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The coupling between z valleys in the conduction band of a Si quantum well arises from phenomena
occurring within several atoms from the interface, thus, ruling out a theoretical description based on pure
effective mass theory. However, the complexity and size of a realistic device precludes an analytical atomistic
description. Here, we develop a fully analytical multiscale theory of valley coupling by combining effective
mass and tight binding approaches. The results are of particular interest for silicon qubits and quantum devices
but also provide insight for GaAs quantum wells.
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The two-dimensional electron gas formed at a silicon het-
erointerface underpins the modern electronics industry. How-
ever, in spite of its ubiquity, the silicon interface exhibits
phenomena that are not fully understood and cannot be ex-
plained by the conventional effective mass theory. In the
emerging field of nanoelectronics, quantum degrees of free-
dom such as spin, form the basis for novel technologies such
as spintronics1 and quantum computation.2,3 An alternative
degree of freedom is associated with the low-lying features
in the conduction band structure, known as valleys, for Si
and other indirect gap semiconductors.4 The degeneracy of
the low-lying valley states is twofold for both Si�001� /SiO2
and Si�001�/SiGe interfaces due to mass anisotropy and
strain effects, respectively. For quantum devices, where val-
ley physics has been studied most extensively,5 the valley
states may either be “frozen out,” in favor of the spin degree
of freedom,6 or utilized as qubits.7 In either case, a complete
understanding of the valley physics is essential.

One main concern is the origin and the magnitude of val-
ley coupling, which lifts the valley degeneracy. The two ap-
proaches previously applied to this problem involve con-
tinuum theories such as effective mass8–13 �EM� and
atomistic theories like tight binding �TB�.14,15 While the
former provides intuition because of its analytical nature, it
cannot fully account for the fundamentally discrete and ato-
mistic nature of the valley coupling. On the other hand, ato-
mistic theories give an accurate description of the valley
splitting from first principles, but they cannot provide ana-
lytical results except in the simplest geometries.14 In this
Brief Report, we bridge the gap between microscopic and
macroscopic theories through a multiscale technique, and we
provide theoretical justification for an intuitive extended EM
theory. We show how atomic scale corrections near an inter-
face lead to significant improvements in the EM description
even for direct gap semiconductors like GaAs.

It is well known that the conventional EM theory of elec-
tron confinement in a semiconductor crystal breaks down
near a sharp confining potential such as a quantum well,4

requiring small corrections to boundary conditions at the
interfaces.16,17 For direct gap materials, these corrections are
small and may be treated perturbatively in the long-
wavelength EM theory.18 For indirect gap materials like Si,
the atomic scale physics of the interface, which is absent
from the EM theory, is also responsible for valley splitting,
corresponding to an energy scale ��1 meV� that is compa-

rable to other energies of interest for quantum devices. Per-
turbative treatments should, therefore, be undertaken with
caution. Here, we describe a multiscale approach that effi-
ciently captures the atomic scale corrections by means of an
effective interface potential �. In contrast to a previous the-
oretical work, the approach is fully analytical and contains
no adjustable parameters.

For concreteness, we consider the case of a SiGe/Si/SiGe
symmetric square well. The EM wave function is written as8

��r� = �
n=�z

�neiknzukn
�r�F�z� , �1�

where �n are the valley composition factors �of no impor-
tance here�, k�z= �k0 are the positions of the valley minima
in the Brillouin zone, ukn

�r� are periodic Bloch functions, and
F�z� is the long wavelength envelope. Note that we have
only included contributions from the two z valleys, as appro-
priate for �001� strained quantum wells. The short wave-
length physics is contained in the fast phase oscillations and
the Bloch functions. Note that the silicon valley minima are
located near the Brillouin zone boundaries, with14 k0
=0.82�2� /a� for a Si cubic unit cell of width a=5.43 Å,
consisting of four atomic planes along �001�.

We previously argued that the atomic scale physics of
valley coupling can be incorporated into the long wavelength
theory by means of a �-function potential at the quantum
well interface.11 Similar arguments have also been put forth
in Refs. 19 and 20, leading to a coupled set of envelope
equations of the form13,21,22

�
n=�z

�neiknz�−
�2

2ml

�2

�z2 + V�z� + �
m

���z − zm� − E�F�z� = 0.

�2�

Here, ml=0.916m0 is the longitudinal effective mass, V�z�
involves step functions describing the conduction band off-
sets, �V0, and zm= �L /2 are positions of the quantum well
interfaces. The � term couples the z valleys. Since V�z� is
constant away from the interface, the solutions for the
ground state envelope function are given by
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F�z� = 	A cos�qz� �
z
 	 L/2�
Be−pz �
z
 
 L/2� � . �3�

Conventionally, the unknown parameters in Eq. �3� are de-
termined by matching the envelope function and its first de-
rivative on either side of the interface.23 However, the latter
matching condition must be modified in the presence of a
�-function interface potential. By integrating Eq. �2� over an
infinitesimal range about the interface, we obtain the new
matching condition

� =
�2

2ml

F+��L/2� − F−��L/2�
F�L/2�

, �4�

where F+� �F−�� correspond to right-hand �left-hand� deriva-
tives. Note that a similar discontinuity in F��z� also occurs at
any heterojunction with two different effective masses.23

This effect is unrelated to valley coupling, and we ignore it
below. Indeed, for silicon-rich SiGe materials, the mass
variations are small and inconsequential for our main results.

We now construct a multiscale theory for �. To begin, we
note that the conventional EM theory remains valid and ac-
curate except within about one atom distance from the quan-
tum well interface. In the vicinity of the interface, the EM
theory should be replaced by an atomistic one. The simplest
TB theory that can describe valley coupling was derived in
Ref. 14. The model involves two bands, with nearest- and
next-nearest-neighbor tunneling parameters, t1 and t2, respec-
tively. An additional onsite parameter describes the confine-
ment potential V�z� of the quantum well. Although these pa-
rameters may vary with position, depending on the alloy
composition, the variations are small for SiGe and we ignore
them here. The tight-binding coupling parameters are then
given by14

t2 sin2�k0a/4� = 2�2/mla
2, t1 = 4t2 cos�k0a/4� . �5�

Near the top interface, the TB Hamiltonian is given by

H =�
�

t2 t1 0 t1 t2 0 0 0

0 t2 t1 0 t1 t2 0 0

0 0 t2 t1 V0 t1 t2 0

0 0 0 t2 t1 V0 t1 t2

�


 . �6�

�The diagonal elements are highlighted in bold, for clarity�.
H has eigenvectors �. . . ,C−2 ,C−1 ,C0 ,C1 , . . .� composed of
TB coefficients Cj. The atom index j corresponds to location
zj = ja /4. Here, we consider a quantum well of size L=a�N
+1� /2, containing �2N+1� atoms centered at index j=0.

To implement a multiscale theory, we require that the TB
eigenstates match the EM solutions away from the interface.
From Eq. �1�, the two lowest-energy TB wave functions can
be expressed as

Cj = �− 1� j�2 cos�k0zj�Fj , �7�

Sj = �− 1� j�2 sin�k0zj�Fj , �8�

where the actual ground state depends on the width of the
quantum well.13 Here, �−1� j /�2 corresponds to the Bloch
function for the lowest band of the two-band model,13 while
the cosine and sine functions describe the exponential phase
factors in Eq. �1�, corresponding to the cases ��+z ,�−z�
= �1, �1� /�2, respectively. The envelope coefficient Fj
=F�zj� is determined from the correspondence with Eq. �3�.
The physics of valley coupling is captured by the sudden
change of slope �i.e., the kink� in the envelope at the inter-
face. To facilitate calculations, we consider the model param-
eters shown in the inset of Fig. 1. Immediately adjacent to
the interface, the envelope function exhibits a change of
slope, with F−�= �4 /a�� and F+�= �4 /a�� on either side of the
kink, and amplitude FN+1= f right at the interface. Thus, FN
= f +�, FN+2= f −�, and so on.

Before solving the multiscale theory, it is illuminating to
gauge the accuracy of the EM ansatz of Eqs. �7� and �8�. This
is accomplished in Fig. 2, using the two lowest-energy TB
eigenstates to infer the envelope function from the relation
2Fj

2=Cj
2+Sj

2. The result exhibits residual short wavelength
structure, arising from the fact that the exact k values of the
fast oscillations of the two lowest eigenstates are nearly �but
not quite� identical.15 This is a signature of the incomplete
separation of the long and short wavelength physics, and it
may place a fundamental limit on our ability to match the TB
and EM theories. In the present work, the spurious “jitter”
evident in Fig. 2 leads to errors in the evaluation of the kink.

The multiscale theory involves just two equations from
the full TB Hamiltonian, and we can choose which equations
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FIG. 1. �Color online� Differences between the effective mass
�EM� and tight binding �TB� envelope functions are shown for a
GaAs quantum well. �Only the right half of the well is shown.� The
dashed line shows the conventional EM theory, while the solid line
includes multiscale corrections. The vertical dotted line marks the
quantum well boundary. Inset: Multiscale ansatz for envelope func-
tions near the interface. For Si, seven atoms are needed. For GaAs,
only four atoms are used. The open circles correspond to sites in the
barrier region.
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to use. The spurious jitter in Fig. 2 could be mitigated by an
averaging procedure. Indeed, in this way, we obtain excellent
agreement with previous estimates of the valley splitting.13

However, such techniques detract from the simplicity of the
multiscale approach. Here, we take a different tack, noting
that the alternating behavior of the TB coefficients in Fig. 2
can be partially mitigated simply by using alternating TB
equations. We consider the following equations centered
symmetrically around the interface:

t2CN−2 + t1CN−1 + t1CN+1 + t2CN+2 = ETBCN,

t2CN + t1CN+1 + V0CN+2 + t1CN+3 + t2CN+4 = ETBCN+2.

�9�

Note that either the cosine �Eq. �7�� or sine �Eq. �8�� func-
tions can be used here.

It is necessary to take into account the curvature of the
envelope functions in system �9� in order to avoid unphysical
solutions. Near the interface, the cosine envelope in Eq. �3�
has a vanishing second derivative, but the exponential enve-
lope does not. To leading order, we can express the latter in
terms of parameters f and � as follows: FN+2= f −�, FN+3
= f −2�+�2 / f , and FN+4= f −3�+3�2 / f . By evaluating sys-
tem �9�, we now obtain

F+��L/2� − F−��L/2�
F�L/2�

=
�� − ��

f

4

a
�

�2

f2 = � pa

4
�2

�
mV0a2

8�2 ,

�10�

where we have dropped higher order terms in the small pa-
rameter a /L. The anticipated linear dependence of � on V0
�Ref. 13� emerges from Eq. �4�,

� � V0a/4 = �1.36 
 10−10�V0, �11�

where � is in units of eV m when V0 is in eV.

Equation �11� is our main result, obtained through a mul-
tiscale analysis of the kink of the envelope function. It con-
tains no adjustable parameters. We can compare this to the
apparent kink obtained by fitting Eq. �3� to the full TB en-
velope function, as shown in Fig. 2. In spite of the spurious
jitter, the two estimates agree to within 20% in the wide
quantum well limit. We can also compare Eq. �11� to the
estimate ���7.2
10−11�V0 obtained in Ref. 13 by fitting
the theoretical EM predictions to the TB numerical solutions
for the valley splitting. The latter differs from Eq. �11� by
about a factor of two, which we attribute to the fundamental
limitations of the EM ansatz of Eqs. �7� and �8�. Neverthe-
less, it is clear that the EM theory and the multiscale analy-
sis, described here, capture the essential physics of valley
splitting and enable semiquantitative predictions. Thus justi-
fied, the more accurate numerical estimate for � in Ref. 13
forms the basis for a fully quantitative EM theory. Further
improvements in the EM ansatz and the kink analysis should
lead to better correspondence between the estimates for �.

We now turn to direct gap materials such as GaAs. Al-
though a sharp confinement potential does not cause valley
coupling in this case, there are still atomic scale corrections
to the EM theory. As in the Si case, the corrections tend to be
more significant for narrow quantum wells.24 Previous work-
ers have shown that these may be incorporated into the EM
theory by means of generalized boundary conditions at the
interface.16,17,19 Here, we apply the multiscale theory devel-
oped for Si to the GaAs quantum well, obtaining an analyti-
cal expression for the GaAs interface potential �, which con-
tains no free parameters. We also compare the improved
wave function solutions to those obtained from TB theory.

The simplest TB theory for a single ���-valley material
involves just the nearest-neighbor tunneling parameter t1
=−8�2 /m�a2, where a=5.64 Å is the width of the GaAs
cubic unit cell. For AlxGa1−xAs used in the barriers, the ef-
fective mass m� depends on the composition x to a greater
degree than silicon alloys. Hence, t1 depends on the atomic
position. The onsite parameter ��z�=16�2 /m�a2+V�z� also
depends on composition. However, for the sake of transpar-
ency, we will ignore effective mass variations, taking ��z�
=V�z� and setting m� to an appropriate average of the effec-
tive masses near the interface. Indeed, m� eventually drops
out of the leading order expression for �, and a more careful
treatment provides only small corrections.

The matching condition, Eq. �4�, also hold for GaAs.
However, because there is only one valley, and the TB model
has only one band, the TB envelope function and wave func-
tion are now identical: Cj =Fj. Near the interface, we param-
etrize the envelope, as shown in the inset of Fig. 1. The TB
eigenstates are now smooth �in contrast to Fig. 2� so we may
use adjacent TB equations,

t1CN−1 + t1CN+1 = ETBCN,

t1CN + V0CN+1 + t1CN+2 = ETBCN+1. �12�

In this case, there is no need to consider the curvature of the
wave function. Solving for � and � directly and noting the
relation ETB=2t1+E between the TB and EM energies, we
obtain the GaAs result,
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FIG. 2. �Color online� Dimensionless envelope for the ground
state wave function in a 10 nm Si/SiGe quantum well. �Only the
right half of the well is shown.� The vertical dashed line marks the
quantum well boundary. The discrete points are obtained from TB
theory, as described in the text. Spurious short wavelength “jitter” is
cause by limitations in the EM theory. Inside �outside� the quantum
well, the blue �red� solid lines are fits to Eq. �3�. Inset: The full,
dimensionless TB wave function, including the fast oscillations.
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� = a�V0 − E�/4. �13�

In the physically relevant limit of E�V0, the GaAs and Si
interface potentials have identical forms. For GaAs materials
parameters, we obtain ���1.41
10−10�V0.

The effect of the interface potential on the wave function
is shown in Fig. 1, where we plot the differences between the
approximate �multiscale� and exact �TB� results for a narrow
quantum well. We also show results for the conventional
��=0� EM theory. Deviations from the EM theory are small
in both cases. However, because there is no jitter in the GaAs
TB envelope function, we find that Eq. �13� captures the
atomic scale corrections with great accuracy.

In conclusion, we have demonstrated that leading correc-
tions to the effective mass theory at a sharp quantum well

boundary arise from the atomic scale physics near the inter-
face. The corrections appear as a small kink in the envelope
function. A multiscale approach, combining effective mass
and tight binding theories, leads to an analytical expression
for the effective interface potential in silicon, which deter-
mines the valley splitting. Similar corrections apply to GaAs
quantum wells although there is no valley coupling. For
more complex device geometries, including self-consistent
charge distributions, a sharp interface can always be treated
via the multiscale approach, using the EM theory to describe
general long-wavelength features.
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