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Single-shot measurement and tunnel-rate spectroscopy of a Si/SiGe few-electron quantum dot
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We investigate the tunnel rates and energies of excited states of small numbers of electrons in a quantum
dot fabricated in a Si/SiGe heterostructure. Tunnel rates for loading and unloading electrons are found to be
strongly energy dependent, and they vary significantly between different excited states. We show that this
phenomenon enables charge sensing measurements of the average electron occupation that are analogous to
Coulomb diamonds. Excited-state energies can be read directly from the plot, and we develop a rate model that
enables a quantitative understanding of the relative sizes of different electron tunnel rates.
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I. INTRODUCTION

Many readout schemes for solid-state quantum computing
architectures rely on accurate control and real-time mea-
surement of electron tunneling.1–5 In GaAs quantum dots,
tunneling rates have been tuned by controlling gate voltages as
well as by exploiting energy-dependent tunneling,6 enabling
the identification of both orbital and Zeeman excited states.7–9

Single-shot readout using spin-to-charge conversion has been
performed by using a capacitively coupled quantum point
contact (QPC) as the charge sensor.3,10–12

In silicon, the effects of energy dependent tunneling are
expected to be enhanced compared to GaAs, because of the
carriers’ larger effective mass. Time-averaged measurements
of spin-dependent electron tunneling into quantum dots have
been made using quantum point contacts.13,14 Single electron
transistors have been used to measure tunnel rates15 and to
perform single-shot spin readout of electrons on individual
dopants.16

Here we investigate the tunnel rates and energies of
excited states of small numbers of electrons in a quantum
dot fabricated in a Si/SiGe heterostructure. We find that tunnel
rates for loading and unloading electrons are strongly energy
dependent: states below the Fermi level load more slowly
as their energy decreases, and states above the Fermi level
unload more rapidly as their energy increases. Single-shot
measurement of these tunnel events is achieved with good
charge sensitivity. We further show that loading and unloading
tunnel rates vary significantly between different excited states.
This phenomenon enables charge sensing measurements to
produce plots analogous to Coulomb diamonds. The use of
charge sensing to create such plots enables calibration of the
gate voltage-to-energy ratio α without the need for measurable
transport through the quantum dot itself. Excited-state energies
can be read directly from the plot, and we develop a rate
model to extract quantitative relations between the tunnel rates
from the experimental measurements. A simulated map of
charge sensing measurements as a function of source-drain
and gate voltages agrees well with the experimental data.
We find significant variations in tunnel rates that may be
useful in the loading and measurement of spins in quantum
dots.

II. METHODS

The sample used in this work was grown by chemical vapor
deposition on a Si(001) substrate with phosphorus doping
of 1–10 � cm, which was polished 2◦ toward [010].17 The
structure was step graded to the composition Si0.64Ge0.36. The
Ge concentration was then reduced to Si0.68Ge0.32 and a 1-μm
buffer layer was grown, resulting in a final strain relaxation of
95%. On top of the relaxed SiGe, we grew 18 nm of Si (the
quantum well), 22 nm of undoped Si0.68Ge0.32, 1 nm of doped
Si0.68Ge0.32, 45 nm of undoped Si0.68Ge0.32, and a 9-nm Si cap
layer. The top gates were formed by electron-beam evaporation
of Pd onto the HF-etched surface of the heterostructure.18,19

The gates sit on a square mesa of width 35 μm that was defined
by reactive ion etching. For the experiment reported here, the
sample was illuminated with red light for 10 s at a temperature
of 4.2 K, before cooling to a refrigerator base temperature of 20
mK. Magnetoresistance measurements obtained from the same
heterostructure give a carrier density of 5.15 × 1011 cm−2

and a mobility of 120 000 cm2/Vs (after illumination). Data
are reported in this paper with the quantum dot in both the
one-electron17,20,21 and many-electron regimes.

III. RESULTS

Figure 1(a) shows a scanning electron micrograph of the
gate structure of a device identical to the one reported here.
The quantum dot in this experiment was formed by applying
negative voltages to gates L, M , R, and T . A charge sensing
QPC was formed by applying a negative voltage to gate
QL.21–23 The QPC was biased at 100 μV, and the drain
current was monitored with a low-noise current preamplifier.
For the data shown in Figs. 1 and 2, the quantum dot barriers
and gate voltages were tuned such that tunneling occurred
predominately through the left barrier, and the dot occupation
could be tuned between 0 and 1. IQPC was high when the dot
was empty and low when the dot was occupied.

As shown in Fig. 1(c), monitoring the QPC current as
a function of time enables measurement of single-electron
tunneling on and off the dot. In the absence of a source-drain
voltage VSD across the dot, the average charge occupation is
determined solely by the alignment of the electron chemical
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FIG. 1. (Color online) (a) Scanning electron micrograph of the
quantum dot top gates, with gate labels shown. For pulsed-gate
measurements, a pulse sequence was applied to gate R. (b) Chemical
potential diagrams for tunneling between the left reservoir and
the quantum dot. Loading (top diagram) and unloading (bottom
diagram) are achieved by varying the gate voltages VM or VR . (c)
Typical oscilloscope traces of IQPC versus time, showing real-time
tunneling events. Downward edges indicate loading, upward edges
indicate unloading. The three traces correspond to the three energy
configurations shown in (b). (d) Fractional dot occupation as a
function of VM , obtained from traces like those in (c).

potential in the quantum dot, which is controlled by the voltage
VM on gate M , with the Fermi level of the leads, as depicted
in Fig. 1(b). Three typical time traces of IQPC are shown in
Fig. 1(c), corresponding to the three energy configurations
in panel (b). In the top trace of panel (c), the chemical
potential of the dot is slightly above the Fermi level, and the
dot is almost always unloaded, except for occasional thermal
fluctuations. The bottom trace corresponds to the opposite
situation, and the middle trace corresponds to the case where
the chemical potentials of dot and lead are nearly aligned,
leading to an average dot occupation of 50%. Based on a
signal-to-noise ratio of 32 and a preamplifier rise time of 3 ms,
we estimate a charge sensitivity of 2.9 × 10−3 e/

√
Hz for our

QPC measurements.
As shown in Fig. 1(d), data of this type enables a measure-

ment of the Fermi-Dirac distribution for the dot occupation
〈n(VM )〉 = fD(μg), where μg is the chemical potential of
the dot ground state. By repeating measurements like that
shown in panel (d) for a series of increasing temperatures,
we acquire a set of data that can be used to determine the
proportionality constant α between the chemical potential
and VM for the one-electron dot.24 From a global fit we
determine α = 0.129 ± 0.004 meV/mV, where the error bar is
determined by the quality of the fit. The electron temperature
is estimated as 298 mK.

By applying pulsed gate voltages to gate R, we can repeat-
ably load and unload the quantum dot, enabling measurement
of the loading and unloading tunnel rates as a function of the
quantum dot chemical potential. A typical pulse sequence is
shown in Fig. 2(a) (solid black trace). Loading occurs during
the high portion of the gate voltage cycle, while unloading
occurs during the low portion, as indicated in the insets. The
tunnel barriers can be controlled independently of the dot
chemical potential, although cross talk is always present. Here,
we tune the tunnel barriers by adjusting the voltage, primarily
on gate L, so that the tunneling times are much longer than the
rise time of the current preamplifier in the QPC circuit. After
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FIG. 2. (Color) Pulsed gate voltage measurements. (a) A typical
measurement of IQPC (red curve), together with its contribution
from cross talk (dashed black curve). The voltage pulse sequence
applied to gate R is shown as the solid black curve (arb. units).
Insets: chemical potential diagrams for loading and unloading.
(b) Cumulative counting statistics for loading events vs time with
Vpp = 8 mV. (c) Average of 600 current traces (blue curve) and an
exponential fit (red curve). (d) Average of 512 current traces (red &
blue curves), for two different values of Vpp (the corresponding pulse
sequence is shown in black with arbitrary units). (e) Loading time vs
pulse amplitude, showing a strong increase in tunneling time as the
quantum dot chemical potential is decreased.

this initial adjustment, gate L is held fixed, while the voltage
is varied on gate R.

A typical measurement trace corresponding to loading and
unloading the dot is shown in red in Fig. 2(a). Steps in the
traces occur in pairs; the first step edge is precisely correlated
with the voltage pulse and is the cross talk response of the
QPC to the voltage pulse on gate R. The cross talk component
of IQPC is sketched as a dashed black line in Fig. 2(a). The
second step edge occurs between the voltage pulses. This
signal corresponds to a tunneling event—either the loading or
unloading of the dot. By recording the time interval between
the voltage pulse and the charging event, we obtain a direct,
single-shot measurement of the loading time.

Figure 2(b) shows a plot of the cumulative number of
loading events as a function of the loading time, obtained
from a pulse sequence of identical load-unload cycles with
Vpp = 8 mV. Loading times are extracted from IQPC(t) in a
two-step process: first, we check that the dot is unloaded
immediately prior to the loading pulse; second, we extract
the first time that IQPC returns to the level corresponding to
a loaded electron. The results shown in Fig. 2(b) take into
account 584 out of 600 such current traces; 16 traces did
not have current levels that could be mapped to the analysis
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pattern and were ignored. As expected, the counts saturate
exponentially, with a rise time of τL = 82 ± 9 ms. Figure 2(c)
shows a direct average of all 600 current traces. The decay is
well fit by an exponential with time constant τL = 94 ± 7 ms,
comparable to the value obtained by event counting.

We measure the loading and unloading rates over a wide
range of Vpp. We use a pulse sequence with an asymmetric
duty cycle, shown in black in Fig. 2(d), because the unloading
times are significantly faster than the loading times. The red
and blue curves in Fig. 2(d) correspond to two different values
of the pulse height Vpp and are averages of 512 individual
IQPC traces. Loading and unloading times are obtained by
performing exponential fits to the averaged data. Figure 2(e)
shows the resulting loading times as a function of Vpp. We
observe an approximate fivefold increase in the loading time
as Vpp varies from 1 to 6.5 mV, corresponding to a shift of
about 343 μeV in the dot chemical potential during the loading
phase of the cycle.

The dependence of the tunnel rate on gate voltage is
consistent with a simple model of transport in a quantum dot
known as energy-dependent tunneling.6,9,11,25 In this model,
the tunnel rate depends exponentially on the relative height
of the tunnel barrier compared to the chemical potential of
the dot, with a larger chemical potential corresponding to a
higher tunnel rate. This explains the trends of the tunnel rate
with respect to variations in the gate voltage. It also explains
why the unloading rates are much faster than the loading rates
in our dot. It is important to note that cross talk between the
plunger gate and the tunnel barrier would tend to have the oppo-
site effect as energy-dependent tunneling, by raising the tunnel
barrier and lowering the tunnel rate.

Up to this point, we have studied the tunnel rate between
the lead and the ground state of the dot, which varies as a
smooth function of the plunger gate voltage, as indicated in
Fig. 2(e). We now describe how the tunnel rates may change
more abruptly, when excited states enter the bias window.
These excited states may have tunneling matrix elements much
larger than the ground state, which depend on the shape and
the symmetry of the wave functions.10,26–29 In turn, this opens
up new doors for measuring the tunnel rates. Specifically, it
allows us to replace gate pulsing with time-averaged current
measurements. Time averaging is normally associated with
methods where the current flows directly through the quantum
dot. One example is the so-called Coulomb diamond plot,
where the transport current is measured as a function of
source-drain bias VSD and the plunger gate voltage.30 Such
transport measurements are challenging in the few-electron
regime, where charge sensing is the preferred experimental
technique.31 We show here that charge sensing techniques
enable spectroscopy of silicon quantum dots, with direct
correspondence to Coulomb diamond measurements. Similar
measurements were previously obtained in GaAs by Schleser
et al.8

Figure 3(a) shows a Coulomb diamond plot of the current
through the dot as a function of VSD and VL, for the case
of many-electron occupation and large current flow through
the quantum dot. Current flows only when the chemical
potential of the dot μg , which depends linearly on VL, lies
between the Fermi energies of the source and drain (μS

and μD , respectively). The black regions in Fig. 3(a) are

FIG. 3. (Color online) (a) Coulomb diamond plot of current Idot

through the quantum dot in the many-electron regime. (b) Schematic
representation of two Coulomb diamonds. (c) Energy-level diagrams
showing the dot chemical potential and the Fermi level of the leads
for two of the edges in (b). (d), (e) Expected transconductance (solid
lines) of the charge sensing QPC when the D and S tunnel barriers,
respectively, are the transport bottleneck. (f), (g) Color scale plot of
the transconductance g of the QPC obtained as a function of VM and
VSD. Peaks in g represent transitions where dot occupation changes.
VR = −0.42 and −0.44 V in (f) and (g), respectively. VM differs in
the two panels to compensate for the difference in VR .

blockaded. As μg is lowered, it becomes level with μS ; this
condition corresponds to the edge of the diamond with positive
slope [blue line in Fig. 3(b)], and current begins to flow.
When μD � μg � μS , current flows, and the dot occupation
alternates between N and N − 1. The condition μg = μD

corresponds to the edge of the diamond with negative slope
[red line in Fig. 3(b)]. When μg < μD , the electron does not
have enough energy to exit the dot. In this case, the electron
occupation becomes fixed at value of N , and the current is
blocked.

Because of the variation in the tunnel rate with gate voltage
and the available energy levels, the same information available
in a Coulomb diamond transport measurement can be derived
from time-averaged charge sensing measurements. Here, we
study this effect in the several-electron regime. Figures 3(f)
and 3(g) show plots of the transconductance g = ∂IQPC/∂VM .
When monitoring the charge sensing QPC current in this
way, the physical picture of Coulomb blockade is unaffected;
however, instead of measuring the current through the quantum
dot, which is immeasurably small in this regime, the QPC
measures the average dot occupation. In the regime where
dot occupation alternates between N − 1 and N , the average
occupation depends on the electron dwell time, which depends
on the loading and unloading tunnel rates.
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The interesting case for charge sensing is when VSD �= 0
and the dot chemical potential is in the bias window. In this
regime, the average fractional occupation f , the fractional part
of the dot occupation 〈n〉, is given by f = �gS/(�gS + �gD),
where �gS is the tunnel rate from the source to the N -electron
ground state, and �gD is the corresponding rate to the drain. At
the location of the purple stars in Figs. 3(d)–3(g), if the tunnel
barriers are tuned such that �gS � �gD , the average fractional
occupation will be f � 0.5. However, it is more common that
the tunnel rates are dissimilar, and when one barrier is much
larger than the other, it becomes a bottleneck for transport.

For the limiting case �gS � �gD , shown in Figs. 3(d) and
3(f), the electron tunnels into the dot very quickly when μg �
μS , but it tunnels out very slowly, so the average occupation
will be ∼N . A filling transition is therefore observed when
μg = μS , but not when μg = μD . Thus, the transition occurs
along the edge of the Coulomb diamond with positive slope.
In the opposite limit, �gD � �gS , shown in Figs. 3(e) and
3(g), and achieved by changing gate voltage VR , the dot
empties so quickly that the average occupation is ∼(N − 1).
In this case, the filling transition occurs when the dot chemical
potential is aligned with the drain, corresponding to the edge
of the Coulomb diamond with negative slope. As is clear from
Figs. 3(f) and 3(g), the tunnel barriers are easily tuned into
either regime.

Positive and negative slopes can also be observed without
retuning the tunnel barriers, simply by expanding the bias
window, as shown in Fig. 4(a). Here, we have chosen the tuning
�gS > �gD . The mapping between the filling transitions and
the conventional Coulomb diamonds is sketched in Fig. 4(b),

FIG. 4. (Color online) Excited-state spectroscopy. (a) Color-scale
plot of g as a function of VSD and VM . The pattern in the
transconductance is analogous to a traditional Coulomb diamond plot
of the differential conductance through a quantum dot. (b) Schematic
representation of the “transition map” observed in (a), showing the
role of excited states and how the energies of these states can be
extracted in analogy with a Coulomb diamond plot. (c) Theoretical
reconstruction ∂f/∂VM of the transition map, based on fitting to
a rate equation model described in the Appendix, demonstrating the
robustness of the interpretation of the data. (d) Schematic energy-level
diagrams of the dot at points A, B, and C in panel (b).

where one of the diamonds has been shaded gray. We observe
sharp corners in the transition map, which we attribute to
excited states entering the bias window, similar to lines
corresponding to excited states in a Coulomb diamond plot.
Three such transitions are labeled A, B, and C in panel (b). Near
VSD = 0, the charge transition line has a positive slope, since
the D barrier forms the bottleneck, and the filling transition
occurs when the dot level is aligned with the source. In this
range of VSD, all excited states lie outside the bias window, and
the average fractional occupation f = �gD/(�gD + �gS) � 0
(see Appendix for details). When an excited state x enters the
window, such as at point A in Fig. 4(b), the occupation is
given by f = (�gD + �xD)/(�gD + �gS + �xD) � 1. In this
case, the approximate equality holds because of the strong
tunnel coupling between the drain and the excited state:
�xD � �gS � �gD . Thus a switch in occupation is caused by
a switch in the rate-limiting tunnel barriers. We can understand
the changes in slope near points B and C by similar arguments.
The transition map expands in piecewise fashion, with sharp
changes in slope indicating the presence of excited states that
change which barrier corresponds to the bottleneck tunnel rate.
Such changes in slope are visible over a wide range in VSD and
VM . Excited states with tunnel couplings that do not alter the
time-averaged dot occupation will be invisible.

We can analyze the experimental data of Fig. 4(a) using
a finite-temperature rate model, as described in detail in the
Appendix. In brief, the rate equations are obtained by first
expressing the currents for individual transport channels. For
example, the tunnel current from the source to the ground
state of the dot is given by IgS = −e�gSfS(μg)(1 − f ), where
fS(μg) is the Fermi function for the source reservoir, evaluated
at the chemical potential of the dot ground state. By enforcing
current conservation and assuming an infinite decay rate for
excited states, we obtain an equation for f as a function
of tunnel rates, excited-state energies, and temperature. It is
important to note that, although an electron from the drain
can tunnel into an N -electron excited state, it cannot tunnel
out through the same channel. Instead, the electron decays
very quickly and tunnels out through the ground state.32 The
decay process causes an intrinsic asymmetry, one which favors
loading rather than unloading.

The quantity ∂f/∂VM corresponds directly to the transcon-
ductance of Fig. 4(a). We fit this result to the experimental data,
obtaining the parameters shown in the next-to-last column
of Table I, as well as the theoretical reconstruction of the
transition map shown in Fig. 4(c). In the fitting procedure,
no correlations were assumed between the excited states in
the different transport channels. We estimate an uncertainty of
about 60 μeV for the excited-state energies, and an uncertainty
of about 20% for these relative tunnel rates.

Since transport currents are immeasurably small in this
experimental configuration, we are not able to determine the
tunnel rates directly. In the next-to-last column of Table I, the
tunnel rates are normalized relative to the gS tunnel channel,
as described in the Appendix. Here, the tunnel rates for the
N ↔ (N − 1) and N ↔ (N + 1) processes are normalized
independently, since they involve different gate voltages, and
should not be exactly equal.

We were able to obtain an approximate calibration for the
tunnel rates, however, by retuning the quantum dot to allow

045307-4



SINGLE-SHOT MEASUREMENT AND TUNNEL-RATE . . . PHYSICAL REVIEW B 84, 045307 (2011)

TABLE I. Excitation energies and tunnel rates �ij , as extracted from Fig. 4. Here, ij specifies the tunnel channel, with i corresponding to
the quantum dot orbital, and j corresponding to the source S or drain D lead. The tunnel rates are obtained by fitting the transition map in
Fig. 4(a) to a finite-temperature rate model described in the Appendix. The excitation energies (1–5) are measured relative to the ground state
(g). This procedure provides tunnel rates that are normalized to the gS tunnel channel. The tunnel rates are then calibrated with respect to the
gD tunnel channel, as described in the text.

Filling Dot Energy Tunnel Normalized tunnel Calibrated tunnel
transition state (meV) channel rate, �ij /�gS rate, �ij (106 s−1)

N ↔ (N − 1) g 0 S 1 4.7
g 0 D 0.15 0.7
1 0.92 S 6 28
2 1.43 D 2.3 11
3 1.90 D 10 47

N ↔ (N + 1) g 0 S 1 3.5
g 0 D 0.2 0.7
4 0.69 S 1.2 4.2
5 0.82 D 6 21

pulsing experiments. Shortly after the data in Fig. 4 were
obtained, the right tunnel barrier (S) was pinched off, allowing
electrons to tunnel through just the left (D) barrier. The tunnel
barrier gate voltage VL was left essentially unchanged. Tunnel
rates corresponding to the gD process were then acquired on
two successive days, with variations on the order of 25%. In
this way we obtain the estimates �gD = 5.4 × 105 s−1 and
8.5 × 105 s−1 for the N ↔ (N − 1) loading and unloading
processes, respectively. The difference between loading and
unloading rates is comparable to those described above, and
it is also consistent with predictions of energy-dependent
tunneling. In the final column of Table I, we use the mean
tunnel rate estimate 7.0 × 105 s−1 to calibrate the relative rates
listed in the next-to-last column. The same calibration provides
a rough estimate for the N ↔ (N + 1) tunneling process, and
we provide the corresponding results in Table I.

The lever arm α, which converts gate voltage to dot energy,
is usually extracted from a Coulomb diamond plot. Here,
we can extract α = 0.095 ± 0.004 meV/mV from Fig. 4(a),
even though transport through the quantum dot itself is
immeasurably slow. The uncertainty in α is determined by
the resolution of the data plot in both VSD and VM . This value
of α is different than that quoted above when the quantum dot
was occupied by a single electron, because the dot has been
retuned and now is occupied by several electrons.

IV. SUMMARY

In summary, tunnel rates in and out of a few-electron Si
quantum dot were measured by single-shot charge sensing.
The rates were shown to depend strongly on gate voltage, in a
manner opposite to that expected from cross talk, and consis-
tent with energy-dependent tunneling. We also have shown that
a map of the time-averaged dot occupation, obtained by charge
sensing, provides direct spectroscopic information about the
quantum dot. Further, energy calibration—the determination
of α—does not require retuning of the tunnel barriers, because
both the positive and negative slopes, which are usually
extracted from Coulomb diamonds, are visible in a plot like
that shown in Fig. 4(a). The sharp corners observed in the
transition map are attributed to excited states entering the bias

window and their effect on the tunneling bottleneck. Sudden
switching of the bottleneck is expected, because the tunneling
matrix elements for excited states can be large, and because
there is a built-in asymmetry in the tunneling process, due to
the fast decay of excited states.
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APPENDIX: RATE EQUATIONS FOR
THE TRANSITION MAP

In this Appendix we present a more detailed explanation of
the Coulomb diamondlike behavior observed in the transcon-
ductance data of Fig. 4(a). As explained in the main text,
the presence of switches in the transition map indicates that
the source (S) and drain (D) tunnel barriers are asymmetric.
A change of slope occurs whenever the slow barrier (the
bottleneck) switches from S to D, or vice versa, due to
excited states entering the bias window.8 Here, we will derive
a simple theoretical description of the switching observed in
this transition map.

The transition between (N − 1) and N -electron states in
a quantum dot may involve excited orbitals in either the
(N − 1) or N -electron manifolds. The chemical potentials for
several such processes are sketched in Fig. 5(a). There are two
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FIG. 5. (Color online) (a) Ground (g) and excited (x,y) state
transitions in a quantum dot, between the electron occupations (N −
1) and N . The chemical potential describing transitions between the
ground states is μg . Transitions to excited states may occur in either
direction when the dot loads (μx) or unloads an electron (μy). (b) The
types of tunneling processes considered in this work. Fast decay of
excited states essentially prohibits x-type unloading or y-type loading
processes.

necessary ingredients for observing a single change of slope:
(1) One of the barriers (say, D) must form a bottleneck for
transitions between the (N − 1) and N -electron ground states;
in other words, �gD � �gS , where � signifies a tunnel rate.
(2) There must be an excited state (not necessarily the lowest
excited state) for which the tunnel rate to D is faster than the
ground state tunnel rate to S; in other words, �xD � �gS . The
fact that the decay rate �xg between the excited and ground
states of the quantum dot is much faster than any of the tunnel
rates also facilitates switching. Additional changes of slope
may occur when new excited states enter the bias window.
Note that energy-dependent tunneling is not a leading-order
effect in the switching behavior observed in Fig. 4(a) and it
will not be explicitly considered here.

We will consider each of the different, sequential transition
processes shown in Fig. 5(b). Although the case μS > μD

is presented here, analogous processes are also present when
μS < μD . We will adopt the notation x to refer processes

between the (N − 1)-electron ground state and an N -electron
excited state, as sketched in Fig. 5(a). Only one such transition
is shown in the figure, although there may be many, in
practice. The notation y refers to processes between the
N -electron ground state and an (N − 1)-electron excited state.
The transition between ground states, g, can play a role in both
loading and unloading of the quantum dot. However, x- or
y-type processes are essentially unidirectional, as indicated in
panel (b), due to the fact that �xg is very large. Thus when an x-
type process occurs, the loaded state immediately decays to the
N -electron ground state, before the dot has a chance to unload.
Similarly, a y-type process may unload the dot into an (N −
1)-electron excited state, which then decays to the ground
state before loading can occur. Transitions between N and
(N − 1)-electron excited states are not forbidden. However,
they are strongly suppressed by the same fast decay process.

We now derive an equation for the steady-state fractional
filling of the quantum dot, f . For simplicity, we will assume
that the filling transitions observed in Fig. 4(a) are thermally

broadened, although lifetime broadening may also play a
role.33 The elastic loading of the quantum dot ground state
from the source is then described by the tunneling current ISg ,
given by

ISg = e�SgfS(μg)(1 − f ). (A1)

Here, �Sg is the tunnel rate from the source to the N -electron
ground state, and fS(μg) is the Fermi function for the source,
evaluated at the chemical potential for process g. The reverse
process is written as

IgS = −e�gS[1 − fS(μg)]f. (A2)

From here on, we will assume that �Sg = �gS .
We can write down the currents for all such processes,

keeping in mind that a process like S → x is allowed, while
the reverse is not, due to the fast relaxation of the excited
states. We can obtain a steady-state solution by summing up
the currents through the S and D barriers and equating the
results. Solving for f , we obtain

f = �gDfD(μg) + �gSfS(μg) + ∑
i

[
�xiDfD

(
μxi

) + �xiSfS

(
μxi

)]

�gD + �gS + ∑
i

[
�xiDfD

(
μxi

) + �xiSfS

(
μxi

)] + ∑
i

{
�yiD

[
1 − fD

(
μyi

)] + �yiS

[
1 − fS

(
μyi

)]} . (A3)

Here, we have included all possible excited states, although
some of the processes may be invisible, due to weak coupling
to the leads.

As an example, we consider the different cases shown
in Fig. 6. We have focused on the bias μS > μD; however,
analogous results are obtained for the opposite bias. We
will consider �gD � �gS , so that the drain barrier forms
the bottleneck. To simplify the discussion, we will set T =
0, although the final fitting, shown in Fig. 4(c), includes
temperature as a fitting parameter.

In Figs. 6(a) and 6(b), we assume that μS is just slightly
larger than μD . In particular, (μS − μD) < (μg − μy), so the g

and y processes may not be in the bias window simultaneously.

At T = 0, the arrangement shown in Fig. 6(a) involves no
loading processes, as is consistent with Fig. 5(b) and the
discussion in the main text. The Fermi functions take the values
0 or 1, and Eq. (A3) reduces to f = 0, indicating an empty dot.

D S

(a)

g

y

x

(b)

D S

g

y

x

(c)

D S

g

y

x
(d)

D S

g

y

x

FIG. 6. (Color online) Cases considered for discussing the quan-
tum dot filling, Eq. (A3).
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On the other hand, for the arrangement shown in Fig. 6(b), the
g process can load and unload. In this case, Eq. (A3) reduces to

f = �gS

�gS + �gD

� 1. (A4)

In this regime, the dot is filled because of the bottleneck at the
drain barrier. Thus the filling transition occurs when μg = μS .

In Fig. 6(c), the bias is increased such that (μS − μD) >

(μg − μy). As before, when μg > μS , Eq. (A3) reduces to
f = 0. When μg < μS , the quantum dot can load through
channel g, but it can unload through channels g or y, as is
consistent with Fig. 5(b). Now Eq. (A3) reduces to

f = �gS

�gS + �gD + �yD

� 0, (A5)

where the final equality holds when the tunnel rate for the
process y → D is large; that is, when �yD � �gS . When μy <

μD , we recover Eq. (A4). Thus for the arrangement shown in
Fig. 6(c), the filling transition occurs when μy = μD . The
alignment of the filling transition with the drain rather than
the source causes a change of slope in the transition map, as
discussed in the main text. The switching of the slope occurs
precisely when (μS − μD) = (μg − μy), corresponding to the
excitation energy of the (N − 1)-electron dot.

In Fig. 6(d), the bias is increased such that (μS − μD) >

(μx − μy). When all three chemical potentials lie inside the
bias window, Eq. (A3) reduces to

f = �gS + �xS

�gS + �gD + �yD + �xS

� 1. (A6)

The final equality holds if we assume that �xS � �yD . Thus
the filling transition occurs when the x process aligns with
the source, again causing a change of slope in the transition
map. In this case, the change of slope occurs precisely when
(μS − μD) = (μx − μy), corresponding to the point where the
bias is equal to the sum of excitation energies for the (N − 1)
and N -electron dots.

The transition map therefore gives a direct method for
performing spectroscopy in a quantum dot, since the changes
of slope correspond to excited-state transitions entering the
bias window. The corresponding energies can be read off
directly from the VSD axis in Fig. 4. However, the excited
states can only be observed if they couple strongly to the lead.

It is not surprising that consecutive transitions should have
larger tunnel rates, since excited states tend to be more spatially
extended. However, it is also possible for excited states to
be poorly coupled to the leads. Such states will not cause
switching, and will be rendered invisible in the transition
map. Similarly, a given level may couple differently to the
source and drain reservoirs. For one reservoir, it may form an
important tunnel channel, while for the other, it may form a
bottleneck.

The fitting result shown in Fig. 4(c) was obtained by
simultaneously fitting the tunneling and energy parameters,
appearing in the derivative ∂f/∂VM of Eq. (A3), to the
transconductance data of panel (a). We have included a “noise
floor,” below which all the data were assumed to be indistin-
guishable from zero, as was done in the experimental plot. We
also assumed a saturation value for ∂f/∂VM , corresponding to
the color yellow. Finally, we included temperature as a fitting
parameter.

Table I shows the results of our fitting analysis for one of
the Coulomb diamonds, corresponding to the shaded diamond
in Fig. 4(b). We also obtain the temperature estimate of T �
0.6 K. This result does not match the estimate obtained from
Fig. 1(d), due to differences between conventional and pulsing
transport techniques, and the errors introduced by the low and
high transconductance cutoffs used in our fitting.

Note that the bright spots in the transition lines with negative
slope, at the top right of the transition map in Fig. 4(c), are real.
They occur along extensions of lines associated with excited
states from lower diamonds, as shown in Fig. 4(b). The corre-
sponding bright spots are offset in Fig. 4(a), due to a charging
event which shifted the transition line slightly to the right.
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