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Noninteracting multiparticle quantum random walks applied to the graph isomorphism problem
for strongly regular graphs
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We investigate the quantum dynamics of particles on graphs (“quantum random walks”), with the aim of
developing quantum algorithms for determining if two graphs are isomorphic (related to each other by a relabeling
of vertices). We focus on quantum random walks of multiple noninteracting particles on strongly regular graphs
(SRGs), a class of graphs with high symmetry that is known to have pairs of graphs that are hard to distinguish.
Previous work has already demonstrated analytically that two-particle noninteracting quantum walks cannot
distinguish nonisomorphic SRGs of the same family. Here, we demonstrate numerically that three-particle
noninteracting quantum walks have significant, but not universal, distinguishing power for pairs of SRGs, proving
a fundamental difference between the distinguishing power of two-particle and three-particle noninteracting
walks. We show analytically why this distinguishing power is possible, whereas it is forbidden for two-particle
noninteracting walks. Based on sampling of SRGs with up to 64 vertices, we find no difference in the distinguishing
power of bosonic and fermionic walks. In addition, we find that the four-fermion noninteracting walk has greater
distinguishing power than the three-particle walk on SRGs, showing that increasing the particle number increases
the distinguishing power. However, we also show analytically that no noninteracting walk with a fixed number
of particles can distinguish all SRGs, thus demonstrating a potential fundamental difference in the distinguishing
power of interacting versus noninteracting walks.
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I. INTRODUCTION

There has long been interest in algorithms that use random
walks to solve a variety of mathematical and scientific
problems [1–5]. Typically, the random walks in question
have been classical random walks (CRWs). However, there
is increasing interest in random walks with quantum walkers.
In particular settings, these quantum random walks (QRWs)
have been shown to have computational advantages over
CRWs [6–8]. Certain algorithms utilizing QRWs have been
proven to have faster run times than their best known classical
counterparts [9–15].

Additionally, QRWs have been experimentally demon-
strated in a variety of physical settings, such as ion traps [16],
atom traps [17], quantum optics [18,19], and NMR systems
[20]. Recent works have experimentally realized QRWs with
two walkers, demonstrating the potential for implementing
QRWs with many walkers [21–24]. Moreover, there are
proposed methods for physically implementing nontrivial
walks [25], indicating that there may be many QRW algorithms
to be developed that would be both physically realizable and
computationally powerful.

Often the context for QRWs is one in which the walks occur
on graphs. It has been shown that QRWs are universal; any
quantum algorithm can be mapped onto a QRW on such a graph
[26]. It is also the case that many interesting computational
problems are easily expressed in graph theoretic terms [27].
Thus there is considerable interest in further exploring QRWs
on graphs, with the hope that we may be able to use such a
framework to solve certain problems.
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There are also interesting physical phenomena associated
with many particles walking on a graph. It is known that QRWs
of noninteracting bosons on graphs can give rise to effective
statistical interactions [28–30]. It has even been shown that
Bose-Einstein condensation can occur at a finite temperature
in less than two dimensions if the bosons are placed on a
particular kind of graph [30]. Therefore, there is motivation
to further explore the dynamics of multiparticle ensembles on
graphs.

This paper addresses the graph isomorphism (GI) problem,
which is, given two graphs, to determine if they are isomorphic;
that is, if one can be transformed into the other by a relabeling
of vertices. This problem is of note for several reasons. While
many graph pairs may be distinguished by a classical algorithm
which runs in a time polynomial in the number of vertices
of the graphs, there exist pairs which are computationally
difficult to distinguish. Currently, the best general classical
algorithm has a run time of O(c

√
N log N ), where c is a constant

and N is the number of vertices in the two graphs [31]. GI is
believed to be similar to factoring in that both are thought to be
NP-Intermediate problems [32]. Additionally, both problems
may be approached as hidden subgroup problems, though
this approach has had limited success for GI [33]. Due to
these similarities, and the known quantum speedup available
for factoring [34], there is hope that there similarly exists a
quantum speedup for GI.

Strongly regular graphs (SRGs) are a particular class of
graphs that are difficult to distinguish classically [31]. (See
Sec. II B for a formal definition.) Shiau et al. showed that
the single-particle continuous-time QRW fails to distinguish
pairs of SRGs with the same family parameters [35]. Gamble
et al. extended these results, proving that QRWs of two
noninteracting particles will always fail to distinguish pairs of
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nonisomorphic SRGs with the same family parameters [27].
They also demonstrated numerically the distinguishing power
of the two-boson interacting QRW; it successfully distin-
guished all tested pairs of SRGs [27]. Since the publication
by Gamble et al., Smith proved that for any fixed number
of bosons p, there exist nonisomorphic graph pairs which
the p-boson interacting walk fails to distinguish [36]. These
counterexample graphs are not strongly regular; whether or
not the two-boson interacting walk successfully distinguishes
nonisomorphic SRGs is still an open question.

Investigations into discrete-time QRW algorithms for GI
have also been made [37–39]. Berry and Wang numerically
showed that a discrete-time noninteracting QRW of two parti-
cles could distinguish some SRGs, something its continuous-
time counterpart cannot do. However, this distinguishing
power is not universal on SRGs, nor is an analytic explanation
of the distinguishing power given [39]. The discrete-time
algorithm proposed by Emms et al. successfully distinguished
all tested SRGs [37], but it has been shown to not be universal
[36]; it is unknown if it is universal on SRGs. Additionally, for
the same number of particles, the discrete-time QRWs require
Hilbert spaces larger than the ones required by continuous-
time QRWs [39]. In an effort to relate discrete-time and
continuous-time QRWs, it has been noted that the coin state
of a discrete-time walk may be thought of as a relativistic
particle’s internal degree of freedom; such a feature is absent
from continuous-time QRWs [40]. The relationship between
discrete-time and continuous-time QRWs in the context of
the GI problem has been examined as well [41]. It remains
an open question as to whether or not discrete-time walks in
general have fundamentally greater distinguishing power than
continuous-time walks or if they are better candidates for a
universal GI algorithm.

This paper extends the results of [27] to address continuous-
time multiparticle noninteracting quantum walks on SRGs,
with a particular focus on understanding the role of particle
number in determining the distinguishing power of the walks.
We have several main results. We numerically demonstrate that
three-particle noninteracting walks have significant (but not
universal) distinguishing power on hard-to-distinguish pairs of
SRGs. Additionally, we find that a four-fermion noninteracting
walk has even greater (but still not universal) distinguishing
power on SRG pairs. We explain analytically where this
distinguishing power comes from and how these multiparticle
noninteracting walks are fundamentally different from single-
particle and two-particle noninteracting walks. This is done
by showing that a particular feature present in the smaller
walks which limits their distinguishing power is not present
in walks of three or more noninteracting particles. Further, we
analytically show that, even though the distinguishing power
of noninteracting walks increases with particle number, there
is no noninteracting walk with a fixed number of particles that
can, with our comparison algorithm, distinguish all SRGs.

This paper is organized as follows. Section II covers the
requisite background, including graph theoretic definitions
and concepts, a review of SRGs, and a formal definition
of the QRW. In Sec. III, we first demonstrate analytically
how two-particle noninteracting walks are fundamentally
different from three-particle noninteracting walks. We then
present the numerical results for noninteracting three-particle

and four-particle walks on SRGs. In the final part of
Sec. III, we demonstrate that a p-particle noninteracting QRW
cannot distinguish all SRGs for any fixed p. We discuss our
conclusions in Sec. IV.

Appendix A discusses a fundamental difference between
noninteracting walks of two particles and noninteracting walks
of more than two particles. Appendix B provides details
necessary to show that a noninteracting p-particle walk cannot
distinguish all SRGs for a fixed p. In Appendix C, we show
that the number of unique evolution operator elements for
a p-particle noninteracting walk is superexponential in p.
Finally, we explain in Appendix D how we ensure numerical
stability and determine numerical error in our simulations.

II. BACKGROUND

A. Basic graph definitions

Here we develop the background and definitions necessary
to discuss multiparticle QRWs on graphs. This paper only
considers simple, undirected graphs. A graph G = (V,E) is
a set of vertices V and edges E. The vertices are a set of
labels, usually integers, and the edges are a list of unordered
pairs of vertices. If a pair of vertices appears in E, then the
vertices are connected by an edge; otherwise there is no edge
between the vertices and they are considered disconnected.
The terms “adjacent,” “neighboring,” and “connected” may be
used interchangeably to refer to a vertex pair which shares an
edge. It is convenient to represent a graph by its adjacency
matrix A, defined as

Aij =
{ 1 if vertices i and j are connected.

0 if vertices i and j are disconnected.
(1)

A graph of N vertices has an N × N adjacency matrix. For the
undirected and simple graphs considered here, A is symmetric,
with zeros on the diagonal.

Two graphs are isomorphic if one graph is transformed into
the other by a relabeling of vertices. More formally, given two
adjacency matrices A and B, the graphs represented by A and
B are isomorphic if and only if a permutation matrix P exists
such that B = P−1AP.

B. Strongly regular graphs

This paper addresses SRGs, which we examine because
they are difficult to distinguish classically and because of their
simple algebraic properties [31,42]. An SRG is characterized
by four parameters, denoted (N,k,λ,μ). N is the number of
vertices in the graph, and each vertex is connected to k other
vertices (the graph is k regular or has degree k). Each pair of
neighboring vertices shares λ common neighbors, while each
pair of nonadjacent vertices shares μ common neighbors. The
set of SRGs sharing the same set of four parameters is referred
to as an SRG family; correspondingly, the four parameters are
often called the family parameters. While some SRG families
may have only one nonisomorphic member, there are many
families of SRGs with multiple nonisomorphic graphs. These
are the families which are of interest to us.

The adjacency matrix of any SRG has at most three
eigenvalues. As these eigenvalues and their multiplicities are
functions of the family parameters, the adjacency matrices

022334-2



NONINTERACTING MULTIPARTICLE QUANTUM RANDOM . . . PHYSICAL REVIEW A 86, 022334 (2012)

of SRGs in the same family are always cospectral [42]. This
contributes to the difficulty of distinguishing nonisomorphic
SRGs.

The adjacency matrix of any SRG satisfies the particularly
useful algebraic identity [42]

A2 = (k − μ)I + μJ + (λ − μ)A, (2)

where I is the identity and J is the matrix of all ones. Because
J2 = NJ, JA = AJ = kA, and I acts trivially on I, J, and A,
we see that {I,J,A} forms a commutative three-dimensional
algebra, so we conclude that, for any positive integer n,

An = αnI + βnJ + γnA, (3)

where αn, βn, and γn depend only on n and the family
parameters.

C. Defining the quantum random walk

Now we discuss how we form a continuous-time noninter-
acting QRW on a graph. As in [27], we use the Hubbard model,
where each site corresponds to a graph vertex. A particle
can move from one vertex to another if the two vertices are
connected. Thus, for a graph on N vertices with adjacency
matrix A, our noninteracting Hamiltonian is given by

H = −
N∑
i,j

Aij c
†
i cj , (4)

where c
†
i and ci are the creation and annihilation operators,

respectively, for a boson or (spinless) fermion at site i. For
bosons, they satisfy the commutation relations [ci,c

†
j ] = δij

and [ci,cj ] = [c†i ,c
†
j ] = 0. For fermions, they satisfy the an-

ticommutation relations {ci,c
†
j } = δij and {ci,cj } = {c†i ,c†j } =

0.
For walks of p bosons, we use basis states of the form

|j1 . . . jp〉B , which is the appropriately symmetrized basis state
with bosons on vertices j1 through jp. These vertices need not
be distinct, since vertices may be multiply occupied. Similarly,
for walks of p fermions, we use basis states of the form
|j1 . . . jp〉F , which is the appropriately antisymmetrized basis
state with fermions on vertices j1 through jp. These vertices
must be distinct, because the Pauli exclusion principle implies
that no vertex can be occupied by multiple fermions. We refer
to these bases as the particles-on-vertices bases.

Following [27,36], it is straightforward to show that the
elements of the p-boson or p-fermion noninteracting Hamil-
tonian (Hp,B and Hp,F , respectively) are, in their respective
particles-on-vertices bases,

B〈i1 . . . ip|Hp,B |j1 . . . jp〉B
= −B〈i1 . . . ip|A⊕p|j1 . . . jp〉B, (5)

F 〈i1 . . . ip|Hp,F |j1 . . . jp〉F
= F 〈i1 . . . ip|A⊕p|j1 . . . jp〉F , (6)

where

A⊕p = A ⊗ I ⊗ I . . . ⊗ I︸ ︷︷ ︸
p

+ I ⊗ A ⊗ I . . . ⊗ I + . . . + I ⊗ I ⊗ I . . . ⊗ A. (7)

The evolution operator is defined in the standard manner,

U(t) = e−itH, (8)

where h̄ = 1 for convenience.

D. Comparison algorithm

Our method for comparing two graphs in an attempt to
determine whether or not they are isomorphic is the same
as the one used in [27]. Given two graphs with adjacency
matrices A and B, we compute, in the particles-on-vertices
basis, UA(t) and UB(t), respectively, for the same number and
type of particle, as well as the same time t . The absolute values
of each element of UA(t) and UB(t) are written to lists XA and
XB, respectively. Both lists are sorted, and we compute the
distance between the lists, �:

� =
∑

ν

|XA[ν] − XB[ν]|. (9)

We say that A and B are distinguished by a particular walk
if and only if that walk yields � �= 0; isomorphic graphs
and nonisomorphic nondistinguished graphs both yield � = 0
[27]. We note that we lose phase information by taking the
absolute value of the elements, but it makes our comparison
procedure more tractable and seems to do no harm (see
[27]). Finally, for all simulations presented in this paper,
t = 1.

III. QUANTUM RANDOM WALKS ON STRONGLY
REGULAR GRAPHS

A. Comparing the distinguishing power of two- and
three-particle noninteracting walks

In this subsection we show analytically that there is a
fundamental difference between two-particle noninteracting
walks and three-particle noninteracting walks on SRGs,
because three-particle noninteracting walks are capable of
distinguishing SRGs from the same family, unlike two-particle
noninteracting walks. To show this difference, we recall the
proof used by Gamble et al. to demonstrate the inadequacy of
two-particle walks [27].

The proof by Gamble et al. first shows that the value
of every element in the two-particle evolution operators
(B 〈ij | U2B(t) |kl〉B or F 〈ij | U2F (t) |kl〉F ) must be a function
only of the SRG family parameters and the time t . Then
it is shown that the multiplicity of each element value in
the evolution operator is also a function of the SRG family
parameters. We begin similarly here for the three-particle walk
and find that while the values of the elements are all functions
of the SRG family parameters, the multiplicities of the values
are not.

We first address the element values. We refer to each
element of each evolution operator (computed in the particles-
on-vertices basis) as a Green’s function, following the nomen-
clature of Gamble et al. [27]. Because the three-particle walk in
question is noninteracting, we know that the evolution operator
for the walk factorizes into three single-particle evolution
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operators:

B 〈ijk| U3B |lmn〉B =B 〈ijk| U1P
⊗3 |lmn〉B , (10)

F 〈ijk| U3F |lmn〉F =F 〈ijk| U1P

⊗3 |lmn〉F , (11)

where U1P
⊗3 = U1P ⊗ U1P ⊗ U1P ; U1P is the evolution

operator for the single-particle walk, that is, U1P = eiAt and
U1P = e−iAt .

Recalling Eq. (3), and expanding eiAt as a Taylor series in
powers of At , we note that

U1P = αI + βJ + γ A, (12)

where α, β, and γ are functions of the family parameters and
the time t . Therefore, we conclude that all possible values
of the elements of U3B and U3F (the Green’s functions) are
determined by the family parameters. Thus, the set of all
potential values for the Green’s functions are the same for any
two graphs in the same family. Any distinguishing power of
the walks must come from the existence of at least one Green’s
function with different multiplicities for nonisomorphic graphs
in the same family.

Gamble et al. prove that the multiplicity of each Green’s
function for two-particle noninteracting walks is a function of
the SRG family parameters. In Appendix A, we show that there
exist Green’s functions for the three-particle noninteracting
walk on SRGs whose multiplicities are not functions of the
family parameters. This is because the multiplicity of a Green’s
function in a p-particle walk depends on how many shared
neighbors a collection of up to p vertices has. For p = 2,
strong regularity uniquely determines the number of shared
neighbors: λ if the vertices are connected and μ if they are
not. However, for p � 3, the multiplicity is dependent on the
number of shared neighbors among sets of p vertices. Thus the
multiplicity is not uniquely determined by strong regularity,
so the multiplicity for such a Green’s function need not be a
function of the family parameters.

The definition of SRGs does not directly constrain the
number of neighbors of a set of p vertices with p � 3.
However, this difference from the two-particle case does not
guarantee that walks of three or more particles can distinguish
nonisomorphic SRGs, only that they have the potential to do
so. Our numerical investigations of the distinguishing power
of these walks are presented in Sec. III B.

B. Numerical results

In this subsection, we present our numerical results for
three-particle and four-fermion walks on SRGs. To simulate
a walk on a graph, we compute the appropriate Hamiltonian
and exponentiate it to compute its corresponding evolution
operator, following the algorithm described in Sec. II D. Then,
to compare pairs of nonisomorphic graphs from the same
family, we compute the list distance �, defined in Eq. (9).
We find our error on � to be no greater than 10−6, so two
nonisomorphic graphs are considered distinguished if and only
if � > 10−6. Further details of numerical error analysis are
provided in Appendix D.

Because the Hamiltonians are very large, we must use a
sparse matrix exponentiation routine [43] to make exponenti-
ation computationally tractable. (The largest evolution opera-

TABLE I. Numerical results for three-particle noninteracting
walks in 12 families of SRGs. The first column lists the family
parameters for the particular SRG family examined. The second
column lists the number of graphs in the family that we compared.
This number S is equal to the number of graphs in the family, with
the exception of (49,18,7,6), where we examined only a subset of the
family. The third column gives the number of comparisons made for
each family, equal to S choose 2. The fourth and fifth columns list
the number of graph pairs which the three-boson and three-fermion
walks fail to distinguish, respectively. We see that, of 70 712 graph
comparisons, both the boson and the fermion walks fail a total of 256
times, corresponding to a success rate of greater than 99.6%.

SRG family No. of Boson Fermion
(N , k, λ, μ) graphs Comparisons failures failures

(16,6,2,2) 2 1 0 0
(16,9,4,6) 2 1 0 0
(25,12,5,6) 15 105 0 0
(26,10,3,4) 10 45 1 1
(28,12,6,4) 4 6 0 0
(29,14,6,7) 41 820 0 0
(35,18,9,9) 227 25 651 38 38
(36,14,4,6) 180 16 110 89 89
(40,12,2,4) 28 378 8 8
(45,12,3,3) 78 3 003 7 7
(49,18,7,6) 147 10 731 21 21
(64,18,2,6) 167 13 861 92 92

tors we compute have a dimension of 91 390 and correspond to
four-fermion walks on graphs of 40 vertices.) Additionally, in
order to be able to perform these exponentiations sufficiently
quickly, we parallelize the computations, utilizing the Open
Science Grid and the University of Wisconsin–Madison’s
Center for High Throughput Computing Cluster.

Our numerical results for three-particle walks are presented
in Table I. For the 70 712 pairs of SRGs compared, boson and
fermion walks distinguish all but 256 pairs, corresponding to
a success rate of greater than 99.6%. Thus we see that both
three-boson and three-fermion walks have significant (but not
universal) distinguishing power on SRGs, while two-particle
noninteracting walks fail on all pairs of nonisomorphic graphs
in the same family [27].

Bosonic and fermionic walks fail to distinguish the same
pairs of nonisomorphic graphs that we tested; we have found
no graph pair wherein one kind of particle successfully
distinguishes while the other does not. Thus, despite having a
state space of smaller dimension (due to Pauli exclusion), the
three-fermion walk has the same distinguishing power as the
three-boson walk on all tested graph pairs. It remains an open
question whether graph pairs exist for which this is not true.

Having identified some graph pairs that three noninteracting
particles fail to distinguish, we want to know if noninteracting
walks exist that can distinguish these graphs. However, it is
computationally expensive (even with the speedup provided by
parallelization) to simulate four-particle walks. We therefore
simulated only fermion walks, and only on a subset of
the three-particle counterexample graph pairs. Our results
are summarized in Table II. We simulated four-fermion
noninteracting walks on 136 counterexample pairs, finding
that all but one pair are distinguished.
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TABLE II. Numerical results for four-fermion noninteracting
walks in 136 graph pairs that are not distinguished by three-particle
noninteracting walks. Of the 136 graph pairs tested, only 1 pair is
not successfully distinguished. We therefore see that increasing the
number of noninteracting particles beyond 3 continues to increase the
distinguishing power of the noninteracting QRWs.

Family (N , k, λ, μ) 3-particle failures 4-fermion failures

(26,10,3,4) 1 0
(35,18,9,9) 38 0
(36,14,4,6) 89 1
(40,12,2,4) 8 0

Since increasing the number of noninteracting particles in
the walk apparently increases the distinguishing power, it is
natural to ask, “Does there exist a p such that the p-particle
noninteracting walk can distinguish all SRGs?” The next
subsection shows that the answer to this question is no.

C. Limitations of noninteracting walks

In this subsection, we show that pairs of nonisomorphic
SRGs exist that are not distinguished by any p-particle
noninteracting quantum walk with fixed p in conjunction with
the comparison algorithm described by Eq. (9). This is because
for a fixed p, there exists an N such that the number of SRGs
with N vertices is larger than the maximum number of graphs
distinguishable by the p-particle noninteracting walk.

To prove this claim, we define S(N ), the number of SRGs in
a particular family with N vertices, and Z(p,N ), the number
of distinct “graph fingerprints” that the p-boson walk can
generate for an SRG family whose graphs have N vertices. By a
graph fingerprint, we mean a sorted list of the absolute value of
every element of an evolution operator [Eq. (10)]. We examine
the boson walk here, because its state space is strictly larger
than that of a fermion walk of the same number of particles.
Thus the p-boson walk generates more fingerprints than the
p-fermion walk (even though we have seen no evidence yet that
it distinguishes more graph pairs). Therefore, Z(p,N ) bounds
from above the maximum number of SRGs with N vertices
in a particular family that noninteracting walks of either p

fermions or bosons can distinguish.
We now define the ratio R(p,N ):

R(p,N ) = S(N )

Z(p,N )
. (13)

We show that for any fixed p, R > 1 for large enough N , thus
demonstrating that there exist more SRGs than the p-particle
walk can distinguish.

It is shown in [44] that there is a mapping between Latin
squares of size n and SRGs of size n2 with family parameters
(n2,3(n − 1),n,6). The results of [44,45] imply that when N

is large enough, the number of nonisomorphic Latin square
SRGs of size N is bounded below by

S(N ) � 1

6
(
√

N !)2
√

N−3N
−N

2 . (14)

As for Z(p,N ), we show in Appendix B that for a fixed p,
Z satisfies the inequality

Z(p,N ) < N2Xp(p+1), (15)

where Xp is the number of unique values a Green’s function
for a p-boson walk can assume. While it can be shown that
Xp is superexponential in p, it does not depend on N . This is
because the value of a Green’s function for a noninteracting
p-particle QRW on an SRG is determined by a configuration
of up to 2p vertices in that SRG, as discussed in Sec. III A and
Appendix A.

To examine the behavior of R in the limit of large N , we
use Stirling’s formula:

x! =
√

2πe−xxx+1/2[1 + O(x−1)]. (16)

This allows us compute a lower bound for R in the limit of
large N :

lim
N→∞

R � 1

6
(2π )

√
N− 3

2 e−2N+3
√

NN
N
2 −√

N− 3
4 −2Xp(p+1). (17)

Taking the logarithm of Eq. (17) yields:

lim
N→∞

ln R(p,N ) � lim
N→∞

N

2
ln N + O(N ), (18)

which diverges as N → ∞. Therefore, for a fixed p, R

approaches ∞ as N increases, showing that no p-particle
noninteracting walk can distinguish all SRGs.

One can let p grow slightly with N and achieve the same
result. Indeed, we show in Appendix C that

log2(Xp) = p2 + O(p log p). (19)

Using this, we find that our argument remains valid for p <

C
√

log2 N , for any C < 1.
We can contrast these results with those of Gamble et al.

They found that the hard-core two-boson walk distinguished
all graph pairs in a data set of more than 500 million pairs of
SRGs [27]. This distinguishing power was shown to arise from
an underlying algebra that is fundamentally different from that
of noninteracting two-boson or two-fermion walks. As we see
no obvious way to extend the proof presented in this section
to include hard-core walks, it is an open question whether or
not the two-boson hard-core walk has universal distinguishing
power on SRGs. Even if does not, it is still possible that there
exists a fixed p > 2 such that the p-boson hard-core walk
could distinguish all SRGs. If this is the case, then this would
be a marked difference between noninteracting and hard-core
walks.

IV. DISCUSSION

We have shown how three-particle noninteracting QRWs
are qualitatively different from two-particle noninteracting
QRWs; the latter will always fail to distinguish nonisomorphic
SRGs from the same family, whereas the former successfully
distinguish many (but not all) nonisomorphic pairs of SRGs.
We have analytically identified a fundamental difference
between these two classes of quantum walks. Three-particle
walks have potential distinguishing power because the shared
connectivity of triples of vertices in SRGs is not governed
by the SRG family parameters. We have also demonstrated
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numerically that three-particle noninteracting walks have
significant, but not universal, distinguishing power on SRGs.
We observe numerically that bosonic and fermionic walks
distinguish the same pairs of nonisomorphic pairs of graphs.
Increasing the number of noninteracting fermions to four
further increases the distinguishing power. However, this
distinguishing power is not limitless; we have shown that
for any fixed number of noninteracting particles, there exist
nonisomorphic pairs of SRGs that cannot be distinguished.

Finally, we discuss the implications of these results in terms
of the computational complexity of the GI problem. Not only
are there graph pairs on which three- and four-particle walks
fail, but also we know that for any fixed particle number,
there will be SRGs that such noninteracting walks cannot
distinguish. It is still possible that, given any nonisomorphic
SRG pair of a fixed size N , there exists a p such that the
p-particle noninteracting walk will succeed in distinguishing
the graphs. However, the lower bound given at the end of
Sec. III C rules out the possibility of our algorithm providing
a classical polynomial-time solution to GI for SRGs.
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APPENDIX A: COMPUTING MULTIPLICITIES OF
VALUES OF MATRIX ELEMENTS OF THE EVOLUTION

OPERATOR FOR STRONGLY REGULAR GRAPHS

Here we discuss how to compute the multiplicities of values
of elements of evolution operators, or Green’s functions, for
SRGs. We show in this Appendix that the multiplicity of a
noninteracting three-particle Green’s function is in general not
a function of the SRG family parameters. This result is used in
Sec. III A to demonstrate how two-particle and three-particle
noninteracting walks have different distinguishing powers for
SRGs.

To compute the multiplicity of each value of the Green’s
function in a noninteracting three-particle walk, we first note
that Eqs. (10) through (12) imply that the value of a given
Green’s function depends on the relationships between the
vertices in the final state (the bra; {i,j,k}) and the vertices
in the initial state (the ket; {p,q,r}). For each pair of indices
(x,y), with x from the bra (x ∈ {i,j,k}) and y from the ket (y ∈
{p,q,r}), there are three possible relations. The vertices can
be connected (Axy = 1), the vertices can be the same (δxy =
1), or the vertices can be different and disconnected (Axy =
δxy = 0). Therefore, we may think of each Green’s function as
corresponding to a generalized subgraph of the original graph.
We say “generalized subgraph” because the Green’s function
is unaffected by internal connections within the initial or final

i

j

k

p

q

r

FIG. 1. Sketch of a generalized subgraph, or “widget,” used to
calculate the values and degeneracy of a Green’s function for a
three-particle quantum walk on an SRG. Vertices on the right side
correspond to the vertices the particles are on to begin with (the
ket |pqr〉B or |pqr〉F ), and vertices on the left side correspond to
the vertices the particles end up on (the bra B 〈ijk| or F 〈ijk|), after
application of the evolution operator U . A solid line between vertex
x and vertex y indicates that Axy = 1. A dashed line between x and
y means that the value of Axy does not affect the value of the Green’s
function. Thus, for bosons, the depicted widget corresponds to the
Green’s function B 〈ijk| U3B |pqr〉B when all six vertices are distinct
and when Axy = 1 for all x ∈ {i,j,k} and y ∈ {p,q,r}. Equations (10)
and (12) show that the value of this Green’s function, or widget, is
B 〈ijk| U3B |pqr〉B = 6(β + γ )3.

state; we adopt the more compact terminology of referring to
these generalized subgraphs as “widgets.”

To illustrate this point, let us consider the widget shown
in Fig. 1. Solid lines in the widget indicate that the sites
are connected in the graph, while dashed lines indicate that
the value of the widget does not depend on whether or not
those sites are connected. Thus, two widgets are considered
the same whether or not sites that are connected by dashed
lines are actually adjacent. To evaluate B 〈ijk| U3B |pqr〉B
for the widget shown in Fig. 1, we note that all six vertices
({i,j,k,l,p,q,r}) are distinct. We can then use Eqs. (10) and
(12) to find that B 〈ijk| U3B |pqr〉B = 6(β + γ )3, where β and
γ , defined in (12), are functions of the SRG family parameters.
The multiplicity of this particular value for a particular graph is
given by the number of times its corresponding widget occurs
in the graph.

To compute the multiplicity, M , of 6(β + γ )3 in U3B , we
count the number of occurrences of this widget in the graph.
To do this, we perform the following combinatorial sum,
generalizing the procedure outlined in Appendix B of Gamble
et al. [27].

M =
∑

i<j<k

∑
p<q<r

AipAiqAirAjpAjqAjrAkpAkqAkr

= 1

36

∑
ijkpqr

AipAiqAirAjpAjqAjrAkpAkqAkr (1 − δij )

× (1 − δik)(1 − δjk)(1 − δpq)(1 − δpr )(1 − δqr ).

(A1)

The analogous sums considered by Gamble et al., who
examine only two-particle walks, can be decomposed into
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i

j

p

q

(a) (b)

i

j

k

p

q

r

FIG. 2. Empty widgets for two-particle and three-particle nonin-
teracting walks. In both widgets, all vertices are distinct and no vertex
in the initial state is adjacent to any vertex in the final state. The values
of the widgets depend only on the family parameters for both (a) and
(b), while the degeneracies of these values depend only on family
parameters for two particles but not for three. The multiplicity of
each widget’s respective Green’s function for a particular SRG is
equal to the number of times that widget appears in the SRG. (a)
The empty widget for two particles. The number of times this widget
appears in an SRG is a function of the SRG family parameters, as is
the case for all two-particle widgets [27]. (b) The empty widget for
three particles. The number of times this widget appears in an SRG is
not a function solely of SRG family parameters. This is demonstrated
by the graphs in Fig. 3. An analytic explanation for this phenomenon
is given in the text following Eq. (A2).

sums and traces over powers of the adjacency matrix. Such
operations are given by contracting over two occurrences
of the same index in the summand. Conveniently, these
quantities are expressible in terms of SRG family parameters,
as illustrated by Gamble et al. Things are not as simple,
however, for three-particle walks. By inspection, we see that
Eq. (A1) contains contractions over three occurrences of the
same index. Such contractions correspond to neither matrix
multiplication nor computation of the trace and cannot in
general be massaged into forms expressible in terms of SRG
family parameters, as evidenced by the fact that three-particle
walks have distinguishing power over many pairs of SRGs.

However, the above statement does not give us analytic
proof that there exist Green’s functions whose multiplicities
are not functions of the family parameters; up to this point,
we are still relying on the numerical results as proof. Below,
we analytically demonstrate that there exist widgets whose
multiplicities cannot be determined by family parameters. To
demonstrate this, we take a step back to the two-particle walk.
Consider the widget shown in Fig. 2(a). We can determine
this widget’s multiplicity for an arbitrary SRG with family
parameters (N,k,λ,μ) by performing the combinatorial sum
analogous to Eq. (A1), or equivalently, we can actually count
the number of times we can fit this widget on the SRG. To
begin, we pick two sites in the graph to serve as sites i and j ;
these sites may be adjacent or not, as indicated by the dashed
line between them in the figure. Now we must count, given
our choice of i and j , how many sites we may pick as p and q.

If i and j are connected, there are ( N−2k+λ

2
) choices for p and

q, whereas if i and j are disconnected, there are ( N−2−2k+μ

2
)

choices for p and q. There are Nk
2 choices for connected sites

that can serve as i and j and ( N

2
) − Nk

2 disconnected sites.

Thus, the number of four-vertex empty widgets occurring in a

(a) (b)

FIG. 3. The two nonisomorphic graphs of the SRG family
(16,6,2,2). The widget in Fig. 2(b) appears in the graph shown in
(a) 608 times, whereas the same widget appears in the graph shown
in (b) 512 times. Thus we see that the same three-particle widget
can have different multiplicities in graphs of the same family, so
the three-particle noninteracting walk can distinguish at least some
nonisomorphic graphs from the same SRG family.

two-particle noninteracting walk is

M2,empty = Nk

2

(
N − 2k + λ

2

)

+
[(

N

2

)
− Nk

2

] (
N − 2 − 2k + μ

2

)
, (A2)

in agreement with the result of Gamble et al. for this particular
widget [27]. Thus we see that this widget’s multiplicity is, as
expected, a function of the family parameters. Let us see what
happens when we try this same approach for the corresponding
widget in three-particle walks, shown in Fig. 2(b). Again, we
consider the multiplicity of the widget in an arbitrary SRG
by counting the number of times we can fit this widget on
the graph. Now we pick three sites to serve as i, j , and
k. We want to count, given our choice of i, j , and k, the
number of sites that can serve as p, q, and r . To do this,
we need to know how i, j , and k are connected among
themselves, just as we did in the previous example. There
are four possible nonisomorphic connectivities, as there can
be between zero and three connections among these sites.
In order to count the multiplicity of this widget, we must
consider for each of these four cases how many sites in the
graph are mutually disconnected from sites i, j , and k. In the
previous example, we could answer the analogous question
via the family parameters, as illustrated above. However,
this is because the family parameters μ and λ tell us how
many common neighbors pairs of vertices have. There are
no family parameters which encode this information for
triples of vertices, as strong regularity does not place absolute
constraints on shared connectivities for triples of vertices.

We illustrate this point with an example in Fig. 4. Two
copies of the Petersen graph, an SRG with family parameters
(10,3,0,1), are depicted. The first copy highlights three
mutually nonadjacent vertices; this particular triple of vertices
has one common neighbor. The second copy also highlights
a triple of mutually nonadjacent vertices, but this triple has
no shared neighbors. Thus we have demonstrated by example
that strong regularity cannot in general uniquely determine the
shared connectivity for triples of vertices.
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(a) (b)

FIG. 4. (Color online) Two copies of the Petersen graph, an
SRG with parameters (10,3,0,1). In each graph, three mutually
nonadjacent vertices are highlighted as (red) diamonds. In (a), the
three vertices share one common neighbor, shown as the (green)
square. In (b), the three vertices share no common neighbors. This
demonstrates that the number of neighbors common to a triple of
vertices in a strongly regular graph is not strictly a function of the
SRG family parameters, thus showing why widget multiplicity is not
strictly governed by family parameters when p � 3.

Moreover, we can see that counting the multiplicity of the
widget shown in Fig. 2(b) can be used to distinguish two non-
isomorphic graphs from the same SRG family. Figure 3 shows
the two nonisomorphic graphs in the SRG family (16,6,2,2).
The widget in Fig. 2(b) appears 512 times in the first graph
and 608 times in the second graph, thus distinguishing them.

We conclude, then, that there exist three-particle widgets
whose multiplicities cannot be functions of family parameters.
Thus, three-particle noninteracting walks are not forbidden
from distinguishing nonisomorphic SRGs from the same
family, unlike two-particle noninteracting walks.

APPENDIX B: COMPUTING THE NUMBER
OF SRG FINGERPRINTS

In Sec. III C, it is shown that quantum walks of p

noninteracting particles cannot distinguish all nonisomorphic
pairs of SRGs. This is done by showing that Z(p,N ), the
number of graph fingerprints given by the p-boson walk on
an SRG family with N vertices, is less than the number of
no-isomorphic SRGs with N vertices, in the limit of large N .
This subsection presents the calculation of Z(p,N ).

To calculate Z(p,N ), we note that if there are Xp possible
Green’s function values for the p-boson walk, and Y elements
of the evolution operator U , then computing the number of
unique fingerprints is equivalent to computing the number of
ways one can put Y indistinguishable balls in Xp labeled bins,
so that [46]

Z(p,N ) =
(

Xp + Y − 1

Xp − 1

)
. (B1)

We recall that Xp is a function of p, but not of N . (We may
think of Xp as the number of uniquely valued widgets that
appear in the p-boson walk.) However, Y , the number of
elements in the evolution operator, will depend on both p

and N , and we henceforth write it as Yp,N . The dimension of
the evolution operator is computed by determining how many
different ways p bosons can be put on N vertices, which is
the same problem as computing the number of ways to put

p indistinguishable balls into N labeled bins. The number of
elements in the evolution operator is just the square of its
dimension, so we find that

Yp,N =
(

N + p − 1

p

)2

. (B2)

Using Eqs. (B1) and (B2), we now compute an upper bound

for Yp,N and Z. It can be shown that ( n+k−1
k−1

) � nk when n � 2

and k � 1. Thus

Yp,N <

(
N + p

p

)2

� N2(p+1) (B3)

and

Z(p,N ) �
(
Yp,N

)Xp
< N2Xp(p+1). (B4)

Therefore, the maximum number of unique graphs the p-boson
walk can distinguish is bounded above by N2Xp(p+1). We use
this result in Sec. III C to show that there exist SRGs that a
particular p-particle walk cannot distinguish.

APPENDIX C: BOUNDING THE NUMBER OF WIDGETS IN
THE NONINTERACTING p-PARTICLE WALK

Here, we show that log2 Xp ∼ p2, where Xp is the number
of distinct widgets for the noninteracting p-boson walk.
First, Auluck proved that there are eO(p2/3) widgets with no
edges [47]. [He counted bipartitions of (p,q), which may
be considered to be edgeless widgets when p = q.] Since
there are at most 2p2

ways to add edges to one of these,
we have the upper bound Xp � 2p2+O(p2/3). To get a lower
bound, it will suffice to consider the widgets with 2p distinct
indices. The edges in one of these can be specified by a p × p

array of bits, and the widgets isomorphic to it are obtained
by permuting rows, permuting columns, or transposing the
matrix. Therefore, by Burnside’s counting lemma [48], the
number of isomorphism classes of widgets of this type is

1

|F |
∑
f ∈F

[ No. of arrays fixed by f ],

where the finite group F is the semidirect product of Sp × Sp

by S2. (Sp and S2 are the symmetric groups on p and 2 objects,
respectively.) This is lower bounded by the term coming
from f = 1, which is 2p2

/[2(p!)2], and this is 2p2+O(p log p)

by Stirling’s formula. From these two estimates the result of
Eq. (19) follows.

APPENDIX D: ERROR ANALYSIS FOR NUMERICAL
COMPUTATIONS

When comparing two graphs, we compute �, a measure
of the distance between the lists of matrix elements of the
evolution operators for the two graphs, as defined in Eq. (9).
Computing � requires comparing two lists of numbers that are
each exponentially large in particle number p. An evolution
operator for a walk of p noninteracting fermions on a graph
with N vertices has ( N

p
)2 elements, and the boson equivalent

has ( N+p−1
p

)2 elements. For example, the evolution operator
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FIG. 5. (Color online) The number of numerically distinguished
elements in the evolution operator U(t), defined in Eq. (8) as a function
of the bin size used in grouping the elements. This plot is for the nonin-
teracting three-fermion walk on a graph in the SRG family (16,6,2,2).
We see that the actual number of unique elements is about 150, which
can be obtained by using a bin size in the range of 10−7 to 10−4.

for the noninteracting four-fermion walk on a graph of 35
vertices has more than 2.7 billion elements.

Comparison of the lists can be made much more efficient
by exploiting the fact that the values in the list are highly
degenerate. Instead of comparing the entries in a list, we
make histograms of element values and their multiplicities.
We then compute � by comparing these histograms. When

constructing the histograms, it is important to determine the
correct bin size. Choosing a bin size that is too large results
in falsely grouping distinct elements together, while choosing
a bin size that is too small results in falsely distinguishing
elements. By constructing a series of histograms with different
bin sizes for the same evolution operator, we are able to
determine a range of bin sizes which are neither too large
nor too small. This is illustrated in Fig. 5, which shows that for
a noninteracting three-fermion walk on a graph in (16,6,2,2),
an appropriate bin size is between 10−7 and 10−4.

Because we compute � via numerical simulation, we
expect there to be some numerical noise floor. That is, for
any two permutations of the same graph, we expect � > 0.
It is important to determine how big this quantity, which
we denote �iso, will be. We consider two nonisomorphic
graphs to be distinguishedonly if they yield a � which
satisfies � � �iso.

We numerically compute �iso using double-precision arith-
metic for a variety of random permutations on our graphs,
and we find the maximum �iso to be approximately 10−6.
Thus, only graph pairs which yield a � > 10−6 are considered
distinguished. We find �iso to be relatively insensitive to graph
size and particle number.

In practice, we see a gap for � between distinguished graph
pairs and nondistinguished graph pairs. For distinguished
graphs, we find � to be at least two orders of magnitude
larger than �iso (usually much larger); nondistinguished graph
pairs have values of � that are approximately equal to, or even
smaller than, �iso.
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A 79, 012323 (2009).

[16] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert,
M. Enderlein, T. Huber, and T. Schaetz, Phys. Rev. Lett. 103,
090504 (2009).

[17] M. Karski, L. Frster, J.-M. Choi, A. Steffen, W. Alt,
D. Meschede, and A. Widera, Science 325, 174 (2009).

[18] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J.
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