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We analyze electron-transport data through a Si/SiGe double quantum dot in terms of spin blockade and
lifetime-enhanced transport �LET�, which is transport through excited states that is enabled by long spin-
relaxation times. We present a series of low-bias voltage measurements showing the sudden appearance of a
strong tail of current that we argue is an unambiguous signature of LET appearing when the bias voltage
becomes greater than the singlet-triplet splitting for the �2,0� electron state. We present eight independent data
sets, four in the forward-bias �spin-blockade� regime and four in the reverse-bias �lifetime-enhanced transport�
regime and show that all eight data sets can be fit to one consistent set of parameters. We also perform a
detailed analysis of the reverse-bias �LET� regime, using transport rate equations that include both singlet and
triplet transport channels. The model also includes the energy-dependent tunneling of electrons across the
quantum barriers and resonant and inelastic tunneling effects. In this way, we obtain excellent fits to the
experimental data, and we obtain quantitative estimates for the tunneling rates and transport currents through-
out the reverse-bias regime. We provide a physical understanding of the different blockade regimes and present
detailed predictions for the conditions under which LET may be observed.
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I. INTRODUCTION

Spins in quantum dots are good candidates for qubits due
to fast and reliable electrostatic gating, long coherence times,
and well-known methods for large-scale fabrication.1–5 Spin
coherence times can be particularly long in silicon
devices,6–11 because the naturally abundant 28Si isotope has
nuclear spin zero, and because Si has a relatively small spin-
orbit coupling, because of its relatively small atomic mass.
Isotopic purification could produce devices with excellent
qualities for quantum computing.12,13

Recent progress in GaAs quantum dots has enabled the
manipulation of exchange coupling in a two-electron double
dot14 and has led to single-shot readout of one-15 and
two-electron16 spin states in a single dot. The latter experi-
ment makes use of energy-dependent tunneling to provide
high visibility in the measurement. The simplest explanation
of this effect is that a larger tunnel barrier causes a slower
tunneling rate. The effect is of fundamental interest for quan-
tum phenomena and can lead to very precise measurement
techniques in the context of quantum information. Energy-
dependent tunneling effects in quantum dots have also been
studied in several other recent experiments.17–22 Silicon-
based devices should exhibit a strong energy dependence in
tunneling, since the effective mass in silicon, on which the
tunneling rate depends exponentially,23 is relatively large.

Semiconductor double quantum dots are tunable struc-
tures that enable the coupling of two small regions of bound
electrons to each other and, often, to two leads, enabling
measurement of an electron-transport current through the
system.24 Double quantum dots can display an effect known
as Pauli spin blockade,18,25,26 where current flow proceeds in
a cycle that first loads either a two-electron singlet state with
one electron in each dot, the S1,1 state, or a two-electron
triplet T1,1 state that is nearly degenerate with the singlet. For

the cycle to proceed without blockade in either case, both the
singlet S2,0 and the triplet T2,0 states, where both electrons
are on the left dot, must be lower in energy than their corre-
sponding �1,1� states. There are regions in gate-voltage space
where this is not true, and the striking absence of current that
arises in such regions is known as spin blockade. Spin block-
ade makes double dots extremely useful for quantum dot
spin qubits, because it provides a robust means to perform
spin readout.14,19,27–30

Spin blockade has been reported in silicon quantum dots
formed using both Si metal-oxide-semiconductor structures31

and Si/SiGe heterostructures.32 In both cases, the spin-
blockade results displayed many similarities with previous
observations of spin blockade, most of which have been
made in GaAs/AlGaAs-based double quantum dots. In Ref.
32, we also reported measurements of current flow for the
opposite voltage bias. In this regime, we observed unusual
patterns in two-dimensional �2D� maps of the current as a
function of a pair of gate voltages. The most striking obser-
vation was a strong “tail” of current, which appeared in a
supposedly blockaded portion of the current map. This be-
havior was attributed to the combined effects of slow triplet-
singlet relaxation and strong energy-dependent tunneling, the
two of which together enable current to flow through long-
lived excited states. For this reason, the phenomena were
labeled “lifetime-enhanced transport,” or LET. Recently,
LET behavior has also been observed in transport through
individual donors in silicon.33

In this paper, we present a large quantity of additional
data and analyze these data in detail, showing that they can
all be fit using one consistent set of parameters. We analyze
eight two-dimensional plots of current as a function of a pair
of gate voltages, for four different biases in each direction of
current flow through the double dot. Spin blockade is ob-
served in the direction of current flow in which it is ex-
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pected. For the opposite voltage bias, the unusual current
patterns associated with LET are observed, in agreement
with our previous results.32 To test the explanation that the
tail of current arises because of LET, we fit all eight sets of
data in parallel, determining optimum values for the three
slopes of the edges of the bias triangles, the lengths of the
sides of the bias triangles, and the positions of those tri-
angles. The results are shown to be consistent with both spin
blockade and LET. In particular, it is shown that we cannot
obtain consistent results for the length of the triangles if the
current tails are included in the triangles. The fitting and the
subsequent delineation of the bias triangles also enables us to
improve our measurements of the singlet-triplet splittings in
both the �2,0� state, corresponding to two electrons in the left
dot, and the �1,1� state, corresponding to one electron in each
dot.

Building on accurate fitting of the bias triangles, we in-
vestigate details of the strong dependence of the transport
current on the gate voltages. Within the triangles, we obtain
consistent and quantitative fits to the data by explicitly incor-
porating strong energy-dependent tunneling as well as tun-
neling through both singlet and triplet channels. Both
coherent34,35 and incoherent36 processes contribute strongly
to the energy dependence of the electron tunneling rates, and
we develop a general model for transport in a double dot,
including both inelastic and resonant effects, using the mas-
ter equation approach. We show that this model can be used
to perform a quantitative fit of the transport data and that
relevant parameters can be extracted from the data.

Our success in interpreting a large body of experimental
data with a single consistent set of fitting parameters is
strong evidence in support of the interpretation of the current
tail in terms of transport through the triplet channel, as first
described in Ref. 32.

The paper is organized as follows. Section II presents a
simple argument for the existence of the LET tail based on
data at small bias voltages and involves an absolute mini-
mum of data analysis. Section III presents our experimental
procedures. The methods used to fit the bias triangles are
presented in Sec. IV, and the procedure used to position and
scale the bias triangles are presented in Sec. V. The phenom-
enon of energy-dependent tunneling is prominent in the data,
and a theoretical model that describes this effect as it appears
in the data is presented in Sec. VI. In Sec. VII, results from
the model are compared to the experimental data and impor-
tant phenomenological parameters are reported. The paper
concludes with a discussion in Sec. VIII.

II. SIMPLE DEMONSTRATION OF LET

The key observable feature of LET is a strong tail of
current protruding beyond the end of the base of the conven-
tional bias triangle. Careful fitting of the triangles to many
sets of data obtained with a variety of source-drain bias volt-
ages, as we do below, is a good way to test for the existence
of this tail. However, before embarking on such a detailed
analysis, we first provide a simple argument for our LET
interpretation of the data.

Figures 1�a�–1�c� show plots of the current through a
double quantum dot as a function of two gate voltages. The

sample is described in Sec. III below, and the sign of the
voltage bias is opposite to that in which spin blockade would
be observed. Figure 1�a� is obtained at very low bias, such
that current flows only very near the triple points.24 In par-
ticular, the bias voltage is smaller than the singlet-triplet
splitting. Figure 1�b� shows data at a slightly larger voltage.
As expected, the region of current flow is correspondingly
larger, and it has the same overall shape. Figure 1�c� is ac-
quired at a bias voltage slightly higher still. Again, the pri-
mary region of current flow is correspondingly larger. How-
ever, a new feature suddenly appears in the data: a tail of
current that extends to the lower right. This tail completely
changes the shape of the current pattern.
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FIG. 1. �Color� The transport current through a double quantum
dot at three different source-drain biases VSD: �a� −0.014 mV, �b�
−0.114 mV, and �c� −0.174 mV. Panel �c� shows the sudden
appearance of a current tail. �d� Lengths, la, lb, and lc1

in panels
�a�–�c� are measured from the peak of the current to the upper left
tip of a 1 pA contour around the peak. lc2

is the length of the tail
from its peak at the lower right to the tip of a 1 pA contour on the
upper left. lc3

is the length that would be extracted if the tail were
part of the conventional bias triangle. It is measured from the peak
of the current in the tail to the tip of the upper leftmost 1 pA
contour; i.e., it is essentially the sum of lc1

and lc2
. The graph in �d�

shows the ratio of the lengths, as measured by their projection onto
the left-hand gate-voltage axis, divided by VSD. The four lengths la,
lb, lc1

, and lc2
are consistent with each other and with the description

of the tail in terms of LET. The blue length lc3
is clearly too long,

and thus the description of the physics in terms of LET and the
concept of a current tail extending out of the conventional bias
triangle are necessary to understand the data in panels �a�–�c�. �e�
Scanning electron microscopy image of the gate pattern with the
gates labeled in red. The gates were tuned so that the device con-
tained a double quantum dot �Ref. 32�. �f� Schematic of the energy
axes for the double dot.
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To be quantitative, we consider the lengths of the various
current features visible in Figs. 1�a�–1�c�. The bias triangles,
and therefore the lengths of these current features, should
scale linearly with the applied bias voltage. Panel �d� shows
in green the ratio of the lengths of the main current features
identified in panels �a�–�c�, projected onto the left-hand volt-
age axis, to the applied bias voltage VSD. These lengths were
measured, as indicated, from the point where the current
peaks at the lower right, to the extremum at the upper left on
a 1 pA contour. The LET interpretation predicts that the ra-
tios of lengths la, lb, and lc1

to VSD should be equal, as shown
in panel �d�. In particular, lb and lc1

, which have small error
bars, are nearly identical. Further, the length of the tail is the
same as the length of the main current region in Fig. 1�c�:
that is, lc1= lc2. This is also consistent with the LET interpre-
tation presented below and in Ref. 32. In contrast, if the base
of the triangle were located at the end of the tail in Fig. 1�c�,
the length of the region of current flow would be as is shown
in blue and labeled lc3. As is clear from Fig. 1�d�, such a
length is incompatible with length lb from Fig. 1�b�. Note
that the length la has a large error bar because the source-
drain voltage VSD is so small that the uncertainty in that
quantity is larger than its value; panel �a� is included in this
discussion to emphasize that current is indeed visible at very
low-bias voltage, indicating that current flows at the triple
points themselves. If the base of the bias triangle were lo-
cated at the end of the tail in Fig. 1�c�, no current would be
observed at the triple point. In such an interpretation, the
triple point would be located directly below the tail, and this
would be incompatible with the observation of current at the
triple point in Fig. 1�a�.

These simple arguments make clear that the LET tail does
indeed protrude beyond the base of the bias triangle. The rest
of this paper presents an analysis of a large quantity of data,
all of which is analyzed together and self-consistently. The
results of our analysis provide a complete and quantitative
understanding of the data in terms of spin blockade and LET.

III. EXPERIMENT

The data we discuss here were acquired from a double
quantum dot formed in a top-gated Si /Si0.7Ge0.3
heterostructure.37–39 The quantum well was nominally 12 nm
thick, and it contained a two-dimensional electron gas of
density n=4�1011 cm−2 and mobility 40 000 cm2 /V s. The
gate design for this device, reproduced from Ref. 32 as Fig.
1�e�, has a single plunger gate. For the data presented here, a
gate originally intended for charge sensing was pressed into
service to tune the dot occupation, providing the second axis
for manipulation of the double dot in gate-voltage space.32

Here we focus on the region in gate-voltage space where the
device exhibits the behavior of a double dot; this region oc-
curs between a regime in which the device acts as a single
dot and a region in which no measurable current flows
through the device.32 Unlike more recent work,40,41 the ab-
solute number of electrons in the dots is not known, and all
references to the number of electrons refers to the valence
number; there could be a closed shell underneath the valence
electrons, and the existence of that shell would not be appar-
ent in the data.

Figure 2 shows the current I through the double quantum
dot as a function of gate voltages VG and VCS. Each of the
panels in Fig. 2 contains two features that are similar to each
other. These features are conventionally called the “electron”
and “hole” triangles,24 and we adopt this language here. The
electron system is called so because it can be described in
terms of the electron occupations �1,1�, �2,0�, and �1,0�. The
hole system can be described in terms of the electron occu-
pations �2,1�, �2,0�, and �1,1�. However, these states result in
energy-level diagrams that are more complicated than those
of the electron triangle. A complementary description of
transport in terms of the hole states �0,1�h, �0,2�h, and
�1,1�h allows us to draw a set of energy-level diagrams that
are analogous to the diagrams for the electron system. This
hole picture has proven useful in some situations.24 However,
it is difficult to include excited states of the zero-hole state in
a simple way. Thus, we will stick with the three-electron
diagrams here, in spite of their complexity.42 Detailed plots
of the chemical potentials relevant for modeling of transport
with both positive and negative voltage biases are shown in
Appendix B in Fig. 8. We emphasize that, although for clar-
ity and connection with the existing literature we retain the
electron and hole terminology, the chemical-potential dia-
grams for the latter in Fig. 8 actually describe three-electron
states, not hole states. In this paper, we refer to chemical
potentials for electrons only, and never holes.

The data for positive source-drain bias �column one of
Fig. 2� exhibit spin blockade. We refer to this bias direction
as “forward bias.” The data in this bias direction are largely
understandable using the conventional concepts of Pauli spin
blockade; indeed, the consistency of these data with classic
spin-blockade behavior provides strong evidence that our as-
signment of the valence-electron occupancies is correct.
There are, however, interesting resonances observable, e.g.,
where transport through the triplet channel of the electron
triangle overlaps with transport though the singlet channel of
the hole triangle. Also, the current in the spin-blockade re-
gime extends by small amounts past the conventional tips of
the bias triangles. We discuss these features and others in
Sec. VIII below.

The data for negative source-drain bias �column three of
Fig. 2� show unusual patterns in the current as a function of
gate voltages VG and VCS. We refer to this bias direction as
“reverse bias.” Consistent with the arguments in Sec. II
above and in Ref. 32, there are regions of current extending
outside the conventional bias triangle regions—the only re-
gions in which transport is conventionally observed. We have
argued that current is observed outside the bias triangles due
to an effect named lifetime-enhanced transport or LET. The
essential prerequisite for observing this effect is that long
relaxation times from an excited state, such as the �2,0� spin
triplet state discussed below, can leave open a fast, energeti-
cally downhill current path. In order to check this argument
and understand the features shown in the right two columns
of Fig. 2, it is important to determine with a fair degree of
precision the sizes and positions of the bias triangles.

The data sets in Figs. 2�a� and 2�g� were previously re-
ported in Ref. 32. The bias voltages were reported in that
paper to be +0.2 mV for the data in panel �a� and −0.3 mV
for panel �g�, but these values were slightly affected by an
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offset in the current preamplifier. This offset was discovered
when we analyzed four additional data sets taken at very
small bias voltage VSD. To determine the size of the offset,
we examined several data sets with small VSD, including
Figs. 1�a� and 1�b�. Cuts through the data were taken along a
line connecting the two triple points �see explanation, be-
low�. The peak current, the full width at half maximum, and
the area under the sampled cuts were computed for each cut.
Each of these quantities was assumed to depend linearly on
VSD at small bias, allowing us to determine a bias offset of

0.026 mV. We emphasize that the source-drain biases indi-
cated in each figure in this paper have been corrected to
reflect this offset.

IV. FITTING

A. Overview

At infinitesimal bias voltages VSD, the Fermi levels of the
left lead L and the right lead R are nearly equal, and current
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FIG. 2. �Color� The current through the double quantum dot as a function of the gate voltages VG and VCS. Panels �a�–�p� correspond to
eight different bias voltages VSD as labeled. Column one shows data in the spin-blockade regime �forward bias�. Column three shows the data
in the LET regime �reverse bias�. Columns two and four show the same data as columns one and three, with the calculated bias triangle
boundaries superimposed on the data, as explained in the main text. The data in panels �a� and �g� have been presented previously in
Ref. 32.
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flows through the double dot only when the Fermi energies
in both leads and the chemical potentials of both quantum
dots are aligned, i.e., when ELF�ERF�E1�E2. Here,
ELF�ERF� refers to the Fermi energy of the left �right� lead
and E1�E2� refers to the chemical potential of the left �right�
dot. When these energies are equal, the charge configurations
of interest are degenerate, and a “triple point” is observed in
the data.24 For the electron system, the degenerate double dot
electron configurations are �1,0�, �1,1�, and �2,0� while for
the hole system these electron occupations are �1,1�, �2,0�,
and �2,1�. The data in Fig. 1�a� were acquired at a small VSD.
As VSD is increased, plots of the current as a function of E1
and E2 �or, more conveniently, the gate voltages most di-
rectly controlling E1 and E2� reveal these triple points ex-
panding into “bias triangles” arranged regularly in the well-
known pattern known as a honeycomb diagram.24

The conventional bias triangle is defined by the region in
gate-voltage space in which the double dot ground states �in
this case the singlet states� are both energetically downhill
and within the source-drain bias window. We refer to these as
the “singlet triangles.” There are analogous “triplet triangles”
defined by similar conditions for the excited triplet states.
Separate singlet and triplet triangles can be defined for both
the electron and hole systems. For electrons in forward bias,
transport occurs through the sequence �1,0�→ �1,1�
→ �2,0� while for the hole regime, in forward bias, transport
occurs through the electron sequence �2,1�→ �1,1�→ �2,0�.
Figures 3�a� and 3�b� show schematics of these four distinct
triangles for the cases of forward bias in panel �a� and re-
verse bias in panel �b�. Note that the lengths BA and AC
represent the singlet-triplet energy splittings in the �2,0� and
�1,1� states, respectively. The magnitude of the measured
current varies significantly across each triangle because of
energy-dependent tunneling;17–22 the tunneling rate from the
lead decreases as the tunnel barrier increases, which occurs
as the energies of the relevant levels in the dots are lowered
below the Fermi level. The effects of energy-dependent tun-
neling are more marked in Si/SiGe dots than in GaAs dots,
because electrons in silicon have larger effective mass,23 and
these effects are discussed in more detail below, in Sec. VI.

Points Q, R, X, W, and V in Fig. 3�b� lie within the con-
ventional bias triangle. Point U lies outside this triangle but
within the triplet triangle. Figure 3�d� shows example
energy-level arrangements for points within both the singlet
and triplet triangles �upper cartoon�, and points such as U,
that lie outside the singlet triangle but within the triplet tri-
angle �lower cartoon�. In the conventional picture, without
LET, the regions of strong current flow are the blue singlet
triangles while the regions of the red triplet triangles, that do
not overlap the singlet triangles are blockaded. A major point
of this paper is to demonstrate that the current visible in the
lower right-hand corners of the panels in column three of
Fig. 2 arises because significant current is flowing through
the triplet states outside the conventional bias triangle. Be-
cause of its shape, we refer to this feature in the data as the
triplet “tail.” LET lifts the blockade condition, giving rise to
the triplet tail when tunnel rates and triplet-singlet relaxation
times are appropriate; specifically, the triplet must load
enough faster than the singlet that a transport current is mea-
surable, even though tunneling through the singlet channel is
very slow.32

In order to understand how electrons move from one lead
to the other through the double dot system, it is necessary to
know the chemical potentials of each quantum dot for par-
ticular occupancy states. Of particular significance are the
chemical potentials associated with points labeled with up-
percase letters in Figs. 3�a� and 3�b�. The corresponding
energy-level diagrams are all presented in Appendix B. To
understand the data in columns one and three of Fig. 2, si-
multaneously and self-consistently, we aim to determine the
size and shape of the bias triangles and to position these
triangles as accurately as possible on the data. The end result
of this analysis is shown in the second and fourth columns of
Fig. 2.

Our procedure is as follows: first, using data for all biases
and from both the electron and hole systems, we obtain the
three slopes that define the edges of the bias triangles �see
Fig. 1�f��; these are �i� the slope of the base of the triangle
�base slope�, which characterizes the direction in gate-
voltage space in which the chemical potentials of the two
dots are held constant relative to each other, �ii� the low
slope of one of the long edges �low slope�, which character-
izes the direction in gate-voltage space in which the chemical
potential of the right dot is held constant with respect to the
Fermi level of the right lead, and �iii� the slightly higher
slope of the other long edge �high slope�, which characterizes
the direction in gate-voltage space in which the chemical
potential of the left dot is held constant with respect to the
Fermi level of the left lead. Second, we determine the sepa-
ration between the electron and the hole triangles, as well as
the scaling relation between the applied bias voltage and the
size of the triangles. Finally, we position the triangles on the
data sets in Fig. 2.

B. Determination of the base slope

The base slope joins the points B and J in Fig. 3�a� and,
similarly, the points Q and O in Fig. 3�b�. Points B and J are
identified as small, solitary peaks in the left-hand region of
the forward-bias experimental data �column 1 of Fig. 2 and
expanded in Figs. 7�a� and 7�b��. Note that the data were
interpolated using the cubic spline procedure,43 to more ac-
curately identify the center of the points, while keeping the
functional form of the data unchanged. The base slopes were
obtained for each pair of points �B,J�, in all four forward-bias
data sets, and the average value was calculated, with results
summarized in Table I. The base line for each forward-bias
data set is obtained by determining the centroid position of a
given �B,J� pair, and then drawing a line with the average
base slope through the centroid. An example of this proce-
dure is shown in Fig. 4�c� with the centroid indicated as a red
square and the points B and J indicated by the red circles.

C. Determination of the low slope

Both the forward- and reverse-bias data possess features
that are useful for determining the low slope of the bias
triangles. We first consider the forward-bias data along the
line segment AF shown in Fig. 3�a�. Along this line, the
chemical potential of the left dot is variable while the chemi-
cal potential of the right dot is constant. The current flow is
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nearly constant along AF, except for the resonant peak,
which we will discuss in Sec. VI. Thus, the current depends
only weakly on the chemical potential of the left dot. We
then take data cuts parallel to the base slope, crossing the
line segment AF, as shown in Fig. 4�a�. Along a given cut,
the current does not flow uniformly and it does not fill up the
whole bias triangle. The strong suppression of the current
above AF is a signature of energy-dependent tunneling. We
conclude that the current depends most strongly on the
chemical potential of the right dot, and that the right-hand
tunnel barrier forms the transport bottleneck.

In Sec. VII below, we provide detailed models for energy-
dependent tunneling. However, in order to delineate the
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FIG. 3. �Color� �a� Schematics showing the singlet and triplet triangles for forward bias. The gray areas show the region in which current
is allowed in conventional spin blockade. In addition, current is expected along segments BA and JI, because on these lines the �1,1� singlet
and triplet are aligned with the leads, and spin exchange is possible. In the data of Fig. 2, segments BF, which has low slope, and JH, which
has a slightly higher slope, are strongly visible and thus good candidates for fitting. �b� Schematics showing the singlet and triplet triangles
for reverse bias. Points U and M are outside the conventional bias triangle. ��c� and �d�� Energy levels in a double quantum dot with one fixed
electron in the left-hand dot. Panel �c� corresponds to forward bias of the double dot while panel �d� corresponds to reverse bias. Electrons
may transit via the singlet or triplet channel. The upper and lower plots show the chemical potentials at two example gate voltages. In the
upper schematics of �c� and �d�, electrons can transit through both the singlet and the triplet channels via an energetically downhill path. In
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TABLE I. Base slopes obtained from the spin-blockade data of
Fig. 2.

Bias
�mV� Base slope

0.226 15.3

0.326 11.2

0.526 15.5

0.626 14.8

Base slope mean=14.2

Standard deviation=2.02
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edges of the bias triangle here, we simply point out that the
dominant contribution to the current along the data cuts in
Figs. 4�a� and 4�b� can be expressed as follows:

I/e = fR�R. �1�

Here,

fR = �e�E−ERF�/kBT + 1�−1 �2�

is the Fermi function for the right lead, where E is the chemi-
cal potential of the right dot and ERF is the Fermi level of the
lead. The Fermi function defines the edge of the forward-bias
triangle along the line AF, defined by the condition E=ERF.
The second function appearing in Eq. �1� is the effective
tunneling rate �R, from the right lead to the right dot. To
capture the effect of energy-dependent tunneling, we will
apply approximations similar to those used in Refs. 21 and
22, and discussed in greater detail in Sec. VII, leading to the
prescription

�R = �R0e�E−ERF�/ER0, �3�

where �R0 is proportional to the attempt rate and ER0 de-
scribes the scale for the energy-dependent tunneling. This
exponentially decaying function suppresses the current flow
above line segment AF.

Equation �1� can be used to fit the data along the cuts
shown in Fig. 4�a� by assuming a linear relation between the
chemical potential of the right dot and the control voltages
VCS and VG. The proportionality constants, the so-called
“lever-arms,” are determined as part of the fit. A typical re-
sult of the fitting procedure is shown in Fig. 4�e�. The verti-
cal line on the plot represents the boundary of the bias tri-
angle, corresponding to the condition E=ERF. The boundary
positions for each of the cuts in Fig. 4�a� were obtained in
the same way, giving the points marked as red crosses in Fig.
4�c�. The edge of the bias triangle was then determined by
fitting a straight line through these points with the result
shown in Fig. 4�c�

The low slope can also be investigated in the hole system
in the reverse-bias regime, along the line segment LM shown
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FIG. 4. �Color� Examples showing how the
triangle boundaries and slopes are determined
from the data. �a� Forward bias: the positions of
the data cuts �1–7� that we use to determine the
low slope. �b� Reverse bias: the positions of the
data cuts that we use to determine the high slope
�1–8� and the low slope �9–15�. �c� For the same
data as panel �a�, the red circles mark the points
used to determine the base slope for this data set;
their centroid is marked by the red square. A
white line with the mean base slope is drawn
through the centroid. The red crosses mark points
used to determine low and high triangle slopes;
the two white lines are obtained by linear fits
through the crosses. �d� For the same data as
panel �b�, the black crosses mark points used to
determine low and high triangle slopes; the three
white lines are obtained by linear fits through the
crosses. �e� Example fitting results for cut 7 in
panel �a�. The dashed lines correspond to the
Fermi function and the energy-dependent tunnel
rate and the red line corresponds to their product.
The vertical red line indicates the triangle bound-
ary. �f� Example of two independent fits to cut 5
in panel �b�, and the corresponding triangle
boundaries.
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in Fig. 3�b�. Data cuts are again taken parallel to the base
slope, as shown by the short lines on the right-hand side of
Fig. 4�b�. A function similar to Eq. �1� was used to fit the
data, to obtain the triangle boundary along each cut. The
results are shown as black crosses superimposed on the right-
hand side of Fig. 4�d�. Again, we fit a straight line through
these boundary points, obtaining the result shown in panel
�d�. The low slopes were obtained in this way for eight dif-
ferent data sets, as summarized in Table II.

D. Determination of the high slope and the triple-point
spacing

The high slope can also be determined from fits to both
forward- and reverse-bias data. In the case of forward bias,
we take data cuts through the hole data, along lines parallel
to the base slope. Along the line IH, indicated in Fig. 3�a�,
the chemical potential of the left dot is equal to the Fermi
level of the left lead. For the hole triangle, the energy-
dependent tunneling is rather weak. The prominent features
in the data along line segment IH are mainly attributed to the
Fermi function for the left lead. We therefore adopt the fol-
lowing fitting form for data near line segment IH:

I/e = �1 − fL��L, �4�

where the Fermi function fL and the energy-dependent tunnel
rate �L are defined analogously to Eqs. �2� and �3�. The data
cuts are fit as described above, for source-drain biases VSD
=0.226, 0.526, and 0.626 mV. The 0.326 mV data set in Fig.
2�e� exhibits a discontinuity along IH arising from a charging
event. For that data set alone, the fitting procedure is per-
formed in the vicinity of line segment JI rather than IH. The
fitting results for the triangle boundaries are shown as red
crosses in Fig. 4�c�, for each data cut. The high slope is
obtained from a linear fit through the boundary points, as
given by the white line.

In the reverse-bias regime, we also take data cuts parallel
to the base slope. In this case, the cuts extend across the
entire electron-hole system, as shown in Fig. 4�b�. We use
form

I/e = fL�L �5�

to fit the data. In this case, however, independent fits are
made to both the electron and the hole peaks, giving typical

results as shown in Fig. 4�f�. Here, the vertical lines repre-
sent the inferred locations of both triangle boundaries. The
resulting boundary locations are shown as black crosses in
Fig. 4�d�. By fitting straight lines, we obtain results for the
high slope, as summarized in Table III.

The fits to the reverse-bias data provide a direct method
for determining the separation between the electron and hole
triangles along the direction parallel to the base slope. This
separation is the triple-point spacing, d. It is also indicated,
schematically, by the distance between points Q and O in
Fig. 3�b�. The triple-point spacing is the same for all biases,
and we therefore determine its value by averaging the indi-
vidual extracted values for d.

V. POSITIONING AND SCALING THE TRIANGLES

It is now possible to draw the singlet and triplet bias tri-
angles. The shape of each triangle is known precisely in
terms of the high, low, and base slopes. In this section, we
explain how the sizes of the triangles are determined and
how they are positioned on the data.

The size of the triangles is proportional to the source-
drain bias. To determine the scaling, we focus on the
forward-bias data sets. By using the triple-point spacing d, in
combination with line fits of the type shown in Fig. 4, the
triangles for the forward-bias data are completely deter-
mined. We extract a gate voltage to energy proportionality
constant for each forward-bias data set for both VCS and VG,
and we calculate the mean values of each. We use these
constants to set the size of the triangles for the reverse-bias
data. The sizes of the triangles drawn in column 4 of Fig. 2
are all obtained using these mean voltage to energy calibra-
tions.

We now position the triangles in the forward-bias regime.
Since line segment CD cannot be easily distinguished from
AF in the forward-bias data, the triplet triangles are initially
positioned by assuming that AF and CD overlap. That is, we
assume zero �1,1� singlet-triplet energy splitting. The actual
�1,1� singlet-triplet splitting is determined later. We then de-
termine the base position of the triplet triangle by performing
a Lorentzian fit to a data cut along line segment BF, placing
the triangle corner at the peak of the Lorentzian.

TABLE II. Low slopes obtained from both forward and reverse-
bias data.

VSD

�mV� Low slope
VSD

�mV� Low slope

0.226 −2.25 −0.174 −1.94

0.326 −2.17 −0.274 −1.93

0.526 −2.24 −0.474 −1.97

0.626 −2.24 −0.574 −1.95

Low slope mean=−2.09

Standard deviation=0.15

TABLE III. High slopes obtained from both forward and
reverse-bias data.

VSD

�mV� High slope
VSD

�mV� High slope

0.226 −3.32 −0.174 −3.86

0.326 −3.75 −0.274 −4.06

0.526 −3.47 −0.474 −3.37

0.626 −3.59 −0.574 −3.71

High slope mean=−3.64

Standard deviation=0.25
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To position the singlet triangles on the reverse-bias data
plots, we only need to determine a single point, which we
take to be point Q in Fig. 3�b�. This point is determined for
each data set by fitting a Lorentzian to a data cut along line
segment RQ. Similarly, the triplet triangles are positioned by
performing a Lorentzian fit to point U along the line segment
VU. This method of independently positioning the singlet
and triplet triangles provides a means of estimating the �1,1�
singlet-triplet splitting, which is observed as a slight shift in
the edges of the triangles. Note that, due to the lack of a
straight line of current for the two higher bias data sets, we
use the coordinates of the strongest current peak in that vi-
cinity to locate point U. This should lead to an overestimate
of the �1,1� singlet-triplet energy splitting in those two cases.

The �2,0� singlet-triplet splitting is given by the distance
between the bases of the singlet and triplet triangles. These
voltages are converted to energies using our lever-arm cali-
brations. We then take a mean value from all eight data sets,
obtaining the result EST�2,0�=0.173 meV, as reported in
Table IV. This value is interesting, because it corresponds to
the lowest excited state that is not a spin excitation. In gen-
eral, this degree of freedom will involve an orbital parameter,
and specifically, it can correspond to the valley degree of
freedom. As such, the mean value of EST�2,0� provides a
lower bound on the valley splitting44–49 in dot 1.

We can compute the singlet-triplet splittings EST�1,1� in a
similar manner. Such estimates can only be obtained in the
LET data sets, since the forward-bias data sets do not pro-
vide a good signature of the splitting. We find that the stan-
dard deviation of EST�1,1� is almost as large as its mean
value. Such a large uncertainty in EST�1,1� is not surprising,
because its value is similar to the estimated electron tempera-
ture during these measurements, which is 145 mK. The re-
sulting estimate for EST�1,1� is reported in Table IV.

VI. THEORETICAL MODEL FOR ENERGY-DEPENDENT
TUNNELING EFFECTS

In this section, we investigate processes related to LET in
the reverse-bias regime, and we analyze energy-dependent
tunneling and its impact on the transport. We focus specifi-

cally on the lower two triangles of Fig. 3�b�. In this case, one
valence electron is always present in the left dot while a
second valence electron transits the double dot from the left
to the right, in the charging sequence �1,0�→ �2,0�
→ �1,1�→ �1,0�. Note that a downhill energy path between
the left and right dots corresponds to a positive value of the
detuning parameter, ���E1−E2��0, where E1 and E2 are
the chemical potentials of the left dot �dot 1� and the right
dot �dot 2�, respectively.

A. Qualitative discussion

In Ref. 32, a sequential tunneling model was used to ana-
lyze the reverse-bias transport currents. In the sequential tun-
neling approximation, the current through a particular trans-
port channel can be expressed as �I /e�−1=�L

−1+�12
−1+�R

−1,
where the L index refers to the L→1 tunnel process, the R
index refers to the 2→R process, and the 12 index refers to
tunneling between dots 1 and 2. As in previous sections, L
and R refer to the left and right leads. In Ref. 32, two trans-
port channels were studied: the singlet channel �S� and the
triplet channel �T�.

The sequential tunneling model provides a great deal of
information. For example, it explains why the lower portions
of the data in Figs. 2�c� and 2�g� take the distinctive form of
two parallel lines, rather than a triangle: the two lines corre-
spond to distinct transport processes through the singlet and
triplet channels. For either channel, the current is effectively
determined by the bottleneck process, which turns out to be
�L or �12. Since the function �L depends sensitively on the
chemical potential of dot 1, due to energy-dependent tunnel-
ing, we observe that I is exponentially suppressed when E1
�ELF, reducing the bias “triangle” to a narrow line. Thus,
the lower current feature in Fig. 3�b� actually consists of two
overlapping triangles �a singlet triangle and a triplet tri-
angle�, each of which is reduced to a narrow line due to
energy-dependent tunneling.

Despite its success, the sequential tunneling model is
oversimplified and cannot explain certain crucial features of
the transport current. For example, the strong enhancements
of the transport current at the points marked Q and U in Fig.
3�b� are resonances arising from the coherent delocalization
of electrons in dots 1 and 2. Such effects cannot be explained
by an incoherent tunneling model. The master equation ap-
proach of Nazarov and Stoof does incorporate resonant
effects.34,35 However, it does not account for the inelastic,
sequential tunneling processes that dominate the transport
throughout most of the current map. We use a master equa-
tion technique that incorporates both resonant and inelastic
tunneling effects to address this situation.

B. Quantitative analysis

The theoretical model that we use for the quantitative
analysis is presented in detail in Appendix C. This model
treats the S and T transport channels independently, and
treats the coupling to the environment within the Lindblad
formalism.50,51 The analysis yields an expression for the cur-
rent I through a single channel in the two-electron dot

TABLE IV. Singlet-triplet energy splitting.

VSD

�mV�
EST�1,1�

�meV�
EST�2,0�

�meV�

−0.174 0.0078 0.170

−0.274 0.0044 0.174

−0.474 0.0306 0.148

−0.574 0.0345 0.193

0.226 0.200

0.326 0.178

0.526 0.155

0.626 0.162

Mean 0.019 0.173

Standard deviation 0.015 0.018
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I = e�L�R�4t2�fL − fR���L�1 − fL� + �R�1 − fR� + �i�

+ �i�4��/��2 + ��L�1 − fL� + �R�1 − fR� + �i�2��fL�1

− fR�� − fR�1 − fL��̄�� � ��4��/��2 + ��L�1 − fL� + �R�1

− fR� + �i�2���L�R�1 − fLfR� + �i�R�� + fR�̄� + �i�L��̄

+ fL��� + 4t2��L�1 − fL� + �R�1 − fR� + �i���L�1 + fL�

+ �R�1 + fR��� . �6�

Here, t is the �elastic� tunnel coupling between the two dots,
� is the energy difference between the �2,0� charge configu-
ration and the �1,1� charge configuration, fL and fR are the
Fermi functions for the two leads L and R �they of course
depend on energy but this dependence is suppressed in the
notation for brevity�, �L is the tunnel coupling between the
left lead L and dot 1, �R is the tunnel coupling between the
right lead R and dot 2, �i is the inelastic interdot coupling,

and � and �̄, which account for the fact that phonon emission
is much more likely than phonon absorption at low tempera-
tures, are taken here to be Heaviside step functions: �

=	��� and �̄=	�−�� with 	���=0 when ��0, 	���=1 /2
when �=0, and 	���=1 when ��0. The inelastic interdot
tunnel coupling �i is a weak, even function of �. Below, we
show that our data are consistent with �i= �constant�
throughout most of the bias triangle. When the singlet and
triplet channels are fully decoupled, as we assume here, the
total current is expressed as a sum of terms like Eq. �6�, one
for each channel. For the case of triplet states that are triply
degenerate, the total triplet current is therefore the sum of
three terms, one for each state.

VII. ANALYSIS OF DATA YIELDING INFORMATION
ABOUT ENERGY-DEPENDENT TUNNELING

In this section, we first perform a fitting analysis using Eq.
�6� to obtain estimates for the various tunneling parameters,
including those describing the energy-dependent tunneling.
We then go on to discuss the prominent features in the cur-
rent map. We finish up by checking the self-consistency of
our LET assumption of decoupling between the single and
triplet channels, and we discuss the implications for prefer-
ential loading of the excited states.

A. Fitting analysis of the tunnel parameters

We begin with an investigation of the various tunnel rates
in the LET regime. The transport data of Fig. 2�g� will be
analyzed along particular cuts. We first consider the cut
QVO, which is along the base of the singlet triangle, as
shown in Fig. 5�a�. We also consider the data cut RWQ,
which is along the high slope of the singlet triangle, as
shown in Fig. 5�b�. Along the latter cut, the data exhibit two
prominent features: a Lorentzian peak, which is characteris-
tic of resonant tunneling, and a relatively flat region to the
left of the peak, which is characteristic of inelastic
tunneling.36

We first analyze the singlet inelastic transport current,
which dominates the current flow over most of the singlet

bias triangle, except near the line QV. As we shall see, the
tunnel coupling t has a characteristic magnitude of micro-
electron volts while the length of the bias triangle is on
the order of hundreds of microelectron volts, in energy units.
Thus, away from line segment QV, the condition �
�t is
true almost everywhere. Equation �6� then reduces to the
expected form for sequential tunneling

I/e � fL�1 − fR���L
−1 + �R

−1 + �i
−1�−1, �7�

where the tunneling between dots 1 and 2 is strictly inelastic.
To make further progress, it is useful to introduce a spe-

cific model for the tunneling rates between the dots and the
leads. For simplicity, we consider square tunnel barriers, for
which the leading order energy dependence of the tunnel rate
is exponential and is given by23

��E� = �0e−2W	2m��U−E�/�2
. �8�

Here, W is the barrier width, U is its height, and E is the
energy of the tunneling electron. Since our transport data do
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FIG. 5. �Color� Fits to data cuts. �a� Black curve: a cut through
the data obtained along the line segment QVO, as indicated in the
inset. Red curve: a fit to the one-dimensional data cut, using the
theoretical formula in Eq. �11�. �b� Black curve: a cut through the
data along the line segment RWQ, as indicated in the inset. Red
curve: a cut through the theoretical fit to the 2D data set, evaluated
along the same line. The data were fit using the full theoretical
model of Eq. �6�.
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not exhibit enough structure to independently determine the
parameters characterizing the tunnel barriers, we consider an
alternative tunneling function by linearizing the argument of
the exponential in Eq. �8� about one of the lead Fermi levels
�see Refs. 21 and 22�. For the tunneling function between the
left lead and dot 1, we perform our expansion around the
Fermi energy of the left lead, obtaining

�L�E1� � �L0e�E1−ELF�/EL0, �9�

with the characteristic energy defined as EL0= ��UL
−ELF��2 /2m�WL

2�1/2. An analogous linearization can also be
performed for the right lead.

We first consider the singlet triangle. We can make a
rough comparison of the magnitudes of the different tunnel
rates in Eq. �7�, based on general observations of the data in
Fig. 5. We first consider the flat region near point W in panel
�b�. To the left of this region, the bias triangle closes, due to
the action of the Fermi functions. To the right, we observe
the resonant peak at point Q. Along the line segment RQ, the
chemical potential of the left dot is constant, so �L must be
constant, but �R need not be. Since the data are almost flat,
�R must not determine the shape of the current flow. For data
cuts parallel to line segment QVO, the detuning parameter �
is a constant, so �i must be almost constant. However, the
current has a strong energy dependence, which cannot be due
to �i. Together, these facts suggest that the energy depen-
dence of �L controls the shape of the current in the inelastic
tunneling regime, although not necessarily its magnitude. We
conclude that the functions �R and �i must either be much
larger than �L or constants in the inelastic tunneling regime.

We now perform a more quantitative analysis by consid-
ering the line QV, defined by the resonant condition �=0.
Because of the resonance, terms involving t must be domi-
nant in Eq. �6�. Away from the long edges of the triangle, Eq.
�6� then reduces to

I/e � ��L
−1 + 2�R

−1�−1. �10�

As expected, we find that the inelastic tunneling contribu-
tion, �i, is irrelevant in the resonant regime. This fact makes
it possible to independently determine the parameters �R and
�i. By comparing Eqs. �7� and �10� and noting that the cur-
rent in Fig. 5�b� is much larger at point Q than point W, we
conclude that �i��R in the inelastic tunneling regime. This
fact is not affected by the resonance condition. Since �L
corresponds to the bottleneck process in the resonant tunnel-
ing regime, we find that �L ,�i��R. Equation �6� then re-
duces to

I/e � �L�fL − fR� . �11�

We can fit Eq. �11� to the data cut along QV, as shown in Fig.
5�a�. This gives a direct estimate for the temperature and the
energy-dependent tunneling parameters in the linearized
function �L. We can obtain the remaining singlet tunneling
parameters by performing a 2D fit of the data to the full
expression in Eq. �6�. This provides estimates for the param-
eters �i, �R, and t with results shown in Table V. We note
that since �R has been proven to be irrelevant in our LET
data, it was not possible to discern any energy dependence in
this parameter. Thus, we have treated �R as a constant in our

analysis. In Fig. 5�b�, we show one result from our 2D fitting
procedure, as evaluated along the line segment RWQ.

B. Prominent features in the data

It is instructive to consider limiting cases of Eq. �6� that
are relevant for our LET data, in order to gain a better physi-
cal understanding. We specifically consider the bright line of
current adjacent to line segment RWQ. As apparent from Fig.
4�e�, the Fermi function for the left lead is nearly saturated
along this line so that fL�1 and fR�0. In this regime, the
transport current takes the form

I

e
�

�L�1 + �2�i�/��t�2�R�
�1 + �2��L + �i��/��t�2�R�

, �12�

corresponding to a Lorentzian line shape centered on the
resonant condition �=0. The half width of the peak is given
by �1/2

2 ���t�2�Rp /�Lp, where �Lp and �Rp correspond to bar-
rier tunnel rates, evaluated at the peak value of the current.
Along the line from Q to R, the functions �L and t remain
approximately constant. To the left of the peak, the data are
nearly flat, as shown in Fig. 5�b�, with asymptotic behaviors
determined by the bottleneck rate �i. �Note from Table V
that �iS��LS along line segment RWQ.� We conclude that
�iS is nearly constant as a function of �. The dips in the data
between R and W are due to drifts in the measurement. The
suppression of the current to the left of R is probably caused
by energy-dependent variations in �i, which are not included
in our model. It is interesting to note that the general shape
of the curve described in Eq. �12� is relatively insensitive to
changes in �R. This is consistent with the fact that tunneling
from dot 2 to the right lead is the fastest of the tunnel rates,
and it is therefore never a bottleneck.

To the right of the resonant peak in Fig. 5�b�, the follow-
ing conditions are satisfied: �=0 and −�
�t, so Eq. �12� is

TABLE V. Fitting parameters and singlet-triplet energy split-
tings for the Si/SiGe double quantum dot transport model presented
in Eq. �6� for the data in Fig. 2�g�. The energy-dependent tunneling
parameters and the singlet-triplet energy splittings are described in
the text. Standard deviations are given in square brackets.

Energy
�eV�

h�L0S 0.62 �0.01�
EL0S 40 �2�
h�iS 0.125 �0.003�
�tS 3.2 �1.2�
h�RS 38 �28�
h�L0T 0.48 �0.01�
EL0T 34 �3�
h�iT 0.183 �0.003�
�tT 2.0 �0.1�
h�RT 55 �8�
Temperature �mK� 145 �7�
EST, �2,0� state 174 �38�
EST, �1,1� state 4 �1�
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no longer valid. The current in this region is more strongly
suppressed than the linearized theory we discuss here pre-
dicts.

Using the fitting parameters reported in Table V, Eq. �6�
can be used to reconstruct the singlet and triplet bias tri-
angles corresponding to the electron-transport data shown in
Figs. 2�g� and 6�a�. The resulting theoretical fits are pre-
sented in Fig. 6�b�. The fits are quite satisfactory, and they
provide strong support for the double dot theory described
above.

C. Self-consistency check

In Sec. VI, we noted that the singlet and triplet transport
channels should approximately decouple, if our theory is

valid. As a self-consistency test, we should check whether
this statement is consistent with the tunneling parameters
obtained from the fitting procedure. Specifically, we want to
show that the singlet density, �S=�S1+�S2, is small wherever
the triplet density, �T=�T1+�T2, is appreciable, and vice
versa.

The formalism developed in Appendix C and Sec. VI al-
lows us to compute the steady-state occupations for dots 1
and 2, as a function of the tunneling coefficients. For either
the singlet or the triplet triangles, the formalism of Sec. VI
leads to

�1 + �2 = ��4��/��2 + ��L�1 − fL� + �R�1 − fR� + �i�2�

���L�R�fL + fR − 2fLfR� + �i��RfR + �LfL��

+ 8t2��L�1 − fL� + �R�1 − fR� + �i��fL�L

+ fR�R�� � ��4��/��2 + ��L�1 − fL� + �R�1 − fR�

+ �i�2���L�R�1 − fLfR� + �i�R�� + fR�̄� + �i�L��̄

+ fL��� + 4t2��L�1 − fL� + �R�1 − fR� + �i���L�1

+ fL� + �R�1 + fR��� . �13�

In Fig. 6�c�, we plot �S=�1S+�2S using the fitting parameters
from Table V. We conclude that the singlet density does
indeed vanish inside the triplet triangle, in the portions of the
triangle where current flow is appreciable. Below the singlet
and triplet triangles, in the lower-right portion of Fig. 6�c�,
the theoretical model indicates an anomalous region of sin-
glet occupation. Such behavior is spurious, and it is a conse-
quence of using energy-dependent tunneling models outside
their range of validity.

D. Triplet relaxation and loading of excited states

We first address the question of triplet-to-singlet relax-
ation. In many experimental situations, the current is block-
aded outside the singlet triangle.20,52 We have shown that in
the LET regime, the triplet channel is not necessarily block-
aded. However, when the triplet loading is favored, if a �2,0�
triplet decays to a �2,0� singlet faster than the singlet can
unload, then current through the triplet triangle will be effec-
tively blockaded. We have also shown that the condition for
this blockade to be lifted is that the total singlet loading rate,
including loading via triplet decay, should be of the same
order or smaller than the singlet unloading rate.32 The obser-
vation of current flow in the triplet tail indicates that these
conditions are met in our sample.

In this paper, we did not explicitly consider the triplet-to-
singlet decay channel. However, the decay “current” must be
bounded by the total loading current for the singlet. As re-
ported in Ref. 32, we can fit the resonance in Fig. 5�a� close
to the peak, to avoid spurious structure possibly related to
cotunneling. In this way, we obtain a bound on the triplet-
singlet decay rate, given by �TS�1.45�106 s−1. This bound
differs from that published previously, because it depends
exponentially on the singlet-triplet splitting and the gate volt-
age to energy calibration, both of which have been deter-
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FIG. 6. �Color� Comparison of the experimental data with cal-
culations based on the fitting parameters of Table V, obtained for
the same range of gate voltages. �a� Current transport data, identical
to Fig. 2�g�, with an overlay of the edges of the singlet and triplet
lower bias triangles. �b� Theoretical reconstruction of the lower bias
triangles, based on Eq. �6�. �c� The computed singlet occupation
density, �S=�1S+�2S, shows that the singlet occupation falls off in
the vicinity of the triplet triangle, as required for the observation of
LET.
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mined to a greater accuracy in this paper. The actual value of
�TS is expected to be much smaller than this current estimate
or that published previously in Ref. 32.

Finally, we can investigate selective tunneling into the
triplet and singlet states. We have shown that there is a very
strong energy dependence for tunneling into the double dot.
Tunneling into a singlet state proceeds at a very different rate
than tunneling into a triplet, even when they are at the same
energy. However, our analysis shows that the �2,0� triplet
state is split off from the �2,0� singlet by a large amount:
EST=173 eV. Electrons tunneling into these two states
therefore experience very different barriers. Based on our
analysis of the transport data, we can estimate this difference
by comparing the ratio of the singlet vs triplet loading rates,
as

�S,load

�T,load
=

fL�E1��LS�E1�
fL�E1 + EST��LT�E1 + EST�

. �14�

When the triplet lies above the Fermi level of the left lead,
there will be a very strong suppression of the triplet loading.
On the other hand, when both the singlet and triplet lie below
the Fermi level, we observe a very strong enhancement of
the triplet, as compared to the singlet. For the tunneling pa-
rameters extracted above, this enhancement factor is on the
of order 100. However, this is actually an underestimate,
owing to our use of linearized tunnel functions. Comparison
of Figs. 6�a� and 6�b� shows that, in regions with low current
flow, the experimental transport current is more strongly sup-
pressed than the theoretical prediction. In general, the sup-
pression of singlet tunneling in this regime should be en-
hanced for materials like silicon, which have relatively large
effective masses. For example, by using linearized tunneling
functions and setting the Fermi functions to 1 in Eq. �14�, we
obtain

�LS�E1�
�LT�E1 + EST�

� exp�EST
	2m�W2/�U − ELF�� . �15�

Here, we see that the effective mass appears inside the ex-
ponential.

VIII. DISCUSSION

In this paper we performed a detailed analysis of eight
sets of data measuring current through a double quantum dot.
A striking feature of the data in reverse bias is the presence
of a strong tail of current that extends outside the boundaries
of the usual bias triangle and that we attribute to lifetime-
enhanced transport �LET�. The data also contain features that
are difficult to explain using the conventional double dot
transport theory, which assumes a single bias triangle. Yet,
they are explained quite naturally when the data are fit to a
pair of bias triangles, corresponding to distinct singlet and
triplet channels, as presented in columns 2 and 4 of Fig. 2. In
Fig. 2�b�, the region with strong current is broader on the
electron-triangle side than on the hole-triangle side. The re-
gion with strong current on the electron-triangle side lies
largely within the triplet triangle shown in red. It is clear
throughout that tunneling through the T1,1→T2,0 channel is

very strong in the reverse-bias �LET� direction, and this reso-
nance appears to show up in the forward-bias �spin-
blockade� direction as well.

It is worth noting that the tunnel rate between the two dots
in this experiment was quite high. This rate was not easily
tuned because the device was not specifically designed with
a gate for this purpose. However, this is not a limiting factor
for future experiments. In other recent work, a double dot in
Si/SiGe was specifically designed with tunable couplings,
and the corresponding tunnel rates were found to be highly
tunable.53 As described in Sec. III, the electron occupation of
our double dot could not be absolutely determined here.
However, recently, a double dot with a known one-electron
occupation has been demonstrated in a different Si/SiGe
experiment.41

The ability to control energy-dependent tunneling is an
important tool for measuring spin qubits.16 Here, we observe
energy-dependent tunneling so strong that in many cases it
deforms a bias triangle into a thin line. Our fitting analysis
indicates that the tunnel rates to the leads can change by a
factor of 1 /e when the dot chemical potential is varied by as
little as 30–40 eV.

The consistency of the analysis of all the data sets pro-
vides strong evidence that lifetime-enhanced transport occurs
in a Si/SiGe double dot. The demonstration that quantum
dots can be fabricated in Si/SiGe heterostructures that exhibit
high-quality spin blockade as well as a new transport channel
that only occurs when spin-relaxation times are long is evi-
dence that this materials system has promise for the manu-
facture of devices requiring spin coherence.
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APPENDIX A: SPIN EXCHANGE WITH THE LEADS IN
THE SPIN-BLOCKADE REGIME

In Sec. IV B, we described a method for determining the
base slope by fitting a line to the points labeled B and J in
Fig. 3. Figure 7�b� is an expanded view of one of the spin-
blockade data sets, showing that points B and J are indeed
clearly visible in the raw data. At these points, and in fact
along the entire segments BA and JI in Fig. 3, spin exchange
with the leads lifts spin blockade. In this appendix we briefly
discuss this spin-exchange process. Figures 7�f�–7�h� de-
scribe this spin-exchange process between the right dot and
the right lead at point B while Figs. 7�c�–7�e� describe the
spin-exchange process between the left dot and the left lead
at point J.

In the three electron regime at point J, the transport cycle
goes from �1,1� to �2,0� to �2,1� and back to �1,1�. At point J,
transport is spin blockaded because T�1,1� lies below T�2,0�.
The set of chemical potentials labeled d,S�, shown by the
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blue dashed and solid lines in Figs. 7�c�–7�e�, refer to the
energy involved in discharging the left dot from the ground,
singletlike �2,1� state to the S1,1 and T1,1 states, respectively.
At point J, when the system is blockaded in the T1,1 state, an
electron can tunnel from the left lead to the left dot. This
corresponds to a tunneling event that is in the direction op-
posite to the overall electron motion under the effect of the
transport bias VSD. Such a tunneling event can enable the
formation of a singletlike �2,1� state from the T1,1 state be-
cause electrons with either spin orientation are available in
the left lead. This transition occurs at an energy given by the
blue d,S� level �solid line�. The left dot is allowed to dis-
charge from any one of the two d,S� levels. If it discharges
from the higher of the two chemical potentials, the system
relaxes to the singlet �1,1� state. The two d,S� levels are
separated by the singlet-triplet splitting of the �1,1� state and
are therefore very closely spaced.

APPENDIX B: THE CHEMICAL POTENTIALS
OF THE ELECTRON AND HOLE TRIANGLES

Figure 8 shows the chemical potentials corresponding to
the full set of labeled points in Fig. 3.

APPENDIX C: THEORETICAL MODEL FOR
QUANTITATIVE ENERGY-DEPENDENT

TUNNELING EFFECTS

In this appendix we present our theoretical treatment of
energy-dependent tunneling effects that uses the Lindblad
formalism to account for both resonant and incoherent pro-
cesses. In our calculations, we treat the S and T transport
channels independently. Our reference state has one fixed
electron in dot 1, and we consider transport that involves just
three different states: 
0�, 
1�, and 
2�. Here, 
0� refers to the
state with no additional electrons, 
1� refers to the state with
one additional electron on dot 1 �the �2,0� charge configura-
tion�, and 
2� refers to the state with one additional electron
on dot 2 �the �1,1� charge configuration�. Coherent evolution
is controlled by the Hamiltonian

H =
1

2
��
1��1
 − 
2��2
� + �t�
1��2
 + 
2��1
� , �C1�

where t is the tunnel coupling between the two dots.
We now couple this system to the environment, using the

Lindblad formalism.50,51 Tunneling from the left lead to dot 1
is described by the Lindblad operator

LL1 = 	fL�E1��L�E1�
1��0
 , �C2�

where fL�E1�= f�E1−ELF� is the Fermi function of the left
lead and �L is the tunnel coupling between the lead L and dot
1. Both fL and �L depend on energy, but, for brevity, we will
suppress the energy dependence in the notation. The other
relevant Lindblad operators are given by

L1L = 	�1 − fL��L
0��1
 , �C3�

L2R = 	�1 − fR��R
0��2
 , �C4�
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FIG. 7. �Color� Description of the spin-exchange processes be-
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data at source-drain bias of VSD=0.526 mV. �b� A blow-up of the

data inside the green box in panel �a�. The color scale is expanded

to show the current at points B and J, which are important for

determining the base slope, as discussed in Sec. IV B. �c� Configu-

ration in which the T1,1 state is spin blockaded, in the three electron

or “hole triangle” regime. �d� An electron can tunnel into the left

dot from the left lead, forming a singletlike �2,1� state. �e� The

singletlike �2,1� state can emit an electron to the left lead, leaving

the system in the S1,1 state, and lifting spin blockade. �f� In the

“electron triangle” regime with two electrons, loading of the T1,1

state from the right lead results in spin blockade. �g� The electron in

the right dot can tunnel back to the right lead, allowing the right dot

to be reloaded into the S1,1 state. �h� When the S1,1 state is loaded

from the right lead, transport can resume through the double dot.
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LR2 = 	fR�R
2��0
 , �C5�

L12 = 	��i
2��1
 , �C6�

L21 = 	�̄�i
1��2
 . �C7�

Note that reverse processes �from right to left�, such as L1L,
are also included here. The latter play a role along the edges
of the bias triangle. For example, an electron may enter dot 1
from lead L and then exit back to lead L. Such processes do
not directly affect the steady-state current, but they do affect
the current indirectly, because, while the dot is occupied, it
cannot be occupied by a second, right-moving electron.
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FIG. 8. �Color� Chemical po-
tentials corresponding the labeled
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In Eqs. �C6� and �C7�, the incoherent tunneling between
the two dots involves phonon emission or absorption pro-
cesses. We have accounted for these phonon effects through
the � functions. At high temperatures, the � functions may
possess considerable structure. However, for low-

temperature applications, we assume that �=	��� and �̄
=	�−��, where the step function 	��� takes the values 0,
when ��0, 1/2 when �=0, and 1 when ��0. More general
forms for � can be substituted, as appropriate. We also note
that the inelastic, interdot tunnel coupling �i is a weak, even
function of �. In Sec. VII, we show that our data are consis-
tent with �i= �constant� throughout most of the bias triangle.

The evolution of the density operator is described by the
rate equation

�̇̂ = −
i

�
�H, �̂� + 

j
�Lj�̂ j

† −
1

2
��̂,Lj

†Lj�� , �C8�

where �̂ is the density matrix. In general, �̂ must satisfy the
normalization condition 1=�0+k��1k+�2k�, where the diag-
onal terms �0, �1k, and �2k describe the probability of being
in a given occupation state, and the sum over k includes the
singlet and three triplet channels. In the absence of any decay
processes between the triplet and singlet states, this normal-
ization condition is the only coupling between the singlet and
triplet sectors, since it ensures that a triplet cannot be formed
when a singlet state is occupied, and vice versa. However, in
the LET regime, we have shown that the �2,0� singlet state
unloads much faster than it loads, and that the unloading of
the �1,1� singlet is similarly fast �or faster�.32 These condi-
tions are equivalent to the statement that �1S+�2S�1 wher-
ever �1T+�2T is appreciable, and vice versa. Since LET be-
havior is observed in our samples, we make a singlet-triplet
decoupling approximation, such that the normalization

1 � �0 + �1 + �2, �C9�

applies to both the singlet and triplet channels. The resulting
rate equations are correspondingly simplified.

Since there is no coherent coupling between state 
0� and
states 
1� and 
2�, the density operator for a single channel
can be defined as

�̂ = �0
0��0
 + �1
1��1
 + �2
2��2
 + �12
1��2
 + �21
2��1
 .
�C10�

We may then use Eq. �C9� to eliminate �0 from the rate
equations defined in Eq. �C8�. Steady-state solutions are ob-
tained by requiring that �̇̂=0.

The current operator is defined as

Î/e = it�
1��2
 − 
2��1
� + �i��
1��1
 − �̄
2��2
� , �C11�

and it involves both coherent and incoherent components.

The steady-state current is given by I=Tr��Î�. Using the
steady-state rate equations, the result can be expressed in
terms of density coefficients

I/e = �1 − fR��R�2 − fR�R�0. �C12�

In this form, the current is simply expressed as the net tun-
neling rate between dot 2 and lead R.

By solving for the density coefficients, Eq. �C12� can be
expressed entirely in terms of tunneling rates and Fermi
functions, yielding the following result for single-channel
transport in a two-electron double dot:

I

e
= �L�R�4t2�fL − fR���L�1 − fL� + �R�1 − fR� + �i�

+ �i�4��/��2 + ��L�1 − fL� + �R�1 − fR� + �i�2��fL�1

− fR�� − fR�1 − fL��̄�� � ��4��/��2 + ��L�1 − fL� + �R�1

− fR� + �i�2���L�R�1 − fLfR� + �i�R�� + fR�̄� + �i�L��̄

+ fL��� + 4t2��L�1 − fL� + �R�1 − fR� + �i���L�1 + fL�

+ �R�1 + fR��� . �C13�

When the singlet and triplet channels are fully decoupled, as
we assume here, the total current is expressed as a sum of
terms like Eq. �C13�, one for each channel.

As an initial check on our result, we consider a known
limit. For the case of pure coherent tunneling between dots 1
and 2, we take the limit �i→0. In the interior of the bias
triangle where fL�1 and fR�0, Eq. �C13� immediately re-
produces the resonant tunneling results obtained in Refs. 34
and 35.
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