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Achieving high-fidelity single-qubit gates in a strongly driven silicon-quantum-dot hybrid qubit
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Performing qubit gate operations as quickly as possible can be important to minimize the effects of decoherence.
For resonant gates, this requires applying a strong ac drive. However, strong driving can present control challenges
by causing leakage to levels that lie outside the qubit subspace. Strong driving can also present theoretical
challenges because preferred tools such as the rotating wave approximation can break down, resulting in complex
dynamics that are difficult to control. Here we analyze resonant X rotations of a silicon-quantum-double-dot
hybrid qubit within a dressed-state formalism, obtaining results beyond the rotating wave approximation. We
obtain analytic formulas for the optimum driving frequency and the Rabi frequency, which are both affected
by strong driving. While the qubit states exhibit fast oscillations due to counter-rotating terms and leakage, we
show that they can be suppressed to the point that gate fidelities above 99.99% are possible, in the absence of
decoherence. Hence decoherence mechanisms, rather than strong-driving effects, should represent the limiting
factor for resonant-gate fidelities in quantum dot hybrid qubits.
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I. INTRODUCTION

Microwaves have emerged as a key tool for manipulating
quantum dot qubits via electron spin resonance [1–3], electric-
dipole spin resonance [4–7], or resonantly driven gates in
charge qubits [8], singlet-triplet qubits [9], exchange-only
qubits [10], and quantum dot hybrid qubits [11,12]. By
adapting techniques used on atomic and superconducting
qubits [13], such gates provide flexibility, for example, via
phase control of the rotation axes. Microwave driving can also
protect against low-frequency charge noise [14,15], which is
a dominant source of dephasing in quantum dot qubits [16].
Moreover, ac driving allows us to continually center the tuning
at an optimal working point or sweet spot [17], which provides
additional noise protection [8,10,11,18].

To improve gate fidelities further, we must perform the
gates quickly and accurately, suggesting that we employ large
ac driving amplitudes. Since quantum dots are highly tunable,
it is typically easy to enter the strong driving regime, where
the Rabi frequency approaches the resonant frequency. Under
such conditions, it has long been known that complicated
dynamics can occur (e.g., fast beating), and that the resonant
frequency can become a function of the driving amplitude
(the Bloch-Siegert shift [19,20]). Both effects arise from
the counter-rotating term that is present in a harmonic,
oscillatory driving field, but which is ignored in the rotating
wave approximation (RWA) [21]. Additionally, if nonqubit
leakage states are present, they may be excited through strong
driving [22]. While such fast beating and leakage effects are
coherent, they can present challenges for qubit control and
ultimately reduce the quantum gate fidelity.

Here, we theoretically study strong driving effects in
quantum dot hybrid qubits [23–27], and we propose methods
for improving the gate fidelity while maintaining high gate
speeds. In this system, there is a nearby leakage state, and
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we show that both fast oscillations and leakage can be
suppressed by employing simple, shaped microwave pulse en-
velopes [22,28,29]. Moreover, we show that the requirements
for pulse shaping are not strict, and that the resulting gate
fidelities can be greater than 99.99% for gate times shorter
than 1 ns. Although we do not consider decoherence effects
in this work, our results suggest that decoherence, not control
errors, should remain the leading challenge for gate fidelities
in the foreseeable future.

Several methods have been developed for moving beyond
the RWA and characterizing the Bloch-Siegert shift. For a
system like a double dot coherently coupled to a microwave
resonator [30–33], it is essential to use a dressed-state
model [34] in which the qubit electron(s) and the resonator
photon(s) are both treated quantum mechanically [35–39].
If, instead, the quantum dot is driven via a classical field,
one may employ either a semiclassical [40–42] or a fully
quantum model. Both approaches are capable of describing
corrections to the RWA, and have been used to describe strong
driving in superconducting qubit systems [43–46]. When the
qubit is driven through an energy level anticrossing, it is
common to analyze the dynamics [47] using Landau-Zener-
Stückelberg (LZS) theory [48–50]; this is also a preferred
method for investigating other strong-driving effects such as
multiphoton resonances [51–54]. For the quantum dot hybrid
qubit, it is common to perform gate operations away from
the level anticrossing [11], suggesting that LZS theory may
not be optimal for describing these dynamics. Moreover, LZS
theory does not typically incorporate leakage states. Here, we
therefore develop a dressed-state model of a strongly driven
quantum dot hybrid qubit. Our approach allows us to treat
strong driving effects perturbatively, up to arbitrary order
in the driving strength, and it allows us to derive simple
analytical formulas for the qubit dynamics. The formalism
naturally describes the oscillations caused by counter-rotating
terms as well as leakage. Our analytical results indicate that
the amplitude of the fast oscillations in the qubit dynamics
is proportional to the driving amplitude, to leading order,
suggesting a direct tradeoff between fast operations and gate
errors. We go on to show that pulse shaping greatly ameliorates
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these tradeoffs. Our numerical simulations of qubit dynamics
allow us to validate our analytical formulas, and enable us
to compare the fidelities of several different gating methods,
including pulse shaping.

The paper is organized as follows. We first introduce our
system, the microwave-driven silicon double quantum dot
hybrid qubit, in Sec. II. We also outline our calculation method
based on a dressed-state formalism. In Sec. III, we apply
this method to the quantum dot hybrid qubit and describe
the results. In Sec. IV, we consider several pulse-shaping
protocols, and describe their effect on the gate fidelity. Our
main conclusions are presented in Sec. V. Several appendixes
contain the technical details of our analysis. Appendix A
provides details about the transformation from a three-state
model of the quantum dot hybrid qubit to an effective two-
state model. Appendix B provides details of our dressed-
state formalism. As an example, we apply the method to
a two-level system, obtaining simple analytical corrections
going beyond the RWA. Appendix C provides details of the
dressed-state theory of the three-level quantum dot hybrid
qubit. In Appendix D we describe our results when the drive
is applied to the detuning parameter. (In the main text, we
mainly consider the case of tunnel coupling driving.) Finally,
Appendix E describes our results for ac-driven Xπ/2 gates, in
contrast to the Xπ gates considered in the main text.

II. QUANTUM DOT HYBRID QUBIT

Here, we review our theoretical model for the quantum
dot hybrid qubit in the absence of decoherence from the
environment. The qubit is comprised of three electrons in a
double quantum dot with total spin quantum numbers S = 1/2
and Sz = −1/2. For the operating regime of interest, we
consider the three-dimensional (3D) basis |·S〉 ≡ |↓ S〉, |·T 〉 ≡√

1/3|↓ T0〉 − √
2/3|↑ T−〉, and |S·〉 ≡ |S ↓〉, where |·〉 de-

notes a dot with one electron, and |S〉 = (|↑↓〉 − |↓↑〉)/√2,
|T0〉 = (|↑↓〉 + |↓↑〉)/√2, and |T−〉 = |↓↓〉 denote the spin
states of dots with two electrons [23,24]. In this basis, the

Hamiltonian is given by

H =

⎛
⎜⎝

− ε
2 0 �1

0 − ε
2 + EST −�2

�1 −�2
ε
2

⎞
⎟⎠, (1)

where ε is the detuning between the dots, EST is the singlet-
triplet energy splitting of the doubly occupied dot, and �1

(�2) are the tunnel couplings between the states |S·〉 and |·S〉
(|·T 〉) [55]. The two lowest energy states |0〉 and |1〉 comprise
the qubit, while the high-energy state |L〉 is a leakage state.

In the absence of driving, a Schrieffer-Wolf transformation
can be used to write an effective two-state Hamiltonian for the
system, as described in Appendix A. Some typical energy-level
diagrams obtained using this method are plotted with white
dashed lines in Fig. 1(c). For experimental applications, we are
often interested in the “far-detuned” regime, ε � EST,�1,�2,
where the quantum dot hybrid qubit has a spinlike character. In
that case, we make use of the small parameters EST/ε, �1/ε,
and �2/ε to obtain simpler expressions for the transformation
that diagonalizes H, as described in the Appendix C.

For large detunings, the charge configuration of the double
dot is approximately given by (1,2), which refers to the
occupations of the left and right dots respectively, and the
energy splitting between |0〉 and |1〉 is nearly independent of
the detuning over an extended detuning range. Such “sweet
spots” are protected from energy fluctuations and dephas-
ing caused by charge noise, thus enabling long coherence
times [11,25]. The width of the sweet spot is maximized when
�1 � �2 � 0.7EST, since then the energy level anticrossings
are closely spaced and the level repulsions induced by the
tunnel couplings are nearly equal [18]. Here, we focus on this
optimal regime for the control parameters.

A. Time-dependent Hamiltonian: Semiclassical approach

We consider two different schemes for ac driving [55],
as indicated in Figs. 1(a) and 1(b). In the first scheme, we
modulate the tunnel couplings, �i = �i0 + ri�ac(t), where

2

1

i  = i0+ri ac(t) 0  = 0+ ac(t)

(c)(b)(a)

ac(t)

c)
100

50

0

-50

-100

0 50 100 150 200
Detuning,  (µeV)

E
ne

rg
y 

(µ
eV

)

|1

|L

|0

FIG. 1. Control of a quantum dot hybrid qubit. (a), (b) Double quantum dots with three electrons, depicted here in their (1,2) charge
configurations. In this arrangement, the low-lying energy levels, depicted in the right-hand dots, correspond to singletlike (|·S〉) and tripletlike
(|·T 〉) spin states, where S and T refer to the two-electron dots [23,24]. The (2,1) charge configuration has only one low-lying energy level (|S·〉),
as depicted in the left-hand dots. Panel (a) illustrates control of the tunnel couplings �1 and �2, between |S·〉, and |·S〉 or |·T 〉, respectively.
Panel (b) illustrates control of the detuning parameter ε, corresponding to the energy difference between the left and right quantum dots. The
parameters �1, �2, and ε are all controlled by voltages applied to the double-dot top gates [11]. Resonant gates are implemented by adding an
ac drive to either the tunnel couplings or the detuning. (c) A typical energy-level diagram for the quantum dot hybrid qubit, as a function of
ε, obtained by diagonalizing Eq. (1), using parameter values EST/h = 12 GHz and �1 = �2 = 0.7 EST [25]. Here, the lowest two levels (red
and blue) correspond to the qubit subspace, while the highest level (green) corresponds to a leakage state. The effective two-level system of
the qubit, derived in Eq. (A6), is indicated by white dashed lines that overlay the qubit levels.
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i = 1,2. The ac drive �ac is achieved by applying a microwave
voltage signal to one of the top gates [11]. It is reasonable to
assume that the ac signal drives both �1 and �2, although
they may be affected differently, which we take into account
through the variable ri . In the second scheme, we modulate
the detuning, ε = ε0 + εac(t). To simplify the discussion later,
it is convenient to express all the driving functions as u(t) =
A cos(2πf t) where u = �ac or εac, A is the respective driving
amplitude, and f is the driving frequency.

Up to this point, our qubit Hamiltonian can be viewed
as semiclassical, since the driving occurs through a time-
dependent control parameter. The resulting Hamiltonian is
given by

Hsemi = H0 + V cos(2πf t), (2)

where H0 is obtained from Eq. (1) when A = 0, and V

represents a driving term, which is proportional to A. Note
here that H0 and V are both 3 × 3 matrices, H0 is constant,
and the form of V depends on which control parameter is
driven.

At this point, it is tempting to apply the analytical block-
diagonalization procedure to H0 described in Appendix A to
construct an effective, time-dependent 2D Hamiltonian for the
qubit subspace, and then study the dynamical evolution within
this subspace. This procedure is useful in the limit of small
driving [for example, Fig. 1(c) shows that the energy levels
of the undriven system are well described by the result of
this analysis], but in the presence of strong driving it is flawed,
because the unitary transformation that block-diagonalizes H0

does not block-diagonalize V . Indeed, the leakage state, which
lies outside the qubit subspace, plays an essential role in the
dynamical evolution which cannot be modeled as a simple
effective exchange interaction between the qubit levels. Such
leakage dynamics can be ignored in the weak-driving regime,
but not the strong-driving regime.

B. Dressed-state Hamiltonian: Quantum approach

While it is possible to analyze the semiclassical Hamil-
toniann (2) with time-periodic driving using Floquet the-
ory [20,56–59], here we take the alternate approach of
describing the electromagnetic field quantum mechanically.
Such methods were originally developed to describe the
resonant interactions between atoms and photons, for example,
in the form of laser or microwave driving fields [21,34,60,61].

We now develop a dressed-state formalism to describe
the microwave driving of the quantum dot hybrid qubit. The
first step is to note that our semiclassical expression for the
Hamiltonian in Eq. (2) does not explicitly include a photonic
driving field. We now introduce such a photon field in its
second quantized form:Hph = Idot ⊗ (hf a†a). Here, Idot is the
identity matrix acting on the double dot, f is the microwave
driving frequency, and a† and a are photon creation and anni-
hilation operators. Note that Idot has the same dimensionality
as the dot Hamiltonian H0, and is 3D for the quantum dot
hybrid qubit. The dot Hamiltonian can similarly be written as
Hdot = H0 ⊗ Iph, where we express H0 = diag[E0,E1,EL] in
the quantum dot hybrid qubit eigenbasis {|i〉} (i = 0,1,L).
It is convenient to expand the uncoupled Hamiltonians in
terms of the “bare-state” basis {|i,n〉 = |i〉 ⊗ |n〉}, where |n〉

represents a single-mode photon number state of occupation
n = 0,1,2, . . . . (Here, we assume that all photons have the
same frequency f , and only one photon polarization couples
to the detuning parameter.)

In Eq. (2), the V matrix describes the coupling between
the semiclassical driving field and the quantum dot. For a
quantum Hamiltonian, the ac coupling occurs through a single
mode of the electric field, whose quantum field operator is
given by [21,62]

Êx ∝ (a† + a). (3)

The V matrix should therefore be replaced by the coupling
term Vint = Vdot ⊗ (a† + a), where Vdot is a 3 × 3 matrix acting
on the quantum dot hybrid qubit. It is important to note that
the characteristic photon state of a semiclassical driving field
is not the number state |n〉, but rather the coherent state |α〉,
defined as the eigenstate of the annihilation operator, a|α〉 =
e−i2πf tα0|α〉, yielding [21]

|α(t)〉 = e−|α0|2/2
∞∑

n=0

e−i2πnf t αn
0√
n!

|n〉. (4)

The average photon occupation of the coherent state, N , is
given by the expectation value

N = 〈α|N̂ |α〉 = 〈α|a†a|α〉 = |α0|2. (5)

Similarly, we can determine Vdot from the semiclassical
correspondence principle [21],

V cos(2πf t) = 〈α|Vint|α〉. (6)

As discussed in Appendix B, this correspondence reduces to
Vdot = V/2

√
N .

The full quantum Hamiltonian is now given by

HQM = Hdot + Hph + Vint. (7)

A typical energy spectrum for Hdot + Hph is shown in Fig. 2.
For the case of a quantum dot hybrid qubit, we see that
the energy levels divide into manifolds comprised of three
levels, which are separated from other manifolds by the energy

FIG. 2. A cartoon depiction of the manifold structure of bare
states of a quantum dot hybrid qubit coupled to a photon field with
frequency f . The 3D manifold labeled gn contains two qubit levels,
|0,n + 1〉 and |1,n〉, which are nearly degenerate near the resonance
condition hf � E1 − E0, and a leakage level |L,n − k〉. Here, n

and k indicate photon numbers. If Eintra = hf − Einter represents the
energy width of a given manifold, as indicated in the diagram, then k

is defined such that Eintra < hf/2.
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hf . When the qubit is driven near its resonance condition,
hf � E1 − E0, the bare states |0,n + 1〉 and |1,n〉 are nearly
degenerate and comprise two of the three levels in the manifold
labeled gn. If k is the value for which |EL − E1 − khf | <

hf/2, then the leakage state |L,n − k〉 is the third member of
gn. The manifold structure is periodic, and in the absence of
interactions (Vint = 0), the 3D Hamiltonian for manifold gn

takes the form

Hn = Hblock + nhf, (8)

where Hblock = H0 + hf (|0〉〈0| − k|L〉〈L|) is independent of
n. The interaction term couples bare states that differ by one
photon,

〈i,n|Vint|j,m〉 = Vij

2
(δn,m+1 + δn,m−1), (9)

yielding hybridized states known as “dressed” states,
where Vij are elements of the matrix V , as defined in
Appendix C 1.

We exploit the manifold structure in Fig. 2 by diagonalizing
HQM into 3D blocks via a Schrieffer-Wolff unitary transfor-
mation [63]. The full, transformed Hamiltonian, described in
Appendix B, then reduces to a tensor product of the form

H̃QM = ⊗n(H̃block + nhf ), (10)

where H̃block is also independent of n. At lowest order
in this perturbation theory, we find that H̃block = Hblock +
(V01|0〉〈1| + H.c.) as expected; the leading corrections to
H̃block occur at order O[(A/hf )2]. However, the block struc-
ture of Eq. (10) extends to all orders, allowing us to obtain
simple analytical estimates for the time-evolution operator
ŨQM(t). Finally, we project the solution back onto the 3D
qubit subspace via the semiclassical correspondence,

Usemi = 〈α(t)|ŨQM|α(0)〉. (11)

We note here that ŨQM evolves the full system, including both
dot and photon states.

There are several benefits to using a fully quantum
Hamiltonian, as we have done here. First, the time-varying
driving term in the semiclassical Hamiltonian is replaced by
a constant coupling to a photon field, allowing us to solve an
effectively static Hamiltonian in the bare-state basis set. The
price we pay for this convenience is a greatly expanded Hilbert
space. The second advantage of using quantized fields is the
intuition provided: the elementary processes of absorption and
emission of photons can be readily identified.

C. Strong driving

The textbook description of spin resonance is obtained in
the weak-driving limit [62], where fRabi 
 f , and fRabi ∝ A

is the Rabi frequency. In that case, Hsemi can be solved by
transforming to the rotating frame and applying the RWA
in which we drop the “counter-rotating” term. The RWA is
equivalent to the lowest-order term of the dressed-state pertur-
bation theory, and its dynamics correspond to smooth circular
trajectories on the Bloch sphere. For quantum dot qubits
however, it is often desirable to work in the strong driving
regime fRabi ∼ f to minimize the effects of decoherence. In
this regime, the qubit dynamics are not smooth; they exhibit

additional fast oscillations and other complicated behavior, as
discussed below. The RWA therefore breaks down and the
semiclassical approach becomes cumbersome.

Corrections to the RWA can be obtained straightforwardly
within the dressed-state formalism by retaining higher-order
terms in the perturbation expansion. These corrections are
manifested as renormalizations of (i) the resonance frequency
(i.e., the Bloch-Siegert shift [19]), and (ii) the Rabi frequency
and gate period. Such effects are well known for the case of
a simple two-level system with a transverse drive [21,34]; in
Appendix B 2, we reproduce those results using the dressed
state methods outlined above. For a quantum dot hybrid qubit,
which is the main focus of this paper, strong driving can also
cause additional strong-driving effects, such as occupation of
the leakage state, as discussed below.

III. EVOLUTION OF A QUANTUM DOT HYBRID QUBIT
UNDER STRONG DRIVING

We now explore the dynamics of the quantum dot hybrid
qubit using two different methods. First, we perform numerical
simulations of the full Hamiltonian given in Eq. (2). Next, we
obtain analytical estimates based on the dressed-state theory,
which are derived in Appendix C and summarized below. In
both cases, the ac drive is applied to the tunnel coupling �ac.
We then obtain solutions of the form

|ψ(t)〉 = c0(t)|0〉 + c1(t)|1〉 + cL(t)|L〉, (12)

and compare the results in Figs. 3(a) and 3(b). Detuning driving
is also considered in Appendix D, with some results shown in
Fig. 3(c).

A. Numerical simulations

In Figs. 3(a) and 3(b) we plot typical oscillation results
obtained numerically under strong driving, with a ratio of
Rabi to qubit frequencies of about 0.08, for the initial
state c0(0) = 1. The dominant feature observed in Fig. 3(a)
is a slow sinusoidal envelope reflecting the expected Rabi
oscillations. Modulating this smooth behavior, we also observe
fast oscillations, which are typical of strong driving. The fast
oscillations have two sources. The first is the counter-rotating
term in the drive, that is neglected within the RWA. The
second source of oscillations is leakage. Figure 3(b) shows the
time-varying occupation of the leakage state, which is directly
reflected as reduced occupation of the qubit states.

Strong driving also has other significant effects on the
dynamical evolution. As shown in Fig. 3(c), these include
corrections to the RWA for both the resonant and Rabi
frequencies. In the simulations, we determine the resonant
frequency fres by minimizing the Rabi frequency fRabi for a
fixed driving amplitude A. The resonant and Rabi frequencies
are related by the standard relation

fRabi =
√

(f − fres)2 + (V01/h)2, (13)

which is also derived in Eq. (B20). (As noted in Appendix C 1,
holding A constant is equivalent to holding V01 constant here.)
One could alternatively try to identify fres by maximizing
the oscillation visibility. Strong driving causes errors in this
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FIG. 3. Dynamics of a strongly driven quantum dot hybrid qubit. (a), (b) Numerical solutions of Eq. (2) are plotted as solid lines. Here, the
simulation parameters are given by EST/h = 12 GHz, {ε,�10,�20,A} = {6,0.7,0.7,0.33} × EST, and r1 = r2 = 1, and the ac drive is applied
to the tunnel coupling. The corresponding analytical solutions of the dressed-state theory with terms included up to O[(A/hf )3] are plotted
as dashed white lines. (a) The probabilities P0(t) = |c0(t)|2 and P1(t) = |c1(t)|2 of the logical qubit states are plotted for the initial state given
by |0〉. The sinusoidal envelopes correspond to the conventional Rabi oscillations that would occur under weak driving (i.e., the RWA), while
the fast modulations are caused by strong driving. The analytical results shown here include corrections to the RWA up to O[(A/hf )3] and
reproduce all observable features in the fast oscillations. (b) The corresponding evolution of the leakage probability PL(t) = |cL(t)|2. Again, the
analytical solutions reproduce all observable features of the numerical simulations, and the square of the difference between the analytical and
numerical results is less than 10−7 over the entire range. (c) Numerical and analytical calculations of the resonance frequency (analytical results
are plotted with solid lines) and Rabi frequency (dashed lines) as a function of driving amplitude, for microwave driving of the detuning, with
simulation parameters EST/h = 12 GHz and {ε,�1,�2} = {6,0.7,0.7} × EST. The simulation results (+ markers for the resonance frequency
and ◦ markers for the Rabi frequency) are obtained by performing a sweep of the driving frequency f ; fres is identified as the driving frequency
that minimizes the Rabi frequency, as in Eq. (13), while fRabi is identified as the dominant peak in the Fourier spectrum. Analytical results are
shown for the RWA (blue), corresponding to f0 = (E1 − E0)/h, and corrections to the RWA up to O[(A/hf )4] (red). The difference between
the actual resonance frequency and the RWA is called the Bloch-Siegert shift. Any remaining deviation of the numerical results from the
analytical calculations comes from higher-order terms in the perturbation expansion.

procedure, however, because the fast oscillating terms also
contribute to the visibility at frequencies away from fres.

B. Analytical estimates

In Appendix C, we derive the time-evolution operator for
the quantum dot hybrid qubit using the dressed state method,
up to order O[(A/hf )2] in the perturbation expansion. We
demonstrate the accuracy of this approach in Fig. 3(a) by
plotting the analytical results directly on top of the numerical
results. The analytical derivations appear to capture all the
fast-oscillating features associated with strong driving. Even
higher accuracy can be achieved by retaining higher orders in
the expansion.

The dressed-state theory provides insight into the origins of
the fast oscillations, which are caused by couplings between
bare states, due to the interaction term Vint. For example,
leakage is caused by the hybridization of qubit and leakage
states, with mixing coefficients of order O[A/hf ]. Fast
oscillations also arise from the counter-rotating terms in Vint,
which hybridize bare states in different gn manifolds. The
effects of the leakage and counter-rotating terms become
prominent in the strong-driving regime, as observed in
Figs. 3(a) and 3(b), and discussed in Appendix C. To reduce
control errors in quantum dot hybrid qubits, it is necessary to
suppress the fast oscillations via pulse shaping, as described in
Sec. IV.

A secondary effect of the counter-rotating terms has already
been noted in Fig. 3(c), where the resonant frequency differs
from the bare qubit energy splitting and becomes a function of
the driving amplitude. This Bloch-Siegert shift arises at order
O[(A/hf )2] in the perturbation expansion. In Appendix C we

derive its form as

hf̃res = hf0 + V 2
01

4(E1 − E0)
+ V 2

0L

4(EL − E1)
− V 2

1L

4(EL − E0)

+ V 2
0L

4(EL + E1 − 2E0)
− V 2

1L

4(EL + E0 − 2E1)
. (14)

Here, f0 = (E1 − E0)/h is the bare resonant frequency, con-
sistent with the RWA, and f̃res is the renormalized frequency,
including the Bloch-Siegert shift. Written in terms of the Vij ,
the couplings between states |0〉, |1〉, and |L〉 induced by
the driving, Eq. (14) is valid for either detuning or tunnel
coupling driving. Explicit forms for the Vij for detuning
and tunnel coupling driving are given in Appendix C 1. In
Fig. 3(c), we plot our analytical estimates for f̃res for the case of
detuning driving, keeping terms up to order O[(A/hf )4]. The
dressed-state theory describes the resonant frequency shifts
with very high accuracy.

It is interesting to compare the Bloch-Siegert shift of the
quantum dot hybrid qubit, in Eq. (14), with that of a simple,
transversely driven two-level system. The latter is derived in
Appendix B and Ref. [21], giving

hf̃res = hf0 + V 2
01

4(E1 − E0)
. (15)

In this case, the only correction to the RWA comes from the
counter-rotating term. The additional terms in Eq. (14) are
therefore caused by leakage, as apparent from their functional
forms. For both types of corrections, the energy shift amounts
to a dynamical repulsion between the qubit energy levels,
which grows with the driving amplitude.
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The Rabi frequency is also renormalized under strong
driving. The leading-order expression for the Rabi frequency,
Eq. (13), is consistent with the RWA, and reduces to hfRabi =
V01 at resonance. We can go beyond this level of approximation
to obtain corrections to fRabi at O[(A/hf )3], which are plotted
in Fig. 3(c), and which account for the small splitting between
our numerical results and the RWA prediction. The derivation
of these higher-order corrections is tedious but straightforward,
and is not reported here.

Fast oscillations due to strong driving are typically not taken
into account when implementing gate operations, resulting
in potential control errors. In principle, these errors could
be suppressed to arbitrary order by including appropriate
corrections to the resonant frequency and accounting for the
more complicated dynamics shown in Fig. 3. In practice this is
impractical, particularly since the fast oscillation frequency is
rather high (�10 GHz). We can estimate the control errors that
would occur if the Rabi oscillations were assumed to be smooth
and sinusoidal, as in the RWA. If we explicitly consider an
Xπ gate acting on the initial state c0(0) = 1, with gate period
tg , then the ideal final state (without control errors) would
be c0(tg) = 0. Any deviation of c0(tg) from zero therefore
characterizes the control error. (Note that this represents a state
fidelity calculation; in Sec. IV B, we compute the full process
fidelity for such an Xπ gate.) For simplicity here, we consider
the far-detuned regime, ε � EST, as is typical for experiments.
Using the result of Eq. (C23), we find that the control error
for this process therefore scales as |c0(tg)|2 ∼ (A�/εEST)2

for tunnel coupling driving, or (A�2/ε2EST)2 for detuning
driving, where � = �1,2 represents a typical tunnel coupling.

These scaling estimates suggest that control errors due to
strong driving could potentially be suppressed by reducing
the driving amplitude A. Unfortunately, this is not possible
when gate times tg are held constant to avoid errors caused
by decoherence. To see this, we note from Appendix C that
tg ∝ ε/A for tunnel coupling driving, or ε2/A for detuning
driving, so |c0(tg)|2 ∝ t−2

g in both cases. Hence, if tg is held
constant, it is impossible to independently suppress |c0(tg)|2.

To summarize this section, a dressed-state formalism may
be used to enhance quantum gate fidelities by providing
corrections to the resonant and Rabi frequencies. However, fast
oscillations cannot be avoided by the gating schemes discussed
so far, causing potential control errors. In the following section,
we show that pulse shaping can ameliorate this problem.

IV. SUPPRESSING FAST OSCILLATIONS
VIA PULSE SHAPING

In Sec. III, we showed that strong driving induces fast oscil-
lations, making it difficult to control qubit gate operations. We
also showed that it is impossible to suppress fast oscillations
by simply reducing the driving amplitude while holding tg
fixed. Here, we show that simple pulse shapes can improve the
gate fidelity significantly. In particular, we consider a scheme
where tg is held fixed, but the driving amplitude is turned on
and off smoothly, at the beginning and end of the gate pulse.

The benefits of using continuous, nonsingular pulse shapes
are twofold. First, as shown in Fig. 4, singular pulses generate
Fourier spectra with broad peaks and increased weight at high
frequencies, causing unwanted leakage. [For simplicity, no ac

FIG. 4. Pulse envelopes and their Fourier spectra. (a) The three
pulse shapes considered in this work are rectangular (black), truncated
Gaussian (blue), and smoothed rectangular (red), as defined in
Eqs. (16)–(18). The parameters used to generate the pulses shown
here are {tg,σ,tr} = {1,1,0.1} ns, where tg is the gate time, σ sets
the width of the Gaussian pulse, and tr is the rise time of the
smoothed rectangular pulse. (b) The Fourier spectra of the same
three envelopes, using the same color scheme. Here, the frequencies
f � (EL − E0)/h ± (E1 − E0)/h, and f � (EL − E1)/h ± (E1 −
E0)/h are associate with leakage; in our simulation, these are given
by 48, 60, 72, and 84 GHz. At such high frequencies, the smoothed
rectangular pulse has the lowest spectral density, and should therefore
be the most effective at suppressing leakage.

drive was included in Fig. 4(b); when driven, the central peak
splits into two peaks, centered at the frequencies ±f .] The
specific shape of the pulse determines the spectral density at
high frequencies, but both of the continuous pulses in the figure
exhibit significantly lower density at high frequencies than the
rectangular pulse, which was implicitly assumed in Sec. III.
The second benefit of a continuous pulse is that it suppresses
fast oscillations at the beginning and end of a gate (near t = 0
and tg), where the control errors occur. This is because the
amplitude of the fast oscillations is proportional to the pulse
envelope A(t). As A(t) goes to zero near the end points of
the pulse, the amplitude of the fast oscillations also vanishes.
Below, we show that these simple modifications of the pulse
shape yield significant improvements in the gate fidelity.

A. Pulse shapes

In our simulations, we consider several different pulse
envelopes A(t). Here, A(t) corresponds to one of the ex-
perimentally tunable parameters, such that A(t) cos(2πf t) =
{ε(t) or �i(t)}. Because the Rabi frequency is determined
by V01, as specified in Appendix C 1, and since V01 ∝ A,
it is convenient to treat V01(t) as the tunable parameter in
the following discussion. When performed on resonance,
each of the pulse shapes yields a rotation about the x̂ axis.
The total angle of rotation θ is approximately given by the
relation θ = ∫ tg

0 (V01/h̄)dt . Here, we specifically consider Xπ

rotations, with pulses normalized to have the same gate time
tg . (We also consider Xπ/2 rotations in Appendix E, obtaining
qualitatively similar results.) We then compare the pulse
shapes by computing their gate fidelities as a function of tg .
Note that for continuous pulse envelopes, the Hamiltonian at
different times does not commute with itself, so the relation
between tg and θ given above is inexact. In our simulations,
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however, it is a very good approximation, yielding gates with
high fidelities. The three pulse shapes shown in Fig. 4 are
defined as follows.

(1) The rectangular pulse is defined as

V01 = h/2tg, (16)

when 0 � t � tg , and zero otherwise. Since V01(t) is piecewise
constant here, we are able to apply the dressed-state formalism
to obtain analytic corrections to the resonant and Rabi
frequencies, as discussed in Sec. III B.

(2) A truncated Gaussian pulse has recently been employed
for leakage suppression [28]. Its form is given by

V01 = h

2

exp[−(t − tg/2)2/2σ 2] − exp
[−t2

g /8σ 2
]

√
2πσ 2 erf[tg/

√
8σ ] − tg exp

[−t2
g /8σ 2

] , (17)

when 0 � t � tg , and zero otherwise. The pulse has a charac-
teristic width of 2σ when σ 
 tg , and it has no discontinuities.
An example is shown in Fig. 4. Since V01 is continuous in
time, its high-frequency spectrum has a lower density than the
rectangular pulse. However, since dV01/dt is discontinuous at
the end points of the pulse, we expect to observe more spectral
weight at high frequencies than for a pulse with a continuous
second derivative. (This discontinuity is suppressed when
σ 
 tg .)

(3) A “smoothed” rectangular pulse is obtained by re-
placing the singular steps with sinusoids [64,65]. In this

case,

V01 =

⎧⎪⎪⎨
⎪⎪⎩

h[1−cos(πt/tr )]
4(tg−tr ) (0 � t � tr ),
h

2(tg−tr ) (tr < t < tg − tr ),
h[1+cos(π[t−tg+tr ]/tr )]

4(tg−tr ) (tg − tr � t � tg),

(18)

and zero otherwise. Here, tr is the ramp time, and we assume
that 2tr < tg . An example is shown in Fig. 4. Since this
pulse is completely smooth, it has less spectral weight at high
frequencies than either of the previous shapes. Moreover, since
the pulse is nearly rectangular, the renormalized resonant and
Rabi frequencies obtained from the dressed-state theory should
be accurate over most of the gate duration.

B. Simulations of gate fidelities

In this section, we compute the process fidelity for quantum
gates obtained using the pulse shapes shown in Fig. 4. We
consider scenarios with or without the dressed-state correc-
tions for strong driving. Our results for Xπ rotations based
on tunnel coupling driving are plotted in Fig. 5. Additional
results for detuning driving and Xπ/2 rotations are reported in
Appendixes D and E, respectively.

We first perform dynamical gate simulations by solv-
ing the time-dependent Schrödinger equation ρ̇(t) =
−(i/h̄)[Hsemi,ρ]. Here ρ is a 3 × 3 density matrix describing
both the logical and leakage states. Following Ref. [66], if ρ0

represents the initial density matrix before a gate operation, and
E represents the final density matrix after the gate operation,
then the initial and final density matrices can be related by the

FIG. 5. Improving the fidelity of Xπ rotations using pulse shaping in the strong-driving regime. Simulations are performed by driving the
tunnel coupling with the control parameters EST/h = 12 GHz, {ε,�10,�20} = {6,0.7,0.7}EST, and r1 = r2 = 1. Here, EST is the singlet-triplet
energy splitting of the doubly occupied dot, ε is the detuning between the dots, �10 (�20) is the time-independent part of the tunnel couplings
between the states |S·〉 and |·S〉 (|·T 〉), and r1 (r2) is the coefficient for the responses of the tunnel couplings to the ac signal. Panels (a) and (b)
show typical dynamical evolutions for an Xπ gate with gate time tg = 1 ns, for the initial state with state amplitudes [see Eq. (12)] of c0 = 1,
c1 = cL = 0. Two results are shown, corresponding to a sharp rectangular pulse (black) or a smoothed rectangular pulse (red). The upper inset
of (a) shows a blowup of times near t = tg , where the smoothed pulse suppresses the fast oscillations. The lower inset shows estimates of 1 − F ,
where F is the fidelity, for simulations including quasistatic charge noise of uniform distribution with zero mean and standard deviation σε .
In (b), we see that the leakage state occupation is suppressed over the whole gate evolution for the smoothed pulse, particularly near t = 0,tg .
This is because leakage probability depends quadratically on the pulse envelope, |cL|2 ∼ A2(t), and therefore vanishes when A(t) → 0 near
the end points of the pulse. Panel (c) shows the process infidelity, 1 − F [66], computed for several different scenarios: rectangular (black),
truncated Gaussian (blue), and smoothed rectangular (red) pulse shapes with no dynamical corrections (RWA, solid lines), and dynamical
corrections for f̃res up to order O[(A/hf )2] (dashed lines). Using these smooth pulse shapes and strong-driving corrections, we can achieve
gate fidelities >99.9% for several different scenarios, with gate times as short as 1 ns (black oval). For the smoothed rectangular pulse, the
fidelity is >99.99%. [Note that these results, except the lower inset of (a), do not include noise.]
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process matrix χ via

E =
∑
m,n

Emρ0E
†
nχmn, (19)

where {Em} is a basis for the vector space of 3 × 3 matrices.
The process fidelity is then defined as F = Tr[χsimχideal],
where χsim is the actual process matrix for the simulations,
including strong-driving effects, and χideal describes the ideal
rotation. Since χideal does not involve the leakage channel, it
is easy to show that Tr[χsimχideal] also does not contain any
information about leakage processes in χsim; to compute F , it
is therefore sufficient to project ρ0 and E onto the 2D logical
subspace and solve for χ matrices that are 4 × 4. In this case,
we choose Em from the Pauli basis {I,σx,−iσy,σz} and follow
the standard procedure for computing F [66].

Typical simulation results for an Xπ gate are shown in
Figs. 5(a) and 5(b) as a function of time t , between t = 0 and
the final gate time, given by tg = 1 ns in these simulations.
The initial state is given by Eq. (12) with c0(0) = 1, c1(0) =
cL(0) = 0. Two simulation results are shown. The first (black
curve) uses a conventional rectangular pulse shape, while
the second (red curve) assumes identical parameters for a
smoothed rectangular pulse. The key difference between the
two evolutions can be seen in the upper inset of Fig. 5(a),
where the fast oscillations of the smoothed pulse are strongly
suppressed at times t = 0 and tg , compared to the rectangular
pulse. In Fig. 5(b), we see that the smooth pulse suppresses
leakage oscillations over the entire gate period, but especially
near the end points. As explained in Appendix C, this is
because the leakage probability depends quadratically on
the pulse envelope, |cL|2 ∼ A2(t). As A(t) approaches zero
near its end points, the amplitude of the leakage oscillations
also vanishes. This perfect cancellation is a consequence of
noise-free evolution, since leakage is then fully coherent.
When noise is present, the cancellation effect is imperfect,
and the leakage state becomes slowly occupied over time,
even when using a continuous pulse shape; such behavior is
outside the scope of the present analysis, however.

To compute the fidelity F , the process matrices χsim and
χideal should both be expressed in the same reference frame.
Here, χsim is computed in the laboratory frame, while χideal

is defined in the frame rotating at the driving frequency. The
latter must therefore be transformed back to the laboratory
frame. However, the driving frequency f is not necessarily
resonant, depending on the approximations used to calculate
f̃res, and this must be incorporated into our definition of χideal.
For example, if we consider the ideal rotation Xπ = −iσx in
the rotating frame, the corresponding transformation in the
laboratory frame is given by

Uideal =
(

0 −ie−iẼ0tg/h̄

−ie−iẼ1tg/h̄ 0

)
, (20)

where Ẽ0 and Ẽ1 are dynamically renormalized qubit energies
in some approximation scheme. In our simulations, we adopt
two different approximations for Ẽ0 and Ẽ1. First, we consider
the RWA, for which Ẽ0 = E0, Ẽ1 = E1, and f̃res = E1 − E0.
Alternatively, we include the dressed-state corrections, defined
as Ẽ0 = E0 + β0, Ẽ1 = E1 + β1, and f̃res = E1 − E0 + β1 −
β0, where β0 and β1 represent the Bloch-Siegert shifts (see
Appendix C).

The resulting process infidelities for Xπ gates are shown
in Fig. 5(c) as a function of the gate time. (Note that
infidelity = 1 − fidelity.) Here we compare the effectiveness
of the various scenarios considered in this work. First, note
that the downward trend of the curves is explained by the
fact that shorter gate times require stronger driving, which
results in worse fidelities. Second, by comparing the results
for rectangular pulses (the two black curves), we see that
those fidelities are not particularly improved by including
Bloch-Siegert corrections to the resonance frequency, despite
the fact that the corrections were derived specifically for
rectangular pulses. This indicates that control errors caused
by fast oscillations and leakage are the dominant sources of
error for this pulse shape. This is confirmed by comparing
the two other pulse shapes, which generally exhibit higher
fidelities, even without including dynamical corrections.

Comparing the truncated Gaussian and smoothed rectan-
gular pulse shapes, we see that the latter yields slightly better
fidelities in the absence of strong-driving corrections. When
Bloch-Siegert corrections are included, however, the smoothed
rectangular pulse yields significantly better results, reflecting
the fact that the dynamical corrections were derived specifi-
cally for rectangular pulses. The Gaussian pulse fidelity also
improves when we include frequency corrections. Comparing
all these results, we find that the smoothed rectangular pulse
with the renormalized driving frequency yields the best fidelity,
with 1 − F � 10−4 for a 1-ns gate.

The simulations in Fig. 5 correspond to Xπ rotations with
the ac drive applied to the tunnel coupling. To show that similar
results hold for other gate conditions, we have performed
additional simulations, which we now summarize. First, we
consider gates with the ac drive applied to the detuning
parameter, as described in Appendix D and Fig. 3(c). In this
case, we find that the fidelities are generally worse than for
tunnel coupling driving. To understand this, we recall our
previous estimate that gate times should scale as tg ∝ ε/A

for tunnel coupling driving, or ε2/A for detuning driving.
In the latter case, holding tg fixed in the large-detuning
limit requires a much larger driving amplitude A, yielding
lower gate fidelities due to strong driving effects. Second, we
consider Xπ/2 rotations for both tunnel coupling and detuning
driving, as described in Appendix E. The resulting fidelities
are slightly better than for Xπ rotations. This is also easy
to understand, because for fixed gate times, an Xπ/2 gate
requires approximately half the driving amplitude of an Xπ

gate, yielding a higher gate fidelity.
In practice, gate errors depend on an interplay between fast

oscillations and environmental noise. As noted in Sec. III B, in
the absence of noise, strong driving effects could potentially be
ameliorated through a detailed knowledge of the evolution, but
detuning shifts from environmental noise will change the gate
speed and positions of oscillation peaks, so high fidelity can be
achieved reliably only if the amplitude of the fast oscillations
is suppressed. To characterize this effect and the ability of
shaped pulses to suppress it, we have performed simulations
that include quasistatic noise in the detuning parameter. The
lower inset of Fig. 5(a) shows the results of such simulations
for the same parameters as the main panel. Here we plot the
gate infidelity as a function of the standard deviation σε of
a uniformly distributed detuning noise with zero mean. For
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low noise levels, the smoothed rectangular pulse suppresses
leakage errors, as consistent with our previous discussion. As
the noise increases, the smooth pulse shape is still able to
suppress errors caused by fast oscillations. Interestingly, the
gate fidelity for sharp rectangular pulses seems to improve
with noise. We attribute this to a beating effect caused by the
fast oscillations. We note that high-frequency noise can also
harm qubit coherence under ac driving [14]; however, we do
not explore this problem here.

V. CONCLUSIONS

The need for fast gates in quantum dot qubits, including
quantum dot hybrid qubits, necessitates the use of strong
driving. We have shown here that the fast oscillations can be
fully understood using a dressed-state theoretical formulism.
In principle, these fast oscillations could present a challenge for
accurate control, resulting in gating errors. However, we have
shown that fast oscillations, as well as leakage, can be largely
suppressed by shaping the pulse envelopes. To lowest order,
the key to successful pulse shaping is not the precise shapes of
the envelopes, but rather their smooth features, which suggests
that they could be very simple to implement experimentally.

The most important effect of strong driving on gate fidelities
is the dynamical shift of the resonance frequency caused by
the counter-rotating term. In experiments, this Bloch-Siegert
shift can be characterized empirically by sweeping the driving
frequency at fixed microwave power and identifying the
minimum Rabi frequency. Here, we have used the same
empirical method to analyze our simulations. We have also
predicted the Bloch-Siegert shift analytically by applying a
dressed-state perturbation theory. We have used the latter
approach here to analyze the unitary evolution of a quantum dot
hybrid qubit and estimate the upper bound on the gate fidelity
for X rotations. By performing simulations that include pulse
shaping but no decoherence, we predict that fast, high-fidelity
gates should be attainable under strong driving, with gate
times less than 1 ns, and gate errors below 0.01%. Moreover,
we predict that applying the microwave drive to the tunnel
coupling rather than the detuning should improve the gate
fidelity, since the latter requires a larger driving amplitude to
achieve the same gate speed in the large-detuning regime. For
the decoherence rates observed in recent experiments [11], we
therefore expect that environmental noise, not gating errors,
should remain the dominant challenge for quantum dot hybrid
qubits in the foreseeable future.

Finally, we point out that the dressed-state theory was
developed here in the context of quantum dot hybrid qubits.
However, we have also presented the formalism in a more
general form in Appendix B, so that it may be applied to other
physical systems [43,67–69]. For example, in Appendix B 2
we obtain results for the case of a simple two-level system.
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APPENDIX A: EFFECTIVE TWO-LEVEL HAMILTONIAN

In this Appendix, we derive an effective 2D Hamiltonian
to describe the logical states of the quantum dot hybrid
qubit, starting from the full 3D Hamiltonian in Eq. (1). The
approximations are accurate over the entire range of detuning
values and provide a useful starting point for analyzing
adiabatic energy splittings and dc pulsed gates. However, the
reduced Hamiltonian cannot be used to describe ac resonant
gates in the strong driving regime, as discussed below.

We begin with the 3D quantum dot hybrid qubit Hamil-
tonian expressed in the basis set {|·S〉,|·T 〉,|S ·〉}, as given
in Eq. (1). The transformation proceeds in two steps. First,
we consider the limit �1 → 0, with no restrictions on �2.
Hamiltonian (1) then diagonalizes into two blocks. It can
be further diagonalized into eigenstates {|a〉,|b〉,|c〉} via the
unitary transformation

Ud =

⎛
⎜⎜⎝

1 0 0

0
√

EL−EST+ε√
2EL

√
EL+EST−ε√

2EL

0
√

EL+EST−ε√
2EL

−
√

EL−EST+ε√
2EL

⎞
⎟⎟⎠, (A1)

where

EL =
√

4�2
2 + (EST − ε)2 (A2)

is the energy splitting between |b〉 and |c〉. Expressing the full
Hamiltonian, with �1 �= 0, in the {|a〉,|b〉,|c〉} basis yields

H =

⎛
⎜⎜⎜⎝

− ε
2

�1
√

EL+EST−ε√
2EL

−�1
√

EL−EST+ε√
2EL

�1
√

EL+EST−ε√
2EL

EST−EL

2 0

−�1
√

EL−EST+ε√
2EL

0 EST+EL

2

⎞
⎟⎟⎟⎠.

(A3)

In the second step, we apply a Schrieffer-Wolff transfor-
mation USW to approximately block-diagonalize Eq. (A3) into
its logical and leakage subspaces [63]. Here the logical space
corresponds to the lowest two states in Fig. 1(c). To leading
order, the new logical basis is given by

|ã〉 =
(

1 − �2
1(EL − EST + ε)

EL(EL + EST + ε)2

)
|·S〉

+ 2�1�2

EL(EL + EST + ε)
|·T 〉 − �1(EL − EST + ε)

EL(EL + EST + ε)
|S ·〉,
(A4)

|b̃〉 =
(√

EL−EST+ε√
2EL

+
√

2�2
1�2

√
EL + EST − ε

E
5/2
L (EL + EST + ε)

)
|·T 〉

+
(√

EL+EST−ε√
2EL

−
√

2�2
1�2

√
EL−EST + ε

E
5/2
L (EL+EST+ε)

)
|S ·〉,

(A5)
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and the effective 2D Hamiltonian in this basis is given by

Heff �

⎛
⎜⎝− ε

2 − �2
1(EL−EST+ε)

EL(EL+EST+ε)
�1

√
EL+EST−ε√

2EL

�1
√

EL+EST−ε√
2EL

EST−EL

2

⎞
⎟⎠. (A6)

Equation (A6) can be diagonalized to provide a faithful
representation of the static energy levels of the logical states,
as shown in Fig. 1(c). Moreover, the Schrieffer-Wolff transfor-
mation can be performed to higher orders to achieve even better
accuracy. It is therefore tempting to replace Eq. (1) by (A6)
in the remainder of our analysis. However, this procedure
is only appropriate for a time-independent Hamiltonian. In
contrast, the transformation matrices Ud and USW used to the
derive Heff are themselves functions of the driving parameters
ε, �1, and �2, and are therefore time dependent. In this
case, the full transformation is given by U = USWUd , and
the time-dependent Hamiltonian in the transformed frame is
given by

Heff = U † HU − ih̄U † d

dt
U. (A7)

The final term in this equation is directly proportional
to the driving amplitude, and cannot be neglected in the
strong-driving regime. Moreover, this driving term includes
coupling between the logical and leakage states. As a result,
the 2D description of the dynamics of Heff is necessarily
incomplete, and applicable only in the weak-driving regime.
To move beyond this approach, we develop a dressed-state
theory in Appendix B, extending the full 3D Hilbert space
to include microwave photons. The formalism provides a
means for including strong-driving effects perturbatively and
consistently, as discussed in the main text.

APPENDIX B: DRESSED-STATE FORMALISM

In this Appendix, we provide details on our dressed-state
approach for solving the time evolution of a driven qubit.
We first outline the formalism. We then apply the formalism
to a simple example: a transversely driven two-level system.
We note that similar calculation can also be performed using
Floquet theory [20,57–59].

1. Solution procedure

The dressed-state method is described briefly in the main
text. For completeness, we summarize the solution procedure
here.

(a) Diagonalize the semiclassical Hamiltonian with no
driving term, yielding the adiabatic eigenbasis {|i〉} =
{|0〉,|1〉,|L〉, . . . }, comprised of the two logical states, and
all other accessible leakage states. The resulting diagonal
Hamiltonian is defined as H0. Evaluate the ac driving matrix
V in the same basis. Extend the semiclassical Hamiltonian to
include photons, as in Eq. (7). Evaluate this fully quantum
Hamiltonian HQM in the basis {|i,n〉}, where n refers to the
number of single-mode photons of energy hf .

(b) Identify the nearly degenerate manifolds gn of dimen-
sion d = dim(H0) within the fully quantum Hamiltonian, as
sketched in Fig. 2. Block diagonalize HQM by applying a
Schrieffer-Wolff transformation to desired order [63], as in

Eq. (10). This yields a d-dimensional Hamiltonian H̃n =
H̃block + nhf corresponding to the perturbed manifold g̃n,
formed within the perturbed basis set {|ĩ,n〉}. Here H̃block is
independent of the photon number.

(c) Construct the d-dimensional time-evolution operator
Ũn(t) for manifold g̃n. Since H̃block is independent of n, the
time-evolution operators are also identical for each manifold,
except for the phase factors e−in2πf t .

(d) Transform the time-evolution operator back to the
original basis {|i,n〉}, yielding ŨQM(t). The correspondence
between the quantum and semiclassical evolution operators is
finally given by

Usemi(t) = 〈α(t)|ŨQM|α(0)〉, (B1)

where α is the coherent state defined in Eq. (4). Usemi

describes the full dynamics of the gate operation in the basis
{|0〉,|1〉,|L〉, . . . }.

2. Example: Two-level system with transverse drive

In this section, we demonstrate the dressed-state formalism
by applying it to a simple two-level system. To take an
example, we consider a charge qubit with constant tunnel
coupling � and detuning parameter ε. The ac drive εac =
−2A cos(2πf t) is applied to the detuning parameter. (Here,
the prefactor −2 is adopted for notational convenience.) We
assume that ε has average value of ε̄ = 0, similar to Ref. [8],
corresponding to the “sweet spot” of the charge qubit. In the
left-right basis {|L〉,|R〉}, the double-dot Hamiltonian is given
by

HL,R =
(

−εac/2 �

� εac/2

)
. (B2)

Note that there are no leakage states in this example. We now
discuss each step of the dressed-state formalism, following the
labeling scheme given above.

a. Quantum Hamiltonian

We first diagonalize the undriven (A = 0) Hamiltonian by
transforming to the basis {|0〉 = (|L〉 − |R〉)/√2,|1〉 = (|L〉 +
|R〉)/√2}. The resulting semiclassical Hamiltonian is given by

Hsemi = H0 + V cos(2πf t), (B3)

where H0 = −�σz. Here, the driving term V = Aσx is
transverse, and we identify the qubit energy levels as E0 = −�

and E1 = +�.
Next, we extend the quantum dot Hamiltonian to include

photons, writing HQM = Hdot + Hph + Vint. Here, the uncou-
pled dot Hamiltonian is given by Hdot = ∑

i=0,1 Ei |i〉〈i| ⊗
Iph, the uncoupled photon Hamiltonian is given by Hph =
Idot ⊗ hf a†a, and the interaction term is defined as Vint =
Vdot ⊗ (a† + a). We determine the relation between Vdot and V

through the semiclassical correspondence principle of Eq. (6):

〈α|Vint|α〉 = Vdot(α
∗
0e

i2πf t + α0e
−i2πf t )

= 2|α0|Vdot cos(2πf t + φ),

where we use the definitions a|α〉 = e−i2πf tα0|α〉 and α0 =
|α0|e−iφ . Note here that the phase φ determines the phase of
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the driving term in Eq. (B3), which in turn determines the
rotation axis of the resonant gate operation in the x-y plane.
In experimental settings, by convention, we define φ = 0 at
the first application of a resonant gate, which corresponds
to an X rotation. In subsequent applications of the resonant
gate, the phase φ can be modified to provide other rotation
axes in the x-y plane. Henceforth in this work, we will set
φ = 0 for simplicity, so that α0 = |α0|. Finally then, using
Eq. (6), we make the identification Vdot = V/2

√
N . Since N =

〈α|a†a|α〉, we then have

〈α|HQM|α〉 = Hsemi + Nhf. (B4)

Finally, we evaluate HQM in the {|i,n〉} basis. To sim-
plify the calculation, we note that coherent states involve a
superposition of many photon number states, |n〉; however
the predominant modes occur in the range n ∈ [N − �N,

N + �N ], where �N/N 
 1. We can show that this range
is indeed very narrow by noting from Eqs. (4) and (5) that the
probability of being in a state |n〉 is given by

P (n) = |〈n|α〉|2 = e−N Nn

n!
, (B5)

corresponding to a Poisson distribution with a peak at n = N ,
and a width �N defined by

(�N )2 = 〈α|(N̂ − N )2|α〉 = N. (B6)

The limit N � 1 is appropriate for gate-driven fields, yielding
�N/N = 1/

√
N 
 1. We may therefore simplify the follow-

ing calculations by replacing n → N .

In this way, we obtain

〈i,m|Vdota
†|j,n〉 = 〈j,m|Vdot

√
n + 1|i,n + 1〉

� 〈i|Vdot|j 〉|α0|δm,n+1 = Vij

2
δm,n+1, (B7)

and similarly,

〈i,m|Vdota|j,n〉 � Vij

2
δm,n−1. (B8)

The individual terms in HQM can then be expressed as

〈i,n|Hdot|j,m〉 = Ei δi,j δn,m, (B9)

〈i,n|Hph|j,m〉 = nhf δi,j δn,m, (B10)

〈i,n|Vint|j,m〉 = Vij

2
(δn,m+1 + δn,m−1). (B11)

Equations (B9)–(B11) describe a band matrix with “tri-block-
diagonal” form. These general results apply to any driven two-
level system, and do not depend specifically on the control
parameter being driven. For the case of a transversely driven
Hamiltonian, as described above, we have V01 = V10 = A and
V00 = V11 = 0.

To summarize this subsection, we have extended the
semiclassical Hamiltonian of Eq. (2) to a full quantum model
given by Eq. (7) for the two-level system spanned by i = 0,1.
Although HQM is infinite-dimensional, it is instructive to
write out a small portion of the full matrix. For the basis
states S = {|0,n − 1〉,|1,n − 1〉,|0,n〉,|1,n〉,|0,n + 1〉,|1,n +
1〉}, we have

HS =

⎛
⎜⎜⎜⎜⎜⎝

E0 + (n − 1)hf 0 0 A/2 0 0
0 E1 + (n − 1)hf A/2 0 0 0
0 A/2 E0 + nhf 0 0 A/2

A/2 0 0 E1 + nhf A/2 0
0 0 0 A/2 E0 + (n + 1)hf 0
0 0 A/2 0 0 E1 + (n + 1)hf

⎞
⎟⎟⎟⎟⎟⎠. (B12)

Here we see that the Hamiltonian is sparse, since the Vint only
changes the photon number by 1: 〈i,n|HQM|j,m〉 = 0 when
|n − m| � 2. As noted above, we are mainly interested in the
portion of HQM with n � N .

b. Block diagonalization of the dressed-state Hamiltonian

In this step, we first identify the nearly degenerate gn

manifolds of HQM, as illustrated in Fig. 2, whose widths and
separations are defined as Eintra and Einter. We assume the
system is driven near its single-photon resonance condition,
defined as hf � E1 − E0. The appropriate choice is gn =
{|0,n + 1〉,|1,n〉}, where

|(E1 + nhf ) − [E0 + (n + 1)hf ]| = Eintra < hf, (B13)

while

|(E1 + nhf ) − [E0 + (m + 1)hf ]| > Einter, (n �= m).

(B14)

with Einter = hf − Eintra.

The term Vint provides the coupling between different gn

manifolds, as indicated in Eq. (B12). We now block diagonal-
ize HQM into the perturbed manifolds g̃n = {|0̃,n + 1〉,|1̃,n〉}
using the Schrieffer-Wolff decomposition method [63,70]. To
second order in the small parameter A/hf , we obtain Eq. (10),
with

H̃n = H̃block + nhf

=
(

E0 + (n + 1)hf − β A/2
A/2 E1 + nhf + β

)
, (B15)

and

|0̃,n + 1〉 = |0,n + 1〉 − γ |1,n + 2〉, (B16)

|1̃,n〉 = |1,n〉 + γ |0,n − 1〉. (B17)

At this level of approximation, the the energy level shifts due
to strong driving are given by ±β, where β = (A/2)2(E1 −
E0 + hf )−1, and the manifold hybridization factor is given by
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γ = (A/2)(E1 − E0 + hf )−1. These represent leading-order
corrections to the RWA; additional corrections can be obtained,
if desired, by applying the Schrieffer-Wolff approximation to
higher orders. Resonance occurs when the diagonal elements
of H̃n are equal: (H̃n)00 = (H̃n)11. Hence,

hf̃res = E1 − E0 + 2β, (B18)

where hf0 = E1 − E0 is the bare resonant frequency, and
we identify 2β as the Bloch-Siegert shift. As is well
known [19,21], the energy denominator in β is given approxi-
mately by 2hf . Here, the factor of 2 occurs because the term
arises from the counter-rotating term in the drive.

c. Time evolution of manifold g̃n

Since H̃block is time independent and the manifolds are
decoupled, the evolution operator for manifold g̃n is simply
given by

Ũn(t) = exp

[
− i

h̄
(H̃block + nhf )t

]

= exp

[
− i

h̄

(
E0 + hf + E1

2
+ nhf

)
t

]
[cos(πfRabit) − i sin(πfRabit)(σzn cos θ + σxn sin θ )], (B19)

where

fRabi = 2

h

√[
(E0 + hf ) − E1

2
− β

]2

+
[
A

2

]2

, (B20)

cos θ = 1

hfRabi
[(E0 + hf ) − E1 − 2β], (B21)

sin θ = A

hfRabi
, (B22)

and the Pauli operators σzn and σxn refer specifically to the g̃n manifold, whose basis states are given by Eqs. (B16) and (B17).
Note that when the qubit is driven resonantly at f = f̃res, the Rabi frequency reduces to hfRabi = A, representing the standard
Rabi result. Hence, the Rabi frequency does not acquire any strong-driving corrections at this level of approximation.

d. Semiclassical evolution operator

We now evaluate the evolution operator in the bare-state basis, {|i,n〉}. We proceed by inverting Eqs. (B16) and (B17) and
assuming resonant driving, yielding

ŨQM|0,n + 1〉 = ŨQM(|0̃,n + 1〉 + γ |1̃,n + 2〉) = Ũn|0̃,n + 1〉 + γ Ũn+2|1̃,n + 2〉
= e−(i/h̄)((E0+hf̃res+E1)/2+nhf̃res)t [cos(�t/2)|0̃,n + 1〉 − i sin(�t/2)|1̃,n〉]

+ γ e−(i/h̄)((E0+hf̃res+E1)/2+(n+2)hf̃res)t [cos(�t/2)|1̃,n + 2〉 − i sin(�t/2)|0̃,n + 3〉]
= e−(i/h̄)((E0+hf̃res+E1)/2+nhf̃res)t [cos(�t/2)|0,n + 1〉 − i sin(�t/2)|1,n〉 − γ (1 − e−i4πf̃rest ) cos(�t/2)|1,n + 2〉

− iγ sin(�t/2)|0,n − 1〉 − iγ e−i4πf̃rest sin(�t/2)|0,n + 3〉], (B23)

where � = 2πfRabi. Similarly,

ŨQM|1,n〉 = e−(i/h̄)((E0+hf̃res+E1)/2+nhf̃res)t [cos(�t/2)|1,n〉 − i sin(�t/2)|0,n + 1〉
+ γ (1 − ei4πf̃rest ) cos(�t/2)|0,n − 1〉 + iγ sin(�t/2)|1,n + 2〉 + iγ ei4πf̃rest sin(�t/2)|1,n − 2〉]. (B24)

In Eqs. (B23) and (B24), we note that if the system is initially in a state with a fixed photon number, then over time it will diffuse
into many different photon states. However, we now show that if the initial state is a coherent state, then it will remain in the
same time-evolved state. (Indeed, coherent states are designed to have this property for large N , due to their correspondence to
classical fields [21].)

The coherent state at t = 0 can be written as

|α(t = 0)〉 =
∑

n

cn|n〉, (B25)

where from Eq. (4), we have

cn = e−N/2
√

Nn/n!. (B26)
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Here again, we have chosen the phase of α0 such that φ =
0. In the bare-state basis, the time-evolution operator can be
expressed in the general form

ŨQM(t)|i,n〉 = e−in2πf t
∑
j,m

Bij,m|j,n + m〉. (B27)

For the current example, the tensor Bij,m, corresponding to
Eqs. (B23) and (B24), is

B00,0 = e−(i/h̄)[(E0−hf̃res+E1)/2]t cos(�t/2),

B00,−2 = −ie−(i/h̄)[(E0−hf̃res+E1)/2]t γ sin(�t/2),

B00,2 = −ie−(i/h̄)[(E0−hf̃res+E1)/2]t γ e−i4πf̃rest sin(�t/2),

B01,−1 = −ie−(i/h̄)[(E0−hf̃res+E1)/2]t sin(�t/2),

B01,1 = −e−(i/h̄)[(E0−hf̃res+E1)/2]t γ (1 − e−i4πf̃rest ) cos(�t/2),

B10,−1 = e−(i/h̄)[(E0+hf̃res+E1)/2]t γ (1 − ei4πf̃rest ) cos(�t/2),

B10,1 = −ie−(i/h̄)[(E0+hf̃res+E1)/2]t sin(�t/2),

B11,0 = e−(i/h̄)[(E0+hf̃res+E1)/2]t cos(�t/2),

B11,−2 = ie−(i/h̄)[(E0+hf̃res+E1)/2]t γ ei4πf̃rest sin(�t/2),

B11,2 = ie−(i/h̄)[(E0+hf̃res+E1)/2]t γ sin(�t/2).

Using Eqs. (4) and (11), it is now easy to show that the
semiclassical time evolution is given by

Usemi|i〉 =〈α(t)|ŨQM|i,α(0)〉

=
∑
n,m,j

|cn|2
∣∣∣∣cn+m

cn

∣∣∣∣ei2πmf̃restBij,m|j 〉. (B28)

Using Stirling’s approximation and Eq. (B26), it is also easy
to show that∣∣∣∣cn+m

cn

∣∣∣∣ � exp

[
−m2 + 2m(n − N )

4N

]
� 1, (B29)

where we have taken n � N and m 
 N . Finally, noting that∑ |cn|2 = 1, we obtain

Usemi|i〉 =
∑
m,j

ei2πmf̃restBij,m|j 〉. (B30)

Finally, we obtain the time evolution of the transversely
driven two-level system, driven on resonance:

Usemi|0〉 = cos(�t/2)|0〉 − i sin(�t/2)e−i2πf̃rest |1〉
− 2iγ [cos(�t/2) sin(2πf̃rest)|1〉
+ sin(�t/2) cos(2πf̃rest)e

−i2πf̃rest |0〉], (B31)

Usemi|1〉 = e−i2πf̃rest (cos(�t/2)|1〉 − i sin(�t/2)ei2πf̃rest |0〉
− 2iγ [cos(�t/2) sin(2πf̃rest)|0〉
− sin(�t/2) cos(2πf̃rest)e

i2πf̃rest |1〉]), (B32)

where we have dropped an overall phase term. For each of
these equations, the first line corresponds to the standard
Rabi solution, while the second and third lines represents
strong-driving corrections. If we assume that the system

FIG. 6. The dynamical evolution of a transversely driven two-
level system under strong resonant driving. Exact numerical results
are shown as thick red lines, while the analytical results obtained in
Eqs. (B31) and (B32) are shown as thin white lines; the square of
the difference between the two solutions is less than 10−4 over the
whole range of the plot. Here, we take |0〉 as the initial state and plot
the probabilities P0 = |c0|2 and P1 = |c1|2 of being in qubit states |0〉
and |1〉 as a function of time. The system parameters are given by
{E0,E1,A}/h = {−10,10,3} GHz, where E0 and E1 are the energies
of the qubit states and A is the amplitude of the drive.

is initially prepared in its ground state |0〉, this yields the
following leading-order results for the probability evolution:

P0(t) = |c0(t)|2 = cos2(�t/2) − γ sin(�t) sin(4πf̃rest),

(B33)

P1(t) = |c1(t)|2 = sin2(�t/2) + γ sin(�t) sin(4πf̃rest).

(B34)

Here, we observe the emergence of fast oscillations with fre-
quency 2f̃res and amplitude given by γ sin(�t) ∝ A. Together
with the renormalization of fres by the Bloch-Siegert shift,
these represent the main effects of the counter-rotating term
on the evolution of the two-level system.

Figure 6 shows a comparison of our analytical results,
obtained above, and the corresponding numerical simulations
of the evolution of a two-level system with a transverse
drive. We see that the analytical results provide an excellent
description of the dynamics, including strong-driving effects.

To summarize: the main (slow) oscillations in Fig. 6
represent the conventional Rabi results. The fine structure
is due to the counter-rotating terms, which are dropped in
the RWA, but which can have a strong effect on the gate
fidelity when the drive is strong. In principle, the dressed-state
method captures all strong driving effects if we keep all the
terms inHQM; however we can obtain corrections at increasing
orders of approximation by block-diagonalizing larger subsets
of the full dressed-state Hamiltonian, or by including higher-
order terms that arise in the block-diagonalization procedure.
Finally, we note that the results obtained here were simplified
under the assumption of resonant driving; however, more
general, nonresonant results can also be obtained in the same
manner.
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APPENDIX C: DRESSED STATE ANALYSIS OF
THE QUANTUM DOT HYBRID QUBIT

We now provide the details of our main results for quantum
dot hybrid qubits, which were summarized in Sec. III B of the
main text. We first derive expressions for the driving matrix V

in the large-detuning regime. We then derive the time-evolution
operator Usemi at lowest order (RWA) and next-lowest order in
the expansion parameter A/hf , using the formalism described
in Sec. II B and Appendix B 1. As before, A is the driving
amplitude and hf is the energy spacing between the triplet
manifolds. Since analytical results are difficult to obtain,
except in special cases, we focus below on the large-detuning
limit. However, we note that the simulations reported in this
paper do not involve such approximations and are exact, up to
numerical accuracy.

1. Driving matrix in the large-detuning regime

a. Tunnel coupling driving

As consistent with Eq. (1), in the basis {|·S〉,|·T 〉,|S·〉},
the time-dependent, semiclassical Hamiltonian with tunnel
coupling driving is given by

H =

⎛
⎜⎝

− ε
2 0 �1(t)

0 − ε
2 + EST −�2(t)

�1(t) −�2(t) ε
2

⎞
⎟⎠, (C1)

where �i(t) = �i0 + ri�ac(t) for i = 1,2 and �ac(t) =
A cos(2πf t). We now consider the far-detuned limit ε �
�1,�2,EST and diagononalize the undriven Hamiltonian H0

up to leading order in the small parameter �i/ε, yielding the
eigenbasis {|0〉,|1〉,|L〉} and the corresponding energies

E0 � −ε

2
− �2

1

ε
, (C2)

E1 � −ε

2
+ EST − �2

2

ε − EST
, (C3)

EL � ε

2
+ �2

1

ε
+ �2

2

ε − EST
, (C4)

which are consistent with Eq. (A6) in the appropriate limit.
We then evaluate the driving term in this basis, obtaining
H = H0 + V cos(2πf t), where

V � A

⎛
⎜⎜⎝

− 2�10r1
ε

�10r2
ε

+ �20r1
ε−EST

r1

�10r2
ε

+ �20r1
ε−EST

− 2�20r2
ε−EST

−r2

r1 −r2
2�10r1

ε
+ 2�20r2

ε−EST

⎞
⎟⎟⎠.

(C5)

In particular, we see that V01 � A[�10r2/ε + �20r1/(ε −
EST)], which gives the leading order (RWA) expression for
the Rabi frequency, hfRabi = V01, when the qubit is driven on
resonance, as consistent with Eq. (13).

b. Detuning driving

Similarly, in the basis {|·S〉,|·T 〉,|S·〉}, the semiclassical
Hamiltonian for detuning driving is given by

H =

⎛
⎜⎝

− ε+εac(t)
2 0 �10

0 − ε+εac(t)
2 + EST −�20

�10 −�20
ε+εac(t)

2

⎞
⎟⎠, (C6)

where εac(t) = A cos(2πf t). Again assuming the far-detuned
limit, we obtain the Hamiltonian H = H0 + V cos(2πf t) in
the {|0〉,|1〉,|L〉} basis, with energies given by Eqs. (C2)–(C4),
and

V � A

⎛
⎜⎜⎜⎝

− 1
2 + �2

1
ε2 − �1�2

ε(ε−EST) −�1
ε

− �1�2
ε(ε−EST) − 1

2 + �2
2

(ε−EST)2
�2

ε−EST

−�1
ε

�2
ε−EST

1
2 − �2

1
ε2 − �2

2
(ε−EST)2

⎞
⎟⎟⎟⎠.

(C7)

In this case, we see that V01 � −A�1�2/ε(ε − EST).

2. Lowest-order results

We now derive the lowest-order (RWA) results for the
quantum dot hybrid qubit, assuming that ε > 2.5EST [70].
In this regime, we have E1 − E0 � EST and EL − E0 � ε.
Note that the driving matrix V is not specified here—it can
describe tunnel coupling driving [Eq. (C5)], detuning driving
[Eq. (C7)], or even a combination of the two.

Following our prescription in Appendix B 1 for constructing
dressed states in a three-level system, we obtain results that
are lowest order in A/hf for the perturbed Hamiltonian H̃n,
which acts on the manifold g̃n = {|0̃,n + 1〉,|1̃,n〉,|L̃,n − k〉}.
The corresponding block Hamiltonian is given by

H̃block =

⎛
⎜⎝

E0 + hf V01/2 0

V01/2 E1 0

0 0 EL − khf

⎞
⎟⎠. (C8)

At this level of approximation, we obtain hf0 = E1 − E0 for
the RWA resonance frequency and hfRabi = V01 = h̄� for the
Rabi frequency.

In principle, the evolution operator for an arbitrary driving
frequency f can be derived. Here, for simplicity, we assume
resonant driving, f = f0; then the evolution operator in the
basis {|0〉,|1〉,|L〉} is given by

Usemi =
⎛
⎝ e−(i/h̄)E0t cos(�t/2) −ie−(i/h̄)E0t sin(�t/2) 0

−ie−(i/h̄)E1t sin(�t/2) e−(i/h̄)E1t cos(�t/2) 0
0 0 e−(i/h̄)ELt

⎞
⎠. (C9)

We note that this operator includes no coupling to the leakage state. There are two reasons for this decoupling. First, since
ε > 2.5EST, we must have k � 2; however Vint only couples states that differ by one photon. Second, the hybridization of dot
states is unimportant at this level of approximation. As a result, the leakage state in Eq. (C9) remains decoupled for all times.
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(This is not true for ε < 2.5EST, however.) Within the logical subspace {|0〉,|1〉}, Eq. (C9) thus describes the conventional Rabi
result, and does not include any strong-driving corrections.

3. Second-order results

We now present next-order results for the quantum dot hybrid qubit, assuming ε > 3.5EST. At this order, we obtain

H̃block =

⎛
⎜⎝

E0 + hf + β0 V01/2 0

V01/2 E1 + β1 0

0 0 EL − khf + βL

⎞
⎟⎠, (C10)

where

β0 = V 2
01

4(E0 − E1 − hf )
+ V 2

0L

4(E0 − EL − hf )
+ V 2

L0

4(E0 − EL + hf )
, (C11)

β1 = V 2
01

4(−E0 + E1 + hf )
+ V 2

1L

4(E1 − EL − hf )
+ V 2

L1

4(E1 − EL + hf )
, (C12)

βL = V 2
0L

4(−E0 + EL + hf )
+ V 2

L0

4(−E0 + EL − hf )
+ V 2

1L

4(−E1 + EL + hf )
+ V 2

L1

4(−E1 + EL − hf )
(C13)

are the Bloch-Siegert shifts. The resonant driving frequency is now given by hf̃res = E1 + β1 − E0 − β0, while the Rabi
oscillation frequency is still given by hfRabi = V01 = h̄�.

At this order, the perturbed manifold is given by

|0̃,n + 1〉 = |0,n + 1〉 + V00

2hf
|0,n〉 − V00

2hf
|0,n + 2〉 − V01

2(E1 − E0 + hf )
|1,n + 2〉 − V0L

2(EL − E0 − hf )
|L,n〉

− V0L

2(EL − E0 + hf )
|L,n + 2〉, (C14)

|1̃,n〉 = |1,n〉 + V10

2(E1 − E0 + hf )
|0,n − 1〉 + V11

2hf
|1,n − 1〉 − V11

2hf
|1,n + 1〉 − V1L

2(EL − E1 − hf )
|L,n − 1〉

− V1L

2(EL − E1 + hf )
|L,n + 1〉, (C15)

|L̃,n − k〉 = |L,n − k〉 + VL0

2(EL − E0 + hf )
|0,n − k − 1〉 + VL0

2(EL − E0 − hf )
|0,n − k + 1〉

+ VL1

2(EL − E1 + hf )
|1,n − k − 1〉 + VL1

2(EL − E1 − hf )
|1,n − k + 1〉 + VLL

2hf
|L,n − k − 1〉 − VLL

2hf
|L,n − k + 1〉.

(C16)

Again, for simplicity, we assume resonant driving at f = f̃res. The matrix elements of Usemi are then given by

(Usemi)00 = e−(i/h̄)(E0+β0)t cos(�t/2) − i
V00 sin(2πf̃rest) e−(i/h̄)(E0+β0)t

hf0
cos(�t/2)

− i
V01 cos(2πf̃rest) e−(i/h̄)(E1+β1)t

E1 − E0 + hf0
sin(�t/2), (C17)

(Usemi)10 = −ie−(i/h̄)(E1+β1)t sin(�t/2) − V11 sin(2πf̃rest) e−(i/h̄)(E1+β1)t

hf0
sin(�t/2)

− i
V01 sin(2πf̃rest) e−(i/h̄)(E0+β0)t

E1 − E0 + hf0
cos(�t/2), (C18)
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(Usemi)01 = −ie−(i/h̄)(E0+β0)t sin(�t/2) − V00 sin(2πf̃rest) e−(i/h̄)(E0+β0)t

hf0
sin(�t/2)

− i
V01 sin(2πf̃rest) e−(i/h̄)(E1+β1)t

E1 − E0 + hf0
cos(�t/2), (C19)

(Usemi)11 = e−(i/h̄)(E1+β1)t cos(�t/2) − i
V11 sin(2πf̃rest) e−(i/h̄)(E1+β1)t

hf0
cos(�t/2)

+ i
V01 cos(2πf̃rest) e−(i/h̄)(E0+β0)t

E1 − E0 + hf0
sin(�t/2), (C20)

corresponding to the evolution within the logical subspace, {|0〉,|1〉}. The leakage state evolves according to

(Usemi)L0 =
(

V0Lei2πf̃rest

2(E0 − EL − hf0)
+ VL0e

−i2πf̃rest

2(E0 − EL + hf0)

)
e−(i/h̄)(E0+β0)t cos(�t/2)

− i

(
V1Lei2πf̃rest

2(E1 − EL − hf0)
+ VL1e

−i2πf̃rest

2(E1 − EL + hf0)

)
e−(i/h̄)(E1+β1)t sin(�t/2)

+
(

V0L

2(−E0 + EL + hf0)
+ VL0

2(−E0 + EL − hf0)

)
e−(i/h̄)(EL+βL)t , (C21)

(Usemi)L1 = −i

(
V0Lei2πf̃rest

2(E0 − EL − hf0)
+ VL0e

−i2πf̃rest

2(E0 − EL + hf0)

)
e−(i/h̄)(E0+β0)t sin(�t/2)

+
(

V1Lei2πf̃rest

2(E1 − EL − hf0)
+ VL1e

−i2πf̃rest

2(E1 − EL + hf0)

)
e−(i/h̄)(E1+β1)t cos(�t/2)

+
(

V1L

2(−E1 + EL + hf0)
+ VL1

2(−E1 + EL − hf0)

)
e−(i/h̄)(EL+βL)t . (C22)

For brevity here, we have omitted the terms (Usemi)0L, (Usemi)1L, and (Usemi)LL, since they play a relatively minor role when the
qubit is initialized into the logical subspace.

We can visualize these results more clearly by considering a qubit initialized into state |0〉. In this case, to lowest order in A,
the solution for the probabilities of being in the qubit states, P0 and P1, are given by

P0 = |c0|2 = cos2(�t/2) − V01

2(E1 − E0 + hf0)
sin(�t) sin(4πf̃rest), (C23)

P1 = |c1|2 = sin2(�t/2) + V01

2(E1 − E0 + hf0)
sin(�t) sin(4πf̃rest). (C24)

The solution for the leakage state, PL, is oscillatory and
proportional to A2; however, its form is rather complicated and
we omit it here for brevity. Similar to Eqs. (B33) and (B34)
for the two-level system, we again observe Rabi oscillations at
frequency �/2π , which are modulated by fast oscillations of
frequency 2f̃res, originating from the counter-rotating term.
We note that fast oscillations of P0 and P1 at leakage
frequencies, f = (EL − E0)/h,(EL − E1)/h, only arise at
O[A2], and are therefore much smaller. If the leakage state
becomes appreciably occupied however, such oscillations
would also be observed with amplitudes of O[A]. Probability
oscillations calculated in this way are plotted in Fig. 3(a),
keeping corrections up to higher order in A. We see that the
analytical results from our dressed-state theory are generally
quite accurate. As before, we also note that although the results
here were obtained for the special case of resonant driving,

the general evolution operator corresponding to arbitrary
frequencies can also be derived by the same method.

From Eqs. (C21) and (C22), we see that oscillations of PL

occur at relatively high frequencies corresponding to leakage,
as consistent with the results observed in Fig. 3(b). This
behavior can be traced back to the hybridization of leakage and
logical states in Eq. (C16), since there are no direct couplings
between leakage and logical states in Eq. (C10). Here, the
evolution of the leakage state is fully coherent, since noise is
not included in the model.

APPENDIX D: DETUNING DRIVING

In Figs. 3 and 5 of the main text, we plot results based
on tunnel coupling driving. In this Appendix, we perform
simulations using detuning driving. The calculations use
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FIG. 7. Simulation results for the infidelity, 1 − F , of an Xπ

rotation, obtained by driving the detuning. The results should be
compared to Fig. 5(c), where tunnel coupling driving was used. In
both cases, we assume the same control parameters, EST/h = 12 GHz
and {ε,�1,�2} = {6,0.7,0.7}EST. The colors and line styles also have
the same meaning as in Fig. 5(c), with one exception: in Fig. 5(c), the
dashed lines corresponded to including strong-driving corrections for
f̃res and fRabi up to O[(A/hf )2], while here, we include corrections
up to O[(A/hf )4].

the control parameters EST/h = 12 GHz and {ε,�1,�2} =
{6,0.7,0.7}EST, which are the same as those used in Fig. 5(c),
and correspond to the large-detuning regime that is commonly
used in experiments, since it affords partial protection against
charge noise [23]. Here, we use the same pulse shapes
defined in Eqs. (16)–(18). However, the pulse amplitudes
are chosen to keep the gate times fixed for all the different
simulations. As before, we perform the simulations with or
without strong-driving corrections for fRabi and f̃res [71]. The
resulting process fidelities for Xπ gates are plotted in Fig. 7.

The overall trends in Fig. 7 are similar to those observed
in Fig. 5(c). However there are at least two important
differences, which can both be attributed to the same physics:
(1) the detuning driving fidelities are typically lower (i.e., the
infidelities are higher), compared to tunnel coupling driving
at comparable gate times, (2) the order of the strong-driving
corrections needed to achieve high-fidelity gates is higher for
detuning driving (O[(A/hf )4]), compared to tunnel coupling
driving (O[(A/hf )2]). Both of these effects arise from the
fact that the Rabi frequency scales as (�1,2/ε)2 for detuning
driving, while it scales as (�1,2/ε) for tunnel coupling driving.
In the large-detuning regime, detuning driving therefore causes
much slower gates for the same driving amplitude. Since
gate times are held fixed in our simulations, detuning driving
therefore requires us to apply larger driving amplitudes A

to compensate for the gate speeds. In turn, the stronger
drive induces gate errors and reduces the fidelity. Similarly,
higher-order correction terms have a stronger effect in Fig. 7
due to the stronger drive.

In conclusion, for the different detuning-driving scenarios
shown in Fig. 7, we find that only smoothed rectangular pulses
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FIG. 8. Simulation results for the infidelity, 1 − F , of an Xπ/2

rotation, using (a) tunnel coupling driving, and (b) detuning driving.
The simulation parameters used here are the same as those mentioned
in Figs. 5(c) and 7, where Xπ gates were investigated. The colors and
line styles here have the same meaning as those figures.

with strong-driving corrections provide gates with relatively
high fidelities at short gate times. For a gate time of 1 ns in
these simulations, the observed fidelity is better than 99%,
while for a gate time of 2 ns, the fidelity improves to 99.99%.

APPENDIX E: Xπ/2 GATES

In this Appendix, we perform simulations to determine
whether the specific choice of gate operations can affect the
fidelity results. In contrast with all other simulations up to this
point, we now investigate the process fidelity of Xπ/2 gates.
We also consider tunnel coupling driving as well as detuning
driving.

For Xπ/2 gates, the ideal evolution operator can be ex-
pressed in the laboratory frame as

Uideal =
(

1√
2
e−(i/h̄)Ẽ0tg − i√

2
e−(i/h̄)Ẽ0tg

− i√
2
e−(i/h̄)Ẽ1tg 1√

2
e−(i/h̄)Ẽ1tg

)
, (E1)

where {Ẽ0,Ẽ1} = {E0,E1} in the RWA approximation, and
{Ẽ0,Ẽ1} = {E0 + β0,E1 + β1} if we include strong-driving
corrections. As consistent with our previous simulations,
the Bloch-Siegert shifts (β0 and β1) and the modified reso-
nance and Rabi frequencies include correction terms up to
O[(A/hf )2] for tunnel coupling driving, or O[(A/hf )4] for
detuning driving.

The results of these Xπ/2 simulations are shown in Fig. 8.
The general trends are similar to those observed in Figs. 5(c)
and 7 for Xπ gates. Overall, we see that fidelities are improved
for Xπ/2 gates, which can be explained by the fact that, for
the same driving amplitude A, an Xπ/2 gate should take about
half as long as an Xπ gate. Hence, for a fixed gate time tg ,
the Xπ/2 gate requires a smaller driving amplitude, which in
turn improves its fidelity. To conclude, we find that Xπ/2 gates
with tg = 1 ns and fidelities >99.99% can be achieved using a
variety of schemes for tunnel coupling driving, but still require
smoothed rectangular pulses with high-order strong-driving
corrections for detuning driving.
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