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We demonstrate coherent driving of a single electron spin using second-harmonic excitation in a Si/SiGe
quantum dot. Our estimates suggest that the anharmonic dot confining potential combined with a gradient
in the transverse magnetic field dominates the second-harmonic response. As expected, the Rabi frequency
depends quadratically on the driving amplitude, and the periodicity with respect to the phase of the drive is
twice that of the fundamental harmonic. The maximum Rabi frequency observed for the second harmonic
is just a factor of 2 lower than that achieved for the first harmonic when driving at the same power.
Combined with the lower demands on microwave circuitry when operating at half the qubit frequency,
these observations indicate that second-harmonic driving can be a useful technique for future quantum
computation architectures.
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Controlled two-level quantum systems are essential
elements for quantum information processing. A natural
and archetypical controlled two-level system is the electron
spin doublet in the presence of an external static magnetic
field [1,2]. The common method for driving transitions
between the two spin states is magnetic resonance, whereby
an ac magnetic field (Bac) is applied transverse to the static
magnetic field (Bext), with a frequency, fMW, matching the
spin Larmor precession frequency fL ¼ gμBBtot=h (h is
Planck’s constant, μB is the Bohr magneton, and Btot the
total magnetic field acting on the spin). Coherent rotations
of the spin, known as Rabi oscillations, can be observed
when driving overcomes decoherence.
Both spin transitions and Rabi oscillations can be driven

not just at the fundamental harmonic, but also at higher
harmonics, i.e., where the frequency of the transverse ac
field is an integer fraction of the Larmor frequency,
fMW ¼ fL=n, with n an integer. Second or higher harmonic
generation involves nonlinear phenomena. Such processes
are well known and explored in quantum optics using
nonlinear crystals [3], and their selectivity for specific
transitions is exploited in spectroscopy and microscopy
[4–8]. Two-photon coherent transitions have also been
extensively explored for biexcitons in (In,Ga)As quantum
dots [9] and in superconducting qubit systems [10–13].
In cavity QED systems, a two-photon process has the
advantage that it allows the direct transition from the
ground state to the second excited state, which is forbidden
in the dipole transition by the selection rules [14].
For electron spin qubits, it has been predicted that the

nonlinear dependence of the g tensor on applied electric
fields should allow electric-dipole spin resonance at
subharmonics of the Larmor frequency for hydrogenic
donors in a semiconductor [15,16]. For electrically driven

spin qubits confined in a (double) quantum dot, higher-
harmonic driving has been proposed that takes advantage of
an anharmonic dot confining potential [17–21] or a
spatially inhomogeneous magnetic field [22]. In order to
use higher harmonic generation for coherent control of a
system, the corresponding driving rate must exceed the
decoherence rate. This requires a nonlinearity that is
sufficiently strong. Although weak nonlinearities are easily
obtained and have allowed higher harmonics to be used in
continuous wave (cw) spectroscopy for quantum dots
hosted in GaAs, InAs, InSb, and carbon nanotubes
[23–28], coherent spin manipulation using higher harmon-
ics has not been demonstrated previously.
In this Letter, we present experimental evidence of

coherent second-harmonic manipulation of an electron spin
confined in a single quantum dot (QD) hosted in a Si/SiGe
quantum well. We show that this second-harmonic driving
can be used for universal spin control, and we use it to
measure the free-induction and Hahn-echo decay of the
electron spin. Furthermore, we study how the second-
harmonic response varies with the microwave amplitude
and phase, and comment on the nature of the nonlinearity that
mediates the second-harmonic driving process in this system.
The quantum dot is electrostatically induced in an

undoped Si/SiGe quantum well structure, through a com-
bination of accumulation and depletion gates (see Sec. I of
[29] for full details). The sample and the settings are the
same as those used in Ref. [30]. A cobalt micromagnet next
to the QD creates a local magnetic field gradient, enabling
spin transitions to be driven by electric fields [30,31].
All measurements shown here are performed using single-

shot readout via a QD charge sensor [32]. They make use of
four-stage gate voltage pulses implementing (1) initialization
to spin-down, (2) spin manipulation through all-electrical
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microwave excitation, (3) single-shot spin readout, and (4) a
compensation or empty stage [30]. The results of many
single-shot cycles are used to determine the spin-up
probability, P↑, at the end of the manipulation stage.
First, we apply long, low-power microwave excitation to

perform quasi-cw spectroscopy. Figure 1(a) shows four
observed spin resonance frequencies, fð1Þ0 through fð4Þ0 , as a
function of the external magnetic field. The resonances
labeled (1) and (2) represent the response at the funda-
mental frequency. As in [30], these two closely spaced
resonances correspond to the electron occupying either of
the two lowest valley states, both of which are thermally

populated here. The other two resonances occur at exactly
half the frequency of the first two, fð1Þ0 ¼ 2fð3Þ0 , fð2Þ0 ¼
2fð4Þ0 , and represent the second-harmonic response.
The effective g factors extracted from the slopes for the

second-harmonic response are half those for the first-
harmonic response [see Fig. 1(a), inset]. The relevant
energy levels and transitions as a function of the total
magnetic field, Btot, are visualized in Fig. 1(b), where the
color scheme used for the resonances is the same as in
Fig. 1(a). We see two sets of Zeeman split doublets,
separated by the splitting between the two lowest-energy
valleys, Ev. The transition between the Zeeman sublevels
within each doublet can be driven by absorbing a single
photon (1 ph) or two photons (2 ph), as indicated by the
single and double arrows.
To drive a transition using the second harmonic, a

nonlinearity is required. In principle, several mechanisms
can introduce such a nonlinearity in this system (see Sec. II
of [29]). First, as schematically shown in Fig. 1(c), if the
confining potential is anharmonic, an oscillating electric
field of amplitude Eac and angular frequency ω ¼ 2πfMW
induces effective displacements of the electron wave
function with spectral components at angular frequencies
nω, with n an integer. In analogy with nonlinear optical
elements, we can look at this process as generated by an
effective nonlinear susceptibility of the electron bounded to
the anharmonic QD confinement potential.
The gradient in the transverse magnetic field in the dot

region (B⊥ in green) converts the electron motion into an
oscillating transverse magnetic field of the form

Bac⊥ ðtÞ ¼ Bω cosðωtÞ þ B2ω cosð2ωtÞ þ � � � ; ð1Þ

that can drive the electron spin for ℏω ¼ Ez, 2ℏω ¼ Ez,
and so forth [17]. A possible source of anharmonicity arises
from the nonlinear dependence of the dipole moment
between the valley (or valley-orbit) ground (υ−) and excited
states (υþ) [33], as a function of Eac.
A second possible source of nonlinearity is a variation of

the transverse field gradient, ðdB⊥=dx; dyÞ, with position
[see Fig. 1(c)]. Even if the confining potential were
harmonic, this would still lead to an effective transverse
magnetic field containing higher harmonics, of the same
form as Eq. (1).
A third possibility is that not only the transverse

magnetic field, but also the longitudinal magnetic field
varies with position. This leads to an ac magnetic field
which is not strictly perpendicular to the static field, which
is, in itself, sufficient to allow second-harmonic driving
[21,34,35], even when the confining potential is harmonic
and the field gradients are constant over the entire range of
the electron motion.
However, simple estimates indicate that the second and

third mechanisms are not sufficiently strong in the present
sample to allow the coherent spin manipulation we report
below (see Sec. II of [29]). We propose that the first
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FIG. 1 (color). (a)Measured resonance frequencies as a function
of externally applied magnetic field Bext. The long microwave
burst time tp ¼ 700 μs ≫ T�

2 means that the applied excitation
is effectively continuous wave. The microwave source output
power was P ¼ −33 dBm to −10 dBm (−20 dBm to
−5 dBm) for the case of fundamental (second) harmonic
excitation, decreasing for lower microwave frequency in order
to avoid power broadening. The red and green lines

represent fits with the relation hf ¼ gμB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðBext − B∥Þ2 þ B2⊥
q

,

respectively, to the resonance data labeled (2) and (3) (we
excluded points with Bext < 700 mT from the fit because the
micromagnet apparently begins to demagnetize there) [30].
(b) Schematic of the energy levels involved in the excitation
process, as a function of the total magnetic field at the electron
location. The dashed arrows correspond to the four transitions in
panel (a), using the same color code. (c) Schematic of an
anharmonic confinement potential, leading to higher harmonics in
the electron oscillatory motion in response to a sinusoidally
varying excitation. (d) Measured spin-up probability, P↑, as a
function of applied microwave frequency, fMW, for Bext ¼
560.783 mT (P ¼ −30 dBm for the fundamental response,
P ¼ −12 dBm for the second harmonics), averaged over 150
repetitions per point times 80 repeated frequency sweeps (160mins
in total). The frequency axis (in red on top) has been stretched
by a factor of 2 for the second-harmonic spin response (red data
points). From the linewidths, we extract a lower bound for

the dephasing time T�ð1Þ
2 ¼ 760� 100 ns, T�ð2Þ

2 ¼ 810�50 ns,

T�ð3Þ
2 ¼ 750� 40 ns and T�ð4Þ

2 ¼ 910�80 ns. The Gaussian fits
through the four peaks use the same color code as in panels (a)
and (b).
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mechanism is dominant in this sample, supported by our
observation that the strength of the second-harmonic
response is sensitive to the gate voltages defining the dot.
In Fig. 1(d), we zoom in on the four cw spin resonance

peaks, recorded at low enough power to avoid power
broadening (see Sec. I of [29]). Fitting those resonances
with Gaussian relation, we extract the dephasing times

T�;ð1;2Þ
2 ¼ ½ ffiffiffi

2
p

ℏ=πδfð1;2ÞFWHM�, T�;ð3;4Þ
2 ¼ ½ ffiffiffi

2
p

ℏ=2πδfð3;4ÞFWHM�,
giving values in the range of 750 to 910 ns for all four
resonances [see caption of Fig. 1(d)]. This directly shows
that the linewidth (FWHM) extracted for the two-photon
process is half that for the one-photon process, as expected
[15,22,35].
From the relative peak heights in Fig. 1(d), we can

estimate the ratio of the Rabi frequencies between the two
peaks in each pair (see Sec. I of [29]). In [30], we found that
the relative thermal populations of the two valleys
(ϵð4Þ=ϵð3Þ) were about 0.3� 0.1 to 0.7� 0.1. Given this,
the ratio between the Rabi frequencies, f1, extracted

from the peak heights is rRð2 phÞ ¼ fð4Þ1 =fð3Þ1 ¼
0.9� 0.2 for the second harmonics. This is different from
the ratio observed in [30] for the fundamental harmonic,

rRð1 phÞ ¼ fð2Þ1 =fð1Þ1 ¼ 1.70� 0.05 [36].
Such a difference is to be expected. The ratio rRð2 phÞ is

affected by how the degree of anharmonicity in the
confining potential differs between the two valleys. In
contrast, rRð1 phÞ depends on how the electrical suscep-
tibility differs between the two valleys [37]. In addition,
since the valleys have different charge distributions [33],
the microwave electric field couples differently to the
two valley states, and this difference can be frequency
dependent [38,39]. Because the second-harmonic Rabi
oscillations are driven at half the frequency of the Rabi
oscillations driven at the fundamental, this frequency
dependence also contributes to a difference between
rRð1 phÞ and rRð2 phÞ. We note that the difference in
Rabi frequency ratio between the 1-photon and 2-photon
case demonstrates that the second-harmonic response is not
just the result of a classical up-conversion of the microwave
frequency taking place before the microwave radiation
impinges on the dot, but takes place at the dot itself.
The second-harmonic response also permits coherent

driving, for which a characteristic power dependence is
expected [22,35,40]. Figure 2(a) shows Rabi oscillations,
where the microwave burst time is varied keeping fMW ¼
fð3Þ0 for different microwave powers. We note that the
contribution to the measured spin-up oscillations coming
from the other resonance, (4), is negligible because
the respective spin Larmor frequencies are off resonance
by 2 MHz, fð3Þ1 =fð4Þ1 ≈ 1 and its population is ∼ three times
smaller.
To analyze the dependence of the Rabi frequency on

microwave power, we perform a FFTof various sets of Rabi
oscillations similar to those in Fig. 2(a). Figure 2(b) shows
the Rabi frequency thus obtained versus microwave power

for driving both at the second harmonic (green) and at the
fundamental (blue), taken for identical dot settings [30]. We
see that for driving at the frequency of the second harmonic,
the Rabi frequency is quadratic in the applied electric field
amplitude (linear in power), as expected from theory
[22,35,40]. When driving at the fundamental resonance,
the Rabi frequency is linear in the driving amplitude, as
usual. It is worth noting that, at the highest power used in
this experiment, the Rabi frequency obtained from driving
the fundamental valley-orbit ground state spin resonance is
just a factor of 2 higher than the one from driving at the
second harmonic. This ratio indicates that the use of
second-harmonic driving is quite efficient in our device.
This result is consistent with Ref. [22], which shows that
Rabi frequencies at subharmonic resonances can be com-
parable to the Rabi frequency at the fundamental resonance
and, also, with the theory and experiments in Refs. [20] and
[26], which report resonant response at a second harmonic
that can exceed that at the fundamental.
A further peculiarity in coherent driving using second

harmonics is seenwhenwevary the phase of two consecutive
microwave bursts. Figure 3(a) shows the spin-up probability
following two π=2 microwave bursts with relative phase
Δϕ, resonant with fð3Þ0 and separated by a fixed waiting
time τ. For short τ, the signal oscillates sinusoidally in Δϕ
with a period that is half that for the single-photon case
[compare the black traces in Figs. 3(a) and 3(b)].
Therefore, in order to rotate the electron spin around an

axis in the rotating frame rotated by 90° with respect to a
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FIG. 2 (color). Rabi oscillations. (a) Measured spin-up
probability, P↑, as a function of microwave burst time (Bext ¼
560.783 mT, fMW ¼ 6.4455 GHz) at four different microwave
powers, corresponding to a rms voltage at the source of 998.8 mV,
1257.4 mV, 1410.9 mV, 1583.0 mV. (b) Rabi frequencies
recorded at the fundamental harmonic, fð1Þ0 (blue triangles,
adapted from [30]), and at the second harmonic, fð3Þ0 (green
squares), as a function of the microwave amplitude emitted from
the source (top axis shows the corresponding power). For the
second harmonic, the amplitude shown corresponds to a 5 dB
higher power than the actual output power, to compensate for the
5 dB lower attenuation of the transmission line at 6 GHz versus
12 GHz (estimated by measuring the coax transmission at room
temperature). The green solid (dashed black) line is a fit of the
second-harmonic data with the relation logðfRÞ ∝ 2 logðEacÞ
[logðfRÞ ∝ logðEacÞ]. The large error bars in the FFT of the data
in Fig. 2(a) arise because we perform the FFT on only a few
oscillations. Bext ¼ 560.783 mT.

PRL 115, 106802 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

106802-3



prior spin rotation axis (e.g., a Y rotation following
an X rotation in the rotating frame), we need to set Δϕ to
45°, instead of 90°, when driving via the second harmonic.
Of course, for τ ≫ T�

2, the contrast has vanished, indicating
that all phase information is lost during the waiting
time [Figs. 3(a) and 3(b) red traces]. Figure 3(c) shows
two-pulse measurements, as in Fig. 3(a), as a function of
frequency detuning and phase difference, where we can
appreciate the extraordinary stability of the undoped
device.
To probe further the coherence properties of the spin, we

perform a free induction (Ramsey) decay measurement, see
Fig. 4(a), as a function of frequency detuning and delay
time, τ, between the two bursts. The absence of a central
frequency symmetry axis is due to the presence of two
superimposed oscillating patterns, originating from the

resonances at fð3Þ0 and fð4Þ0 . Figures 4(c)–4(e) show sections
of the Ramsey measurement in Fig. 4(a), corresponding to
different waiting times τ (see the white dashed lines). The
visibility of the Ramsey fringes clearly decreases for longer
waiting times between the two π=2 pulses. Fitting the decay
of the visibility of the fringes as a function of τ with a
Gaussian [∝ exp½−ðt=T�

2Þ2�, see Sec. I of [29] ], we find
T�
2 ¼ 780� 110 ns, in agreement with the value extracted

from the linewidth.
Furthermore, and analogously to the observations of

Fig. 3(a), we report a doubling effect in the frequency of the
Ramsey oscillations, fRamsey, as a function of the detuning

ΔfMW ¼ fMW − fð3Þ0 . Figure 4(b) shows fRamseyðΔfMWÞ,
extracted from the data in Fig. 4(a) via a FFT over the
waiting time τ. The black dashed line indicates the
condition fRamsey ¼ 2ΔfMW, closely overlapping with
the position of the yellow peaks in the FFT. The black

dotted line indicates the condition fRamsey¼2ðfMW−fð4Þ0 Þ;
this second resonance is not very visible in the data, due to
the lower population of the corresponding valley. For
comparison, the white dashed line indicates the condition
fRamsey ¼ ΔfMW, which is the expected response when
driving at the fundamental.
Finally, we perform a spin echo experiment via second-

harmonic driving. Figure 4(f) shows P↑ as a function of the
total free evolution time τ, for a typical Hahn echo pulse
sequence (illustrated in the inset) consisting of π=2, π, and
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The measurement extends over more than 15 hours.

0 20 40 60 80 100

0.44

0.48

0.52

0.33

0.65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.3

0.4

0.5

0.6

6.441 6.443 6.445 6.447
0

2

4

6

8

-16

-12

-8

-4

0

 (
M

H
z)

2
π

2
π

= 0.02

= 0.50

= 1.00(a)

(b) (arb. units)

(c)

(d)

(e)

(f)

c

d

e

echoT2

0.49

0.33

0.65

0.49

0.33

0.65

0.49

Microwave frequency (GHz)

Microwave frequency (GHz)

0.40

0.17

0.17

0.17
6.440 6.442 6.444 6.446 6.448

FIG. 4 (color). Ramsey fringes. (a) Measured spin-up
probability, P↑, as a function of fMW and waiting time
τ (Bext ¼ 560.783 mT, P ¼ 13.0 dBm) between two π=2
pulses (130 ns) with equal phase, showing Ramsey interference.
Each data point is averaged over 300 cycles. Inset: Microwave
pulse scheme used for this measurement. (b) Fourier transform
over the waiting time, τ, of the data in panel (a), showing a
linear dependence on the microwave frequency, with vertex at

fMW¼fð3Þ0 and slope fRamsey¼2ΔfMW (black dashed lines).
The expected position of the FFT of the signal arising from

resonance fð4Þ0 is indicated by the dotted black line. For
comparison, the white dashed line represents the relation
fRamsey ¼ ΔfMW. (c)–(e) Sections of the Ramsey interference
pattern in (a) along the three white dashed lines; the respective
waiting times are indicated also in the inset of each panel.
(f) Measured spin-up probability as a function of the total
free evolution time, τ, in a Hahn echo experiment (pulse
scheme shown in inset). The decay curve is fit well to a single

exponential (blue). Here, fMW ¼ fð3Þ0 , Bext ¼ 560.783 mT.

PRL 115, 106802 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

106802-4



π=2 pulses applied along the same axis, separated by
waiting times τ=2 [41]. A fit to a single exponential yields
Techo
2 ¼ 20.6� 6.5 μs at Bext ¼ 560.783 mT, compatible

with the Techo
2 of 23.0� 1.2 μs we observed at the same

magnetic field when driving via the fundamental harmonic
(see Sec. I of [29]).
To summarize, we report coherent second-harmonic

driving of an electron spin qubit defined in a Si/SiGe
quantum dot, including universal single-spin rotations. The
nonlinearity that permits second-harmonic driving is likely
related to the anharmonic confining potential for the
electron. This means that routine use of second harmonics
for spin control would be possible provided there is
sufficient control over the degree of anharmonicity of
the confining potential. This could be very useful since
driving a spin qubit at half its Larmor frequency would
substantially simplify the microwave engineering required
for high fidelity qubit control.
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