge detection is still able
to identify events because edges produce a distinct profile in
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Figure 3. Averaged F-score (see definition in main text) for wavelet edge detection (b), (d) and threshold edge detection (a), (c) as a function
of white noise amplitude Ay and 1/f noise amplitude Ap. (c) and (d) show detail within the black dashed boxes in (a) and (b) respectively. A
score of F' =1 corresponds to perfect detection. A score of F = 2/3 corresponds, for example, to half the edges being detected with no false
positives, or all edges being detected but with an equal number of false positives. The wavelet edge detection performs as well as threshold
edge detection or better at all noise levels, and is significantly more robust against 1/f noise.

the wavelet transform that is not reproduced by white noise: a
local maximum that extends over a large range of scales.
The two detection techniques were compared over a
range of noise amplitudes. Figures 3(a)—(d) shows F-scores
for each value of (Aw, Ap), which were found by averaging
over ten signals that were generated by adding random noise
to the same ideal sensor output. Each signal is 2> data points
(=2 s) long, and each plot in figure 3 is the result of analyzing
~10000 signals. The results show that the wavelet edge
detection matches or outperforms thresholding at all noise
levels. From figures 3(c) and (d), it is clear that the wavelet
approach is significantly more tolerant to 1/f noise in the
signal and, by extension, low-frequency noise in general.
There are several improvements that may be made to the
wavelet edge detection algorithm. Typically, the slowest part
of the analysis is tracking edges in the wavelet transform. The
analysis time can be significantly reduced by choosing only to
track maxima/minima in the transform once they exceed a
certain weight. This ensures that large numbers of short, weak
tracks, such as those produced by white noise, are discarded.
The rate of false positives may be reduced by including a
prior knowledge of the detector sensitivity: edges can be
rejected if the signal level does not change by the expected
value in the vicinity of the edge. It should be noted that there

are also many ways to improve the thresholding technique
presented here, although at the cost of adding additional
parameters that must be tuned; for example, local averaging to
compensate for low-frequency signal drift [17], or using a
Schmitt trigger to select events [42]. In general, these filters
will make threshold edge detection more similar to the
wavelet approach, which can be thought of as a filter with an
excellent selectivity to sharp edges.

3.2. Comparison between wavelet and threshold detection
using experimtanally measured signals

To demonstrate the benefits of wavelet edge detection we
apply the technique to experimental data obtained from a
point-contact charge sensor adjacent to a Si/SiGe double
quantum dot. Figure 4 shows an SEM image of the device.
The charge sensor signal I gpc has two preferred values,
corresponding to an additional electron being in either the left
or right quantum dot. Further details of the device and the
measurement setup can be found in Prance er al [34].
Importantly for this work, events in the charge sensor signal
are known to occur at certain times, as discussed below,
which makes it possible to independently estimate the accu-
racy of the edge detection. Based on this a priori knowledge
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Figure 4. Example charge sensor data from a quantum point-contact
adjacent to a Si/SiGe double quantum dot [34]. (a) Measured current
I gpc through the charge sensor as the quantum dots are driven by a
300 Hz square wave. Either two or zero charging events are expected
during each ~3.3 ms pulse period. The periods are separated by
vertical grey lines, and the observed number of events in each period
are shown above the data. Pairs of events are visible in the signal as
peaks (one upwards transition and one downwards). (b) Positions
and directions of edges detected in the signal by the thresholding and
wavelet algorithms. Wavelet detection produced no errors in this
section of signal. Thresholding detection produced several errors,
indicated by red arrows. In this section of the signal, the majority of
these errors are multiple detections of the same edge due to high
frequency signal noise.

of the signal, we can compare the accuracy of the wavelet and
thresholding algorithms using real data.

An example signal from the Si/SiGe point-contact charge
sensor is shown in figure 4. In contrast to the data used in
section 3.1, the times at which edges occur in this signal are
not random. During the measurement the double dot was
driven by a 300 Hz square wave. Any charging events in the
signal are aligned to this pulse with a high probability and
there are only two expected outcomes within each pulse
period: either no edges or an up—down pair of edges will be
present. All other outcomes are known to be unlikely due to
the behaviour of the double quantum dot [34].

We use wavelet and threshold edge detection to find the
number of edges during each pulse period. We estimate the
error of each edge detection method to be the percentage of
pulse periods that are found to contain an unexpected number
of edges (i.e. not zero or two). Table 1 shows the optimized
errors using wavelet and thresholding edge detection as
described in sections 2 and 3.1. The values in table 1 are
based on an analysis of 120 signals, each consisting of 10’
data points (a total of ~72 000 pulse periods) sampled at a
rate of 50 kHz. For this dataset the wavelet detection is found
to significantly outperform the simple thresholding algorithm.
(The wavelet error is ~2% while the thresholding error is
~50%).

The performance of the thresholding algorithm can be
improved at the cost of reduced bandwidth, extra free

Table 1. Estimate of the characteristic error for several edge
detection algorithms when applied to experimental charge sensor
data. The error is estimated by comparing the detected edges to the
expected characteristics of the signal (see figure 4). For each result
the free parameters of the corresponding algorithm were optimized
to minimize the error.

Edge detection method Unexpected events

Wavelet 2.26%
Wavelet with 10 kHz filter 2.24%
Simple threshold 50.2%
Threshold with drift correction (d.c.) 48.7%
Threshold with 10 kHz filter 13.7%
Threshold with 10 kHz filter and d.c. 12.5%

parameters, and the need for additional post-processing. If the
threshold is defined relative to the average value of the signal,
the effect of low frequency signal drift can be reduced. This
drift correction decreases the error marginally to =49%. A
greater improvement is found by applying a low-pass filter.
When the signal bandwidth is reduced to 10 kHz, the error is
reduced to ~14%. Combining this low-pass filter with drift
correction gives an error of ~13%. The low pass filter has
negligible effect on the wavelet edge detection, which already
filters the signal at multiple scales as part of its operation.
While it is possible to achieve reasonable results using
thresholding on this data set, the resulting algorithm includes
one additional free parameter, the filter cut-off frequency, and
needs knowledge of the mean signal level, which requires
averaging over long times. Furthermore, while the 10 kHz
filter reduces the error in this particular data set, it limits the
detection bandwidth in general. By contrast, the wavelet edge
detection performs well with just one free parameter and no
additional filtering.

4. Conclusions

We have compared the performance of a wavelet edge
detection algorithm to a thresholding methods using simu-
lated signals that mimic the output of a QPC charge sensor
and measured signals from a Si/SiGe double quantum dot
device. When only a single free parameter is allowed in the
detection algorithms, wavelet edge detection is found to
outperform thresholding over all noise profiles in the simu-
lated signals and is particularly robust against 1/f noise.
Wavelet detection is also found to perform well on real data,
even when compared to a more complex thresholding algo-
rithm with additional free parameters. A significant practical
advantage is that, once optimized, the wavelet edge detection
can be used in the presence of low-frequency noise and signal
drift without adjustment. This means that the analysis may be
performed while the experiment is running, which is crucial
for certain qubit applications such as error correction. Fur-
thermore, the excellent sensitivity of wavelet edge detection
can be used to increase the fidelity and potentially improve
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the bandwidth of qubit readout based on a single electron
charge sensor.
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