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Free magnetic moments usually manifest themselves in Curie
laws, where weak external magnetic fields produce magnetiza-
tions that vary as the reciprocal of the temperature (1/T). For a
variety of materials that do not display static magnetism, includ-
ing doped semiconductors1 and certain rare-earth intermetal-
lics2, the 1/T law is replaced by a power law T 2a with a < 1. Here
we show that a much simpler material system—namely, the
insulating magnetic salt LiHoxY12xF4—can also display such a
power law. Moreover, by comparing the results of numerical
simulations of this system with susceptibility and specific-heat
data3, we show that both energy-level splitting and quantum
entanglement are crucial to describing its behaviour. The second
of these quantum mechanical effects—entanglement, where the
wavefunction of a system with several degrees of freedom cannot
be written as a product of wavefunctions for each degree of
freedom—becomes visible for remarkably small tunnelling
terms, and is activated well before tunnelling has visible effects
on the spectrum. This finding is significant because it shows that
entanglement, rather than energy-level redistribution, can
underlie the magnetic behaviour of a simple insulating quantum
spin system.

The insulator that we focus on in the search for the cause of the
anomalous power-law divergence of the magnetic susceptibility is
LiHoxY12xF4, a salt where magnetic Ho3þ ions are randomly

substituted for nonmagnetic Y3þ with probability x. For x ¼ 1,
the material is the dipolar-coupled ferromagnet, LiHoF4, with a
Curie temperature of 1.53 K. Randomly distributing dipoles in a
solid matrix provides quenched disorder, while the angular aniso-
tropy of the dipole–dipole interaction leads to competition between
ferromagnetic and antiferromagnetic bonds and the possibility of
many (nearly) degenerate ground states4. Indeed, the low-tempera-
ture magnetic phase diagram of the dipolar-coupled rare-earth
tetrafluorides progresses smoothly from long-range order to glassi-
ness with increasing spin dilution3. What interests us here, however,
is the considerably diluted x ¼ 0.045 compound, where we have
observed5,6—contrary to classical expectations4—novel ‘antiglass’
behaviour as well as long-lived spin oscillations whose qualitative
understanding seems to require mesoscopic quantum coherence.
We show in Fig. 1 the experimental d.c. susceptibility, x, plotted
against temperature, T, for a single-crystal specimen of the material.
What emerges is not the standard Curie law, 1/T, expected for non-
interacting magnetic moments, but instead a diverging response
following a power law T2a, with a ¼ 0.75 ^ 0.01. This power law is
close to that associated with the diverging local susceptibilities
inferred for doped silicon1 as well as metallic rare-earth materials2

on the brink of magnetic order. What is most striking, however, is
that the magnetic susceptibility for LiHo0.045Y0.955F4 is a smoothly
diverging quantity, even though the magnetic specific heat (C,
Fig. 2a) is characterized by unusually sharp peaks in the same
temperature range. In ordinary materials containing magnetic ions,
there is a strong correlation between magnetic susceptibility and
specific heat in the sense that anomalies, especially as strong as the

Figure 1 Magnetic susceptibility x versus temperature T of the diluted, dipolar-coupled

Ising magnet, LiHo0.045Y0.955F4. Red triangles, experimental data; filled circles,

simulations. Green circles, classical decimation when the calculations are performed with

g’ ¼ 0. Blue circles, susceptibility computed using the classical procedure, equation (3),

of determining Curie constants by adding (subtracting) moments when the ground state is

predominantly ferromagnetic (antiferromagnetic), but with quantum decimation, using

energy levels derived from the full dipolar hamiltonian of equation (1). Although the

susceptibility approaches that of the experiment more closely than before, it still deviates

by at least a factor of four at low temperatures. Black circles, use of quantum decimation

as well as the correct quantum mechanical form of susceptibility given by equation (5),

using the entanglement of the low-lying energy doublet with the excited states. The line is

a best fit to x(T ) / T 2a, with a ¼ 0.75 ^ 0.01. Although a is always less than 1, it is

not a universal number. It varies from 0.62 to 0.81 as the concentration x decreases from

0.1 to 0.01, a trend also observed in Heisenberg systems7. The simulation results have

not been scaled, and agree quantitatively with the experimental results.
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sharp peaks in the specific heat, are reflected in the susceptibility.
The data for LiHo0.045Y0.955F4 thus provide three puzzles: the

absence of a spin glass transition predicted for a collection of
randomly placed dipoles, the anomalous power-law behaviour
x / T2a, and the coexistence of a featureless power law in x with
sharp anomalies in the specific heat. We show here that it is an
intrinsic quantum mechanical term in the dipole hamiltonian that
stabilizes the spin liquid ‘antiglass’ and resolves the puzzles. Follow-
ing a pair-wise ‘decimation’ procedure7–13 adapted to treat the full
axial and transverse components of the dipole–dipole interaction,
we find that quantum fluctuations continue to provide channels for
relaxation down to the lowest temperatures. We simulate the
evolution with temperature T of both the magnetic susceptibility
and the heat capacity using the actual interaction parameters
between Ho moments obtained from various experimental results,
and compare quantitatively the results of simulation and
experiment.

LiHoF4 crystallizes in a body-centred tetragonal (CaWO4) struc-
ture with lattice constants14 a ¼ a 0 ¼ 5.175(5) Å and c ¼ 10.75(1) Å.
Each unit cell has four formula units with the magnetic Ho3þ ions
occupying positions (0, 0, 0), (0, a/2, c/4), (a/2, a/2, c/2) and (a/2, 0,
3c/4). The Ising axis is defined by the crystal field of the Ho3þ ions
that forces the spin-1/2 magnetic moments with a g-factor of 13.8
to point along the crystalline c axis. We generate a model of the
three-dimensional lattice of LiHoxY12xF4 on the computer by
repeated translation of the unit cell vectors. N spins are distributed
randomly in this lattice with probability of occupancy x on the
body-centred tetragonal sites. Periodic boundary conditions are
applied. We have used a maximum of N ¼ 400 spins (8 £ 104 pair-
wise interactions), and have checked that our results are in the N-
independent limit. The Ising spin (j i

z) at each site i is assigned a
value of 1 or 21 randomly. We have confirmed explicitly that in the
dilute limit of x the outcome is not sensitive to this particular initial
condition, obviating the need to average over initial spin configur-
ations. Our simulations incorporate pair-wise dipolar couplings, in
which the interaction energy between two magnetic dipole
moments M1 and M2 separated by the vector r ¼ r̂r is

Eint ¼
1

r3
ðM1·M2 2 3ðr̂·M1Þðr̂·M2ÞÞ ð1Þ

The magnetic dipole moment M i at site i is related to the spin ji

via Mil ¼ m igljil (l ¼ x, y, z) where mi is the magnetic moment of
the ith spin, initially m i ¼ mB/2 for all i, and the elements of
the anisotropic g-factor matrix (g x ¼ g y ¼ g’ ¼ 0.74,
g z ¼ gk ¼ 13.8) are known from previous measurements on the
pure material14–16.

Our first simulation is a classical calculation in which g’ ¼ 0 and
equation (1) reduces to 22M1zM2z/r

3. The hamiltonian can be

 

 

 

          

            

Figure 3 Diagram detailing the difference between the classical and the quantum

decimation schemes. a, The classical energy levels calculated using equation (2). There

are two doubly degenerate energy levels, designated þJ and 2J. Depending on the

value of the angle formed by the Ising axis and the vector connecting the spins, the ground

state 2J can correspond to antiferromagnetic or ferromagnetic alignment of (i,j ). The

eigenstates commute with jz, and there is no mixing between the ground-state doublet

and the excited states. b, The quantum energy levels, showing the new entangled

eigenstates. b is the off-diagonal term of the full dipolar interaction of equation (1), which

reduces to the well-known hamiltonian of Ising spins in a transverse magnetic field in the

limit of small ( g’/gk)
2. The two doublets are split to produce eigenstates that are mixtures

of the classical states. It is not only states from the same doublet that are mixed: b also

yields a ground state that mixes ferromagnetic and antiferromagnetic classical states.

Thus, the off-diagonal terms in the dipolar interaction introduce both a change in the

spectrum (in the form of splittings of the doublets as well as shifts of the ‘ferromagnetic’

excited states relative to the ‘antiferromagnetic’ ground state), and mixing (or

‘entanglement’) of the classical states.

Figure 2 Comparison of the temperature-dependent experimental electronic specific heat

C (T ) for LiHo0.045Y0.955F4 with different simulation techniques. a, Experimental data

showing two sharp Schottky-like features dominating the thermal response. b, Quantum

decimation, emphasizing how the well-defined energy levels result in a more complex

temperature-dependent specific heat with greater resemblance to the experimental data,

especially at low temperatures. Notably, there is the appearance of a sharp peak at

130 mK, close to a similar feature in the data. c, Classical decimation, demonstrating

some success in calculating C (T ) but with the characteristic sharp features occurring at

incorrect temperatures. The features occur as k BT moves through maxima in the

distribution of dipolar couplings, and are affected as the concentration x varies; this

distribution is granular, because the dipolar interaction is being sampled between points

on a lattice rather than in continuous space.
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written as:

H ¼2
XN

i;j

Jijmijizmjjjz ð2Þ

where J ij (which assimilates the numerical constants and the
product gk

2) falls off as 1/r3 and the quantities denoted by j are
classical Ising spins that can take the values ^1. It is expected to be
valid both in the very dense (x ¼ 1) ferromagnetic and very dilute
(x ! 0) paramagnetic limits. We call equation (2) an ‘axial dipole’
hamiltonian, as the dipolar field of spin j coupling to the moment of
spin i acts only along the Ising axis. We show in Fig. 3a the energy
levels calculated using equation (2) for a spin pair (i,j) when
jm ij ¼ jm jj.

Once we have calculated the energy of all spin pairs, we arrange
the pairs in a hierarchy based on their coupling strength and pick the
pair with the largest energy jJ maxj. If 2jJ maxj . kBT, the excited state
þJmax becomes redundant and this pair is forced into its ground
state. The pair is replaced by a composite single spin of equivalent
net magnetic moment that can be either mC ¼ jm ij 2 jm jj (anti-
ferromagnetic interaction) or mC ¼ jm ij þ jm jj (ferromagnetic
interaction). If the net moment is zero, the two spins are ‘decimated’
(that is, eliminated) and removed from further consideration;
otherwise they are replaced by one spin with the new composite
moment placed at the average position of the two spins in the pair.
Only the magnetic moment mC and the position rC of the pair are
renormalized; gk is left unchanged. The new magnetic dipole
moment MCz is now given by mCgkjCz (MCx ¼ MCy ¼ 0). The
altered demography requires the procedure to begin anew with the
calculations of the pair-wise interactions between the remaining
spins and the composite MC at rC using equation (2). At each
iteration one spin pair is either eliminated or transformed into a
single spin degree of freedom until the strongest pair remaining has
a gap 2jJmaxj , k BT. All spins remaining in the system are con-
sidered ‘free’ at that T. We choose T ¼ 1 K at the outset, given that

the nearest-neighbour interaction energy J nn ¼ 1.2 K; the tempera-
ture is then lowered in steps DT ¼ 0.01 K down to T ¼ 0.01 K.

At each temperature, the calculation produces a list {Mi} of N(T)
‘free’ moments. Given that the susceptibility for a free Ising moment
Mi is Mi

2/kBT and its contribution to the entropy is (Rln2)N(T), we
can compute the specific heat and susceptibility via the relations:

x¼
i

XM2
i

kBT
ð3Þ

and

C ¼
TdS

dT
¼ RTln2

dNðTÞ

dT
ð4Þ

Figure 2c reveals one success of the classical decimation approach,
namely the appearance of sharp features in the specific heat.
Although the features are of roughly the same magnitude as seen
in the experiment, they do not occur at the correct temperatures.
Figure 1, where the filled green circles are the results of the classical
calculation, reveals a more disturbing problem. In accord with
intuition, but in disagreement with experiment, there are sharp
anomalies in x that coincide with the peaks in C. Moreover, the
classical susceptibility at low temperatures is over an order of
magnitude smaller than that measured.

The axial dipole hamiltonian in equation (2) takes into account
only the interactions parallel to the Ising axis by ignoring g’ and
treats the spins as classical bits rather than Pauli matrices. For pure
LiHoF4 in its ferromagnetic state, this is the complete picture,
because the lattice symmetry ensures that at any site the perpen-
dicular component of the dipolar field due to the other spins sums
to zero. However, as the magnetic Ho3þ ions are randomly replaced
by non-magnetic Y3þ, all transverse components are no longer
perfectly compensated, and at dipole concentrations of only a few
per cent the site-specific, internal transverse fields can be as large as
1 kOe. With a finite g’, the full hamiltonian, equation (1), no longer
reduces to equation (2), but acquires off-diagonal terms of the
form bjixjjz, where b includes numerical constants and the
product g’gk. Terms of order j ixjjx are not included, because
g’

2 ,, g’gk ,, gk
2.

The results in Figs 1 and 2 demonstrate how the decimation
calculation is affected when the energy levels but not the eigenfunc-
tions are modified to account for the inclusion of the off-diagonal
terms of the dipolar interaction. Although the basic decimation
scheme remains the same, there are now two energy scales available
for comparison with temperature: 2jJj and (J 2 þ b2)1/2 2 J, which
is ,b2/2J to first order. As this second gap is much smaller than the
first, it becomes clear that, at a temperature T, the number of free
spins, N(T), is greater than in the classical case (see Fig. 3b). The
results of this modification meet with partial success. The increase
in N(T) can account better for the specific-heat characteristics
(Fig. 2b), but not for the susceptibility, especially at low tempera-
tures (Fig. 1, filled green circles), implying that it is not merely the
excess in the number of free spins that enhances and smoothes the
susceptibility of the sample.

The key to matching the experimental susceptibility result is to
use the quantum mechanical expression17 for x:

x¼
XN

i

1

n

P
rnðiÞ n

X Eð1Þn ðiÞ
ÿ �2

kBT
2 2Eð2Þn ðiÞ

 !
rnðiÞ ð5Þ

with

rnðiÞ ¼ exp
2Eð0Þn ðiÞ

kBT

� �
; Eð1Þn ðiÞ ¼ knðiÞjMizjnðiÞl and

Eð2Þn ðiÞ ¼
m

X jknðiÞjMizjmðiÞlj
2

Eð0Þm ðiÞ2 Eð0Þn ðiÞ

Figure 4 The change in susceptibility as the quantum entanglement is tuned by varying

the ratio of the transverse and longitudinal magnetic g-factors, g’/gk. An arrow denotes

the value for LiHo0045Y0.955F4. The full quantum susceptibility (filled circles) demonstrates

extraordinary sensitivity to the slightest entanglement of the wavefunctions (g’/

gk < 1024), whereas the susceptibility calculated using the quantum energy levels but

ignoring the entanglement (open circles) is relatively flat. Quantum entanglement

produced by the off-diagonal terms, rather than spectral superposition, dominates the

physics.
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where first we sum over the energy levels of the ith effective spin
remaining, and then sum over all N effective spins. Except for a
population of isolated, unrenormalized spins that dwindles as T
decreases, jnl and jml are now the entangled pair eigenstates
illustrated in Fig. 3b. Note that keeping only the first term in the
brackets reduces equation (5) to equation (3). The result obtained
using equation (5) (Fig. 1, black circles) agrees quantitatively with
the actual measurements (Fig. 1, red triangles) of the magnetic
susceptibility in the d.c. limit for LiHo0.045Y0.955F4.

The inclusion of the off-diagonal terms, E n
(2), produces the

reconciliation between simulation and experiment by superposing
the antiferromagnetic ground state with the ferromagnetic excited
state (Fig. 3b). In this manner, the excited classical states ‘frozen out’
by the decimation still enter into the expression for the suscepti-
bility, thereby enhancing its value. The concurrence18,19, which
ranges from 0 (disentangled states) to 1 (completely entangled),
quantifies entanglement in an exact way for bipartite systems. We
identify the T-dependent entanglement t as the concurrence of the
pair wavefunctions contributing to the susceptibility at each T,
weighted by the fraction of actual spins involved in the history of the
pair formation within the decimation calculation. We find that
t ¼ 0.11 at 0.8 K, growing to 0.88 at 0.01 K, in accord with the trend
from near agreement of the ‘entangled’ and ‘quantum level’ bulk
susceptibilities at 0.8 K towards a factor of four difference at 0.01 K.
Moreover, we find that only the slightest degree of entanglement can
have profound effects. We illustrate this in Fig. 4, which shows how
the two calculations evolve with increasing g’. The figure reveals
that a g’/gk as small as 1024 produces a large change in x. The
effects of the energy-level distribution are minimal by comparison.

Contrary to intuition and common experience, a dilute assembly
of Ising dipoles does not freeze when cooled to millikelvin tem-
peratures. The computer simulations presented here indicate that it
is quantum mechanics—the internal magnetic fields transverse to
the Ising axis inherent to the dipole–dipole interaction—that
stabilizes the spin liquid. However, unlike conventional spin liquids,
where the dynamics are dominated by a single gap to triplet
excitations, the dilute dipoles form a state with a distribution of
such gaps, especially well probed by the specific heat, which shows
remarkable releases of entropy at certain well-defined temperatures.
At the same time, the magnetic susceptibility increases smoothly
with decreasing temperature, but at a rate slower than a Curie law6.
The smoothness is in marked contrast to the highly structured heat
capacity, and can only be understood if quantum mechanical
mixing—the entanglement of classical ferromagnetic and antiferro-
magnetic contributions to the wavefunctions—is taken into
account. There is a growing realization20–22 that entanglement is a
useful concept for understanding quantum magnets, thus unifying
two rapidly evolving areas, quantum information theory and
quantum magnetism. The discussions to date have focused on
one-dimensional magnets and measures of entanglement with
clear theoretical meaning but no simple experimental implemen-
tation. Our experiments and simulations illustrate how entangle-
ment, rather than energy-level redistribution, can contribute
significantly to the simplest of observables—the bulk suscepti-
bility—in an easily stated model problem. A

Received 29 April; accepted 7 July 2003; doi:10.1038/nature01888.

1. Paalanen, M. A., Ruckenstein, A. E. & Thomas, G. A. Spins in Si:P close to the metal-insulator

transition. Phys. Rev. Lett. 54, 1295–1298 (1985).
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Since the discovery of superconductivity1, there has been a drive
to understand the mechanisms by which it occurs. The BCS
(Bardeen–Cooper–Schrieffer) model successfully treats the elec-
trons in conventional superconductors as pairs coupled by
phonons (vibrational modes of oscillation) moving through the
material2, but there is as yet no accepted model for high-
transition-temperature, organic or ‘heavy fermion’ superconduc-
tivity. Experiments that reveal unusual properties of those
superconductors could therefore point the way to a deeper
understanding of the underlying physics. In particular, the
response of a material to a magnetic field can be revealing,
because this usually reduces or quenches superconductivity.
Here we report measurements of the heat capacity and magne-
tization that show that, for particular orientations of an external
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