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Abstract This paper argues that the renormalization group technique used
to characterize phase transitions in condensed matter systems can be used
to classify Boolean functions. A renormalization group transformation is pre-
sented that maps an arbitrary Boolean function of N Boolean variables to one
of N−1 variables. Applying this transformation to a generic Boolean function
(one whose output for each input is chosen randomly and independently to be
one or zero with equal probability) yields another generic Boolean function.
Moreover, applying the transformation to some other functions known to be
non-generic, such as Boolean functions that can be written as polynomials
of degree ξ with ξ � N and functions that depend on composite variables
such as the arithmetic sum of the inputs, yields non-generic results. One can
thus define different phases of Boolean functions as classes of functions with
different types of behavior upon repeated application of the renormalization
transformation. Possible relationships between different phases of Boolean
functions and computational complexity classes studied in computer science
are discussed.

Keywords Renormalization group · Computational complexity

1 Introduction

This paper argues that the set of Boolean functions of N Boolean variables
can, as N →∞, be classified into phases using a method known in statistical
physics as the renormalization group (RG) [19, 24, 49, 50]. The RG technique,
originally formulated to provide insight into the nature of phase transitions
in statistical mechanical systems [24, 49], involves taking a problem with N
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variables and rewriting it as a problem involving fewer variables, and then
investigating the properties of the resulting sequence of functions as this
procedure is iterated. Here, we will define a procedure that transforms a
Boolean function of N Boolean variables into a Boolean function of N − 1
variables.1 The transformation used here is very simple — the new function
is one if the original function changes its output value when a given input
variable’s value is changed, and is zero if it does not.

It is shown that different classes of functions have different behavior upon
repeated application of a renormalization group transformation. In analogy
with well-known results in statistical mechanics [19], we interpret functions
exhibiting different behaviors after many renormalizations as being in differ-
ent phases. Applying the renormalization transformation to a generic Boolean
function, whose output for each input is chosen randomly and independently
to be one or zero with equal probability, yields another generic Boolean func-
tion; this “fixed point” behavior is evidence of the presence of a generic phase
of Boolean functions. Functions that can be written as low-order polynomi-
als and functions of composite variables such as the arithmetic sum of the
values of the inputs are demonstrated to yield non-generic behavior upon
renormalization. Therefore, the RG distinguishes some individual functions
(that happen to be functions that can be specified much more efficiently than
by making a table of output values) as non-generic.2

Being able to classify Boolean functions is of great interest in the field
of computational complexity, the study of how the computational resources
needed to solve different problems scale with the size of the problem specifica-
tion. A problem as defined in computational complexity theory corresponds
to a family of Boolean functions, one function for each size of the input spec-
ification [45]; the statement of how difficulty scales with problem size is a
statement about the computational resources needed to compute these func-
tions as the number of function arguments tends to infinity. Therefore, deter-
mining the computational resources needed to solve a problem is equivalent to
determining the dependence on N of the computational resources needed to
evaluate a set of Boolean functions of N Boolean variables, f(x1, . . . , xN ), for
any of the 2N possible input configurations.3 Classifying Boolean functions
by the computational resources required to compute them is an extremely
powerful concept [35], but it is difficult to implement. Whether or not the two
well-known complexity classes P (problems that can be solved with resources
that scale polynomially with the size of the problem specification) is equal to
NP (problems for which a solution can be verified with resources that scale
polynomially with the size of the problem specification) [12, 31] is a great out-
standing question in computational complexity theory and in mathematics

1 It is more usual for renormalization group transformations to reduce the number
of variables by a factor of two instead of by one. Examples of renormalization groups
for condensed matter systems that eliminate one variable at a time are described
in in Refs. [9, 33, 47].

2 Of course, we expect many other types of non-generic functions to exist.
3 Computational complexity classes are often defined by referring to the compu-

tational resources needed to answer the decision problem of whether or not a given
input string is in a given language [23], but the terminology in terms of functions
used here is also accepted [7, 45].
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generally [1, 11, 23, 41, 48], and indeed, it has not been proven whether P is
distinguishable from PSPACE, the class of problems that can be solved using
polynomially bounded memory (but possibly exponential time) [35]. These
difficulties in distinguishing computational complexity classes motivate the
consideration of other methods of classifying Boolean functions.

As in statistical mechanics, the distinctions between phases introduced
here for functions of N variables are completely sharp only in the thermody-
namic limit N →∞ 4. However, in our numerical examples we will apply the
RG transformation to large but finite systems, similarly to the calculations
in the classic paper of Wilson [50].

Any Boolean function f(x1, . . . , xN ) of the N Boolean variables x1, . . . , xN

can be written as a polynomial in the xj using modulo-two addition. This fol-
lows because the variables and function all can be only 0 or 1, so f(x1, . . . , xN )
can be written as

f(x1, . . . , xN ) = A00...00(1⊕ x1)(1⊕ x2) . . . (1⊕ xN−1)(1⊕ xN )
⊕ A00...01(1⊕ x1)(1⊕ x2) . . . (1⊕ xN−1)(xN )
. . .

⊕ A11...10(x1)(x2) . . . (xN−1)(1⊕ xN )
⊕ A11...11(x1)(x2) . . . (xN−1)(xN ) , (1)

where Ax1,...,xN
= f(x1, . . . , xN ).5 As Shannon pointed out [40], the number

of different possible functions is 22N

(this follows because each of the 2N

coefficients Aα1,...,αN
can be either one or zero), which is much larger than

the number of functions that can be computed using resources that scale
no faster than as a polynomial of N , which scales asymptotically as (CN)t,
where C is a constant and t is a polynomial in N [39]. This counting argument
demonstrates that evaluating almost any Boolean function with N arguments
requires computational resources that are exponentially large in N . However,
it does not provide a means for determining whether or not a given function
can be computed with resources bounded by a polynomial of N .

The proposed relevance of phases of Boolean functions for computational
complexity relies on the observation that typical functions whose values are
chosen independently and randomly to be one or zero with equal probability
for each input configuration are hard to compute; there is essentially no sim-
pler way to specify the function than to enumerate the output for each input
separately [32].6 Though it is true that when one chooses the output values

4 Distinctions between phases are sharp only in the limit N → ∞ because they
are based on being able to distinguish quantities that are exponentially large in N
from those that are polynomially large in N . For fixed N any large number can be
written as a very large coefficient times a polynomially bounded quantity, so for a
fixed but large N , one examines whether or not the exponent and the coefficients
are both less than some fixed bounds.

5 In Eq. (1) the use of modulo-two addition is not necessary, but using modulo-
two addition is extremely convenient when one is characterizing the properties of
the functions obtained when the RG transformation is applied.

6 Some non-generic functions are also hard to compute, but their presence or
absence is irrelevant to the question of whether a typical Boolean function in which
the function values are chosen randomly can be computed efficiently.



4

randomly, then the probability of obtaining, e.g., a function whose output is
one for all inputs is exactly the same as obtaining any other specific function,
the constant function is atypical. The RG approach identifies whether or not
an individual function is in the phase of generic Boolean functions.

The relationships between phases as defined here and computational com-
plexity classes are not simple. It is shown below that there are problems that
are in P that correspond to functions that are in the generic phase, and
some non-generic functions correspond to problems that are not in P. The
possible utility of characterizing phases of Boolean functions to the study
of computational complexity classes arises because of the plausibility of the
conjecture that the functions in the generic phase that can be computed with
polynomially bounded resources have the property that they are close to a
phase boundary in the sense that they differ from a non-generic function on a
small fraction of input configurations. If all functions that can be computed
with polynomially bounded resources are either in a non-generic phase or
near a non-generic phase boundary, then demonstrating that P and NP are
distinct could be done if one could identify a problem in NP that gives rise
to functions that (in the limit N → ∞) are in the generic phase and also
have the property that all functions yielding the same output on almost all
the input configurations are also in the generic phase.

The paper is organized as follows. Sec. 2 defines the RG transformation
that maps a Boolean function of N variables into a Boolean function of
N − 1 variables. It also characterizes the behavior of generic Boolean func-
tions when the RG transformation is iterated repeatedly, and demonstrates
that an attracting generic fixed point (and hence a generic phase) exists,
and that functions exist that are non-generic. Sec. 3 examines the RG flows
of functions in the generic phase, in particular how many iterations of the
renormalization transformation are required to transform a function whose
outputs are chosen independently and randomly to be one or zero with proba-
bilities p and 1−p to one that is indistinguishable from a fixed point function,
for which the two outputs are equally probable. In Sec. 4 the relationships be-
tween phases and computational complexity classes are explored. It is shown
that the generic phase appears to include functions of N variables that can
be computed with resources bounded by a polynomial of N , and that there
are non-generic functions that cannot be computed with resources bounded
by a polynomial of N . It is conjectured that every function corresponding
to a problem that is in P is close to being non-generic in the sense that it
can be written as the sum of a non-generic function plus a contribution that
is nonzero on a small fraction of the input configurations. Such a function
can be identified by checking whether or not each of the functions whose
outputs differ from the original one on a small fraction of the input config-
urations is non-generic, so if the conjecture holds, it provides a means to
demonstrate that an individual function cannot be computed with resources
bounded polynomially in N . Sec. 5 discusses a specific class of Boolean func-
tions that correspond to problems that are in NP and have properties that
make it plausible that they are in the generic phase and also not near a
non-generic phase boundary. Sec. 6 discusses the results in the framework of
phase transitions in condensed matter systems, which renormalization group
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transformations are typically used to study, and also discusses how the strat-
egy discussed here avoids the difficulties of “natural proofs” for addressing
the P versus NP problem that are described in Ref. [38]. Sec. 7 presents the
conclusions. Appendix A presents the arguments for why it is plausible that
most functions that can be computed with polynomially bounded resources
can be written as a non-generic function plus a term that is nonzero for
a small fraction of input configurations. Appendix B shows that almost all
Boolean functions cannot be written either as a low-order polynomial plus a
term that is nonzero on a small fraction of the inputs or as a function that
can be computed with resources bounded by a polynomial of N plus a term
that is nonzero on a small fraction of the inputs.

2 Renormalization group transformation

The renormalization group (RG) procedure we define takes a given function of
N variables and generates a function of N−1 variables [19, 24, 47, 49, 50]. The
variable that is eliminated is called the “decimated” variable. The procedure
can be iterated, mapping a function of N − 1 variables into one of N − 2
variables, etc.

The RG transformation proposed here specifies whether the original func-
tion’s value changes if a given input variable is changed. Specifically, given a
function f(x1, . . . , xN ) ≡ f(x), we define

gi1(x1, . . . , xi1−1, xi1+1, . . . , xN ) ≡ gi1(x
′)

= f(x1, . . . , xi1−1, 0, xi1+1, . . . , xN ) ⊕ f(x1, . . . , xi1−1, 1, xi1+1, . . . , xN ),(2)

where ⊕ denotes addition modulo two,7 and the vector x′ denotes the set of
undecimated variables. The function gi1(x1, . . . , xi1−1, xi1+1, . . . , xN ) is one
if the output of the function f changes when the value of the decimated
variable xi1 is changed and zero if it does not. Once gi1 has been obtained,
the procedure can be repeated and one can define gi1,i2 as

gi1,i2(x1, . . . , xi1−1, xi1+1, . . . , xi2−1, xi2+1, xN ) ≡ gi1,i2(x
′)

= gi1(x1, . . . , xi2−1, 0, xi2+1, . . . , xN )
⊕ gi1(x1, . . . , xi2−1, 1, xi2+1, . . . , xN )

= f(x1, . . . , xi1−1, 0, xi1+1, . . . , xi2−1, 0, xi2+1, . . . , xN )
⊕ f(x1, . . . , xi1−1, 0, xi1+1, . . . , xi2−1, 1, xi2+1, . . . , xN )
⊕ f(x1, . . . , xi1−1, 1, xi1+1, . . . , xi2−1, 0, xi2+1, . . . , xN )
⊕ f(x1, . . . , xi1−1, 1, xi1+1, . . . , xi2−1, 1, xi2+1, . . . , xN ) . (3)

It is straightforward to verify that the function gxi1 ,...,xim
(x′) obtained by

decimating the m variables xi1 , . . . , xim
does not depend on the order in

which the variables are decimated.
7 These polynomials have a natural interpretation in terms of arithmetic

circuits, which are Boolean circuits composed of two types of gates, AND
and EXCLUSIVE-OR. See, e.g., Raz, R.: Lecture notes on arithmetic circuits,
http://www.cs.mcgill.ca/∼denis/notes05.ps.
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Fig. 1 Results of renormalization group (RG) transformation applied to functions
in the generic phase. In both panels, the original function (top) is constructed by
choosing the output value for each input configuration of N = 14 variables inde-
pendently and pseudo-randomly to be 1 with probability p and 0 with probability
1− p. Configurations are shown after each two RG steps, so that in the four plots
for each function, N takes on the values 14, 12, 10, and 8. In the plots, the x-
coordinates are the binary expansions of the values of the first N/2 variables, and
the y-coordinates are the binary expansions of the last N/2 variables. Left: Initial
function has p = 1/2, characteristic of the generic fixed point. Right: Initial func-
tion has p = 0.04; the “flow” towards p = 1/2 as the RG is iterated is apparent
(the fractions of nonzero outputs in the four plots in the right panel are 0.0402,
0.141, 0.388, and 0.473).

2.1 Generic phase

First we examine functions for which each coefficient A
(0)
α1,α2,...,αN in Eq. (1)

is an independent random variable chosen to be one with probability p0 and
zero with probability q0 = 1− p0, where 0 < p0 < 1. Numerical results of the
RG procedure applied to such functions are shown in figure 1.

The coefficients A
(i1)
x1,...,xi1−1,xi1+1,...,xN that characterize the function gi1(x

′)
obtained by decimating the variable i1 via Eq. (2) are

A(i1)
x1,...,xi1−1,xi1+1,...,xN

= Ax1,...,xi1−1,0,xi1+1,...,xN
⊕Ax1,...,xi1−1,1,xi1+1,...,xN

.(4)

The original A(0)’s are independent random variables, so it follows that the
A(i1)’s are independent random variables that are one with probability p1 =
2p0q0 and zero with probability 1 − p1. After decimating ` variables, the
coefficients are still independent random variables, and they are now one
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with probability p` and zero with probability 1− p`, where the p` satisfy

p`+1 = 2p`(1− p`) . (5)

Solving Eq. (5) yields

p` =
1
2

(
1− (1− 2p0)2

`
)

. (6)

For any p0 satisfying 0 < p0 < 1, the values of the p` flow as ` increases and
eventually approach the fixed-point value of 1/2, behavior that is analogous
to that displayed by the parameters used to specify the partition functions
describing thermodynamic phases in statistical mechanical systems [19], and
so we interpret this behavior as evidence that there is a phase of generic
Boolean functions.

It is consistent to call the phase generic because it is likely that the
attracting fixed point describes almost all Boolean functions. Evidence for
this is that Fε, the fraction of Boolean functions that have an output of one
on a fraction (1 + ε)/2 of the Ω ≡ 2N input configurations, is

Fε =
1

2Ω

Ω![
Ω
2 (1 + ε)

]
!
[

Ω
2 (1− ε)

]
!

≈
√

2
πΩ

e−ε2Ω/2 , (7)

where the second line holds for ε � 1. Therefore, Fε vanishes as a double
exponential of N whenever ε > 2−βN with β < 1/2. This property is charac-
teristic of functions with p = 1/2. We choose to define the generic phase in
terms of the results obtained after N/2 steps of the RG process. With this
definition, functions in which the original A(0)’s are chosen randomly and
independently with p0 > 2−N( 1

2−ε), with ε infinitesimal, are in the generic
phase. 8 Conversely, functions that yield a nonzero output for a fraction of
input configurations less than C2−N( 1

2+ε) or greater than 1 − C2−N( 1
2+ε),

with C a constant of order unity, are nongeneric. 9

For functions in the generic phase, all the functions generated by the
renormalization procedure applied more than N/2 times but which still have
of order N undecimated variables have the property that their output is
nonzero for a fraction of input configurations that deviates from 1/2 by an
amount that is exponentially small in N . For any η � N that is greater than
N/2, the probability that all of the N !/[η!(N − η)!] functions yielded by η
renormalizations yield one for a fraction of the inputs that differs from 1/2
by an amount less than 2−βN differs from unity by an amount that vanishes
as a double exponential of N for some positive β bounded away from zero.

8 This result follows by writing Eq. (5) as p`+1−p` = p`−2p2
` and assuming that

the variation with ` is slow, so that it may be approximated using the differential
equation dp(`)/d` = p(`) − 2p(`)2, which for p0 < 1/2 has the solution p(`) =
1/[2 + ((1− 2p0)/p0) exp(−`)] ≈ 1/(2 + exp(−`)/p0).

9 This follows because the inequality p`+1 ≤ 2p` holds even for non-random
functions, where p` is defined as the fraction of input configurations for which the
output is one.
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2.2 Non-generic functions

We next demonstrate that Boolean functions that can be written as polyno-
mials of degree of ξ or less with ξ < N have the property that they yield zero
after ξ + 1 renormalizations, for any choice of the decimated variables.

First we examine a simple example. The parity function P(x1, . . . , xN ),
which is 1 if an odd number of input variables are 1 and 0 if an even number
of the input variables are 1 [18, 21, 48, 51], can be written as

P(x1, . . . , xN ) = x1 ⊕ x2 ⊕ . . .⊕ xN . (8)

There are many less efficient ways to write the parity function, but the result
of the renormalization procedure does not depend on how one has chosen
to write the function, since it can be computed knowing only the values of
the function for all different input configurations. For the parity function,
one finds, for any choice of decimated variables xj1 and xj2 , the functions
resulting from one and two renormalizations, gP

j1
(x′) and gP

ij1,j2
(x′), are:

gP
j1(x

′) = xj1 ⊕ (1− xj1) = 1 ;

gP
ij1,j2

(x′) = 0 .

Thus, applying the renormalization transformation to the parity function
yields zero after two iterations, in contrast to the behavior of a generic
Boolean function.

More generally, for any term of the form T = yi1yi2 . . . yim , with yi = xi

or 1 − xi, the quantity T (xi = 1) ⊕ T (xi = 0) is either zero (if yi does not
occur in T ) or else is the product of m−1 instead of m of the y’s; for example

T (yi1 = 1)⊕ T (yi1 = 0) = yi2 . . . yim
. (9)

Because the effect of the RG procedure on the sum of terms is equal to the
sum of the results of the transformation applied to the individual terms, any
function that is the mod-2 sum of terms that are all products of fewer than m
y’s will yield zero after m renormalizations, for any choice of the decimated
variables. It follows immediately that a function that is a polynomial of degree
ξ or less has the property that applying the RG transformation to it ξ + 1
times yields zero for any choice of the decimated variables. This behavior is
illustrated in the left panel of Fig. 2.

Next we note that the sum of a low-order polynomial and a small pertur-
bation (a function that is nonzero on a very small fraction of input configu-
rations) is a non-generic function. This follows because the renormalization
group transformation is linear: if a function f(x1, . . . , xN ) can be written as
the sum of a polynomial of order ξ with ξ < N/2 and a term that is nonzero
on a fraction of input configurations that is less than 2−

N
2 (1+ε), then the

functions resulting after N/2 renormalizations are nonzero on a fraction of
inputs that is less than 2−εN .

Thus we have demonstrated that the RG transformation distinguishes
generic Boolean functions from functions that can be written as polynomials
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Fig. 2 Results of renormalization group (RG) transformation applied to two
functions that are in nongeneric phases. In both panels, the original function
(top) depends on N = 14 variables. Configurations are shown after every other
RG step. In the plots, the x-coordinates are the binary expansions of the val-
ues of the first N/2 variables, and the y-coordinates are the binary expansion
of the last N/2 variables. Left: Initial function is a third order polynomial,
f = a0 +

P
i bixi +

P
ij cijxixj +

P
ijk dijkxixjxk, where the sums are all modulo

two, and each coefficient is chosen to be zero or one pseudo-randomly with equal
probability. The fixed point is the function in which the output is zero for every
input configuration. Right: Initial function is one if the sum of the input values is
divisible by 3, and zero otherwise; after one iteration a fixed point is reached in
which the output value is unity for 2/3 of the input configurations, clearly different
than that for a generic function, where the fraction of input configurations yielding
nonzero output is very close to 1/2.

of degree ξ or less, when ξ < N . Moreover, perturbing one of these func-
tions slightly by adding a component that is nonzero on an exponentially
small fraction of input configurations yields a nongeneric function. The qual-
itatively different behavior upon renormalization of polynomials of degree ξ
from generic Boolean functions can be interpreted as evidence that these two
classes of functions are in different phases.

We now demonstrate that the RG method also identifies as non-generic
functions that depend on a composite quantity such as the arithmetic sum
of the variables. Efficiently computable functions with this property include
MAJORITY (which is one if more than half the inputs are set to one, and
zero otherwise) [37] and DIVISIBILITY MOD p (which is one if the num-
ber of inputs that are set to one is divisible by an odd prime p and zero
otherwise) [42, 43]. The renormalization group approach distinguishes such
functions from generic Boolean functions because the output of all the func-
tions in the sequence is constrained to be identical for very large sets of input
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configurations. We first show that MAJORITY and DIVISIBILITY MOD p
are both distinguished from a generic Boolean function by the renormaliza-
tion group procedure, and then we argue that the RG procedure distinguishes
any function of the arithmetic sum of the inputs from a generic Boolean func-
tion. We expect that the argument will be generalizable to apply to a broad
class of functions that depend on other composite quantities that are specific
combinations of the input variables.

First we consider the behavior when the RG transformation is applied to
DIVISIBILITY MOD 3. Since this function is nonzero when the arithmetic
sum

∑N
j=1 xj is divisible by 3, changing an input xi changes the output value

when the sum of the other input variables is either zero or two. Thus, the
renormalized function gi(x′) is nonzero for any i on a fraction of the input
configurations that is very close to 2/3. Every succeeding renormalization also
yields a function that is nonzero when the sum of the remaining variables
is either zero or two. This behavior differs from that of a generic Boolean
function, in which the renormalized functions are nonzero for a fraction of
inputs that is very close to 1/2. More generally, when the RG is applied to
DIVISIBILITY MOD p, with p an odd prime, the behavior of the sequence
of functions is determined by the value of the mod p remainder of the undeci-
mated variables. The functions in the sequence yield the output one when the
remainder mod p takes on certain values, and typically, after a small number
of iterations, these values cycle with a finite period. Therefore, the fraction of
input configurations that lead to a nonzero input essentially cycles also (the
cycling is not exact only because the fraction of input configurations with a
given value of the remainder mod p changes very slightly with N), and, since
p is odd, none of the fractions in the cycle is close to 1/2.

The behavior obtained when the RG procedure is applied to the MAJOR-
ITY function is also significantly different from that of a generic Boolean
function. The first renormalization step yields a function that is nonzero
when the sum of the undecimated variables is N/2− 1, and the second step
yields a function that is nonzero when the sum of the undecimated variables
is either N/2− 2 or N/2− 1. The functions obtained after j decimations are
nonzero on a fraction of inputs that is bounded above by Cj/

√
N , where C

is a constant of order unity, so long as j �
√

N . The original function is thus
identified as non-generic because so long as the number of renormalizations
applied is much smaller than

√
N the renormalized functions are all nonzero

on a fraction of input configurations that is much less than 1/2.
Next we argue that the renormalization group approach distinguishes any

function of the arithmetic sum of the inputs from a generic Boolean func-
tion. The intuition underlying the argument is that all the functions in the
sequence depend only on the arithmetic sum of the undecimated variables,
and when the number of undecimated variables is N , the number of configu-
rations of the undecimated variables whose arithmetic sum is constrained to
be S, is N !/S!(N − S)!. Using Stirling’s series [34], one can show explicitly
that when N is large, then the number of configurations with a given value
of S is a polynomial in 1/N times 2N for a number of values of S that grows
as the square root of N . Therefore, the differences in the fraction of config-
urations yielding different values of N decay polynomially with N , and the



11

fraction of input configurations yielding one should either be exactly 1/2 or
else must deviate from 1/2 by an amount that decreases only polynomially
with N .

Many other nongeneric functions exist that are not described in this sec-
tion, and exhaustive enumeration of all such functions is not likely to be
feasible. The possible utility of being able to identify functions as nongeneric
using the RG method depends on whether one can relate phases to other
methods of classifying Boolean functions. This question is addressed in Sec. 4
below and in the appendices.

3 Renormalization group flows within the generic phase.

In this section we investigate the behavior of a simple subset of the renormal-
ization group flows in the generic phase. We consider the class of functions
in which the output value for a given input configuration is chosen indepen-
dently and randomly to be one with probability p and zero with probability
1−p. A function at the generic fixed point has p = 1/2, and yields an output
of one on a fraction of input configurations that is 1/2 + O(2−N/2) (reflect-
ing the usual square-root fluctuations for a random process).10 We ask how
many renormalizations of a function with p 6= 1/2 are required before the
renormalized value of p is indistinguishable from 1/2.

This question can be addressed using Eq. (6), an explicit formula for pj ,
the value of p after the jth application of the renormalization transformation.
If one is interested in the behavior for large j, which is appropriate here
because one is asking when pj becomes exponentially close to 1/2, one can
write

pj =
1
2

(
1− (1− 2p0)2

j
)

=
1
2

(
1−

(
1− 2p02j

2j

)2j)

≈ 1
2

(
1− e−2p02

j
)

. (10)

We wish to find j∗ so that |pj−1/2| < δ for all j > j∗, where δ = O(
√

1/Ω),
with Ω = 2N . We find

1
2
e−2p02

j∗

= δ

⇒ j∗ = log2

(
ln

1
δ

)
− log2 (p0) . (11)

When p0 is no smaller than Nz for some z < ∞, then j∗ grows logarithmically
with N for any δ ≥ 1/2N . When p0 ∝ 2−Ny

for some y > 0, then j∗ grows
as Ny. With our definition that the generic phase consists of functions with
j∗ < N/2, functions with 2−N/2 < p0 < 1− 2−N/2 are in the generic phase.
10 As shown in the previous section, the value p = 1/2 is special not only because
it is the fixed point value, but also because almost all Boolean functions yield an
output of one on a fraction of outputs that is 1/2 + O(2−N/2).
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4 Relationships between the phase of a function and the
computational resources needed to compute the function.

This section addresses the relationships between the phase of a Boolean func-
tion and whether or not the value of the function can be determined with
computational resources bounded by a polynomial of N , the number of input
variables.

We argue here that there are functions in the generic phase that can
be computed with polynomially bounded resources, and that there are non-
generic functions that cannot be computed with polynomially bounded re-
sources. Some functions that can be computed efficiently that we expect to
be in the generic phase are those of the form

N∑
j=1

k∗(j)∑
k=1

yi1(k) . . . yij(k) , (12)

where the sums are modulo two, each yi(k) is either xi(k) or 1 − xi(k), and
each k∗(j) grows no faster than polynomially with N . These functions are the
sum of polynomially many terms that are each products of j factors, with
j = 1, . . . , N . A term with j factors is nonzero on the fraction 2−j of the
input configurations, and this fraction can increase by a factor of two at each
decimation. The terms with j ≤ ξ yield zero after ξ + 1 renormalizations,
but after ξ + 1 renormalizations the terms with j = ξ + 1 + m are nonzero
on the fraction 2−m of the inputs, which need not be small. Therefore, for
any number of renormalizations up to N/2 it is possible for the renormal-
ized functions to yield a nonzero output for very close to half of the input
configurations.

Conversely, the number of non-generic functions of N variables is much
greater than the number of functions that can be computed with resources
bounded polynomially in N , and so some non-generic functions must be as-
sociated with problems that are not in P. This can be seen by noting that the
number of polynomials of N variables with degree ξ is 2

Pξ
k=1 N !/(ξ!(N−ξ)!),11

which, when ξ � N , ∼ 2(Ne/ξ)ξ

. When ξ scales as a fractional power of
N , this is much larger than the number of functions that can be computed
with resources bounded by a polynomial of N [39]. Therefore, since we de-
fine a phase based on the behavior yielded by repeated renormalization, the
functions that correspond to problems in P do not comprise a phase.

The conjectured relevance of phases for yielding insight into complexity
classes relies on noting that a product of M variables is nonzero for only a
fraction 2−M of the input configurations (for example, the term x1x2 . . . xM

is nonzero only for input configurations that have x1 = x2 = . . . = xM = 1).

11 To obtain the number of polynomials of degree ξ or less, note that each can be
written as a sum of terms of the form xi1 . . . xik for all k ≤ ξ. There are N !/k!(N −
k)! ways to choose k indices out of N possibilities, so there are

Pξ
k=1 N !/k!(N−k)!

different possible terms in the polynomial, each of which occurs with a coefficient of

either one or zero. Thus, there are 2
Pξ

k=1 N !/k!(N−k)! different polynomials of degree
ξ or less.
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The sum of a polynomially large number t(N) of terms that are the product
of M variables is nonzero only on a fraction of inputs that is bounded above
by t(N)/2M . A typical Boolean function is obtained by adding up a number
of terms that grows exponentially with N , each of which is nonzero on a
fraction of the inputs that is exponentially small in N . This procedure is not
available for functions for which the number of operations that can be used
to construct them is bounded above by a polynomial of N. Functions that
are constructed in a polynomially bounded number of operations that yield
an output that is nonzero on a fraction of input configurations is close to
1/2 either have some terms with a small number of factors or else involve a
delicate balancing of sums and products to keep the fraction of configurations
on which the terms are nonzero from becoming too small. It is plausible that
if delicate balancing has occurred, the resulting function would be nongeneric.
We conjecture that the any Boolean function of N variables f(x1, . . . , xN )
that can be computed with polynomially bounded resources can be written
as the sum:

f(x1, . . . , xN ) = N (x1, . . . , xN )⊕R(x1, . . . , xN ) , (13)

whereN (x1, . . . , xN ) is a nongeneric function and the remainder termR(x1, . . . , xN )
is nonzero on a fraction of input configurations that is bounded above by
C2−ANB

, where C, A, and B are positive constants bounded away from zero.
Appendix A presents arguments to support this conjecture, while Appendix
B shows that almost all Boolean functions do not obey Eq. (13).

Using the RG transformation to identify functions that satisfy Eq. (13) is
not entirely straightforward — the obvious strategy, renormalizing ξ+1 times
and checking whether or not each function in the sequence yields a nonzero
output on a fraction of the input configurations that is exponentially close to
1/2, fails because renormalization yields exponential growth in the fraction of
input configurations for which the remainder term is nonzero. For instance,
if N (x1, . . . , xN ) is a polynomial of order ξ with ξ ∝ Ny with 0 < y < 1
and R(x1, . . . , xN ) is nonzero on a fraction of input configurations that is of
order 2−ANy

, then, because the remainder term grows upon renormalization,
all the functions obtained by multiple renormalization steps are nonzero on a
substantial fraction of the input configurations. To circumvent the difficulty
caused by the growth of the remainder term upon renormalization, one can
examine all functions that differ from the function in question on a small
fraction of input configurations. If the original function obeys Eq. (13), then
one of the “perturbed” functions will have a remainder term that is zero,
and applying the renormalization transformation to it ξ +1 times yields zero
for all choices of the decimated variables. A similar procedure can be used to
identify other functions that can be written as sums of nongeneric functions
and small generic pieces — one can examine all functions that yield the same
output for all but a small fraction of the input configurations and determine
whether or not one or more of those functions exhibits nongeneric behavior
upon renormalization.
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5 Application of RG to the Kauffman net predecessor problem.

This section discusses Kaufmann nets, a specific class of dynamical models
that we will use to define a function that we propose as a candidate for
investigating fundamental differences between functions that correspond to
problems that are in P and functions that correspond to problems that are
in NP. A Kauffman net (also called a Boolean network or an N-K model) [2,
25, 29] has N elements {σ1, σ2, . . . , σN}, each of which is a Boolean variable
σi ∈ {0, 1}, i = 1, 2, . . . , N . The value of the ith element σi at time t + 1
is determined by the value of its k inputs j1(i), j2(i), . . . , jK(i) at time t,
σj1(i)(t), σj2(i)(t), . . ., σjK(i)(t), via

σi(t + 1) = fi(σj1(i)(t), σj2(i)(t), . . . , σjK(i)(t)) , (14)

where each fi is a randomly chosen Boolean function that depends on K
arguments. The K inputs for each element and the Boolean functions fi

are all chosen randomly before beginning and then fixed throughout the
computation. We will denote the N Eqs. (14) for all the elements as {σ(t +
1)} = f({σ(t)}).

Kauffman nets have been studied because of their relevance to physics [4–
6, 10, 36], social sciences [3, 22], and biology (Kauffman’s original motivation
was to study gene regulation and control [25–30, 44]). The model exhibits a
phase transition as K is varied; K < 2 is a “frozen” phase, while K > 2
exhibits chaotic dynamics.

Kauffman nets with any K ≤ A log2 N can be specified using a number of
bits that grows as a polynomial of N , and calculation of a successor configu-
ration can be done with polynomially bounded resources. In contrast, when
K ≥ 3, all known algorithms for determining whether a given configuration
has a predecessor appear to require computational resources that grow ex-
ponentially with N [20]. Our particular interest here is in characterizing the
predecessor problem when K ∝ log N .

When K = N , although specifying the model requires space that grows
exponentially with N, one can still ask how many evaluations of the Boolean
functions are required to determine whether such a predecessor exists. A
candidate solution can be verified with a single evaluation of each Kauffman
net function, but because in this case each configuration is a truly random
function of its predecessor[15–17], the only way to determine whether a pre-
decessor exists is to check all of the exponentially many candidates [8]. In
the parlance of computer science, the Kauffman net with K = N is an oracle
relative to which P and NP are not equal [8].

When K ∝ log N , the successor function of a Kauffman net is non-generic.
This can be seen by noting that each output element only depends on K
input elements, so changing an input element must affect fewer than K of
the N output bits, and applying K renormalizations to the successor function
must yield zero. Conversely, since the predecessor problem is nonlocal, it is
extremely plausible that whether or not changing one element of the target
configuration affects whether a predecessor exists depends on the values of a
large number of other elements in the successor [13]. However, it is not known
whether the function that is one if a given configuration has a predecessor
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and zero if not is in the generic phase, and if so, how far from a non-generic
phase boundary it is.

The predecessor function is very unlikely to have an output value of one
for a fraction of input configurations that is very close to 1/2, but it is ex-
tremely plausible that this fraction is no smaller than 2−Nz

for some z < 1.
When K = N , as N → ∞ the probability that a configuration has no pre-
decessor approaches 1/e; this follows because the successor to each of the
2N configurations is chosen independently and randomly, so that the proba-
bility that a configuration is not the successor to any input configuration is
(1 − 1/2N )2

N

, which approaches 1/e as N → ∞ [8]. When K is finite, the
fraction of configurations with predecessors decreases exponentially with N ,
because the probability that a randomly chosen configuration has a predeces-
sor is bounded above by the value (1−2−(K+1))N . This bound follows because
with probability 2−K the function determining the value of any single element
is independent of the values of all its inputs, and for such a function, with
probability 1/2 the output value will be inconsistent with the target [14]. For
fixed K this upper bound on the probability that a randomly chosen config-
uration has a predecessor vanishes as N → ∞, while when K = A log2(N),
this bound approaches 1 − 1

2N−(A−1), which approaches unity as N → ∞
when A > 1. Thus, when K ∝ log N , it is plausible that as N → ∞ the
fraction of configurations that have predecessors is either nonzero or else de-
cays more slowly than exponentially in N . This condition is necessary but
not sufficient for the predecessor function to be in the generic phase and also
far from a non-generic phase boundary. One must also show that performing
N/2 RG iterations yields a function that is nonzero on a fraction of input
configurations that differs from 1/2 by an amount that is exponentially small
in N , which essentially requires that correlations between the function values
for different input configurations become negligible as the RG transformation
is iterated. It is plausible that the extreme sensitivity of the Kauffman net
predecessor problem to small changes in the problem statement [13] could
be a useful property to exploit in demonstrating that correlations between
the function values for different input configurations can be neglected, but
demonstrating this is a challenging outstanding problem.

6 Discussion

This paper presents a renormalization group approach that distinguishes
generic Boolean functions of N variables from non-generic functions, exam-
ples of which include those that can be written as a polynomial of degree ξ,
with ξ � N , and also those that depend only on composite quantities such as
the arithmetic sum of all the input variables. The method provides a consis-
tent framework for identifying many different functions as non-generic—one
examines whether every function in the sequence of renormalized functions
yields an output of one on a fraction of input configurations that differs from
1/2 by an amount that is exponentially small in N . The identification of
phases of Boolean functions is useful because it provides a method for deter-
mining whether an individual function has properties characteristic of typical
randomly chosen functions.
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The procedure used here of using the behavior yielded by a renormaliza-
tion group transformation to identify different phases of Boolean functions is
entirely analogous to a procedure presented by Wilson [50] to identify differ-
ent thermodynamic phases of the Ising model, used to describe magnetism
in solids. Wilson showed that individual configurations of Ising models could
be identified as being in either a ferromagnetic phase or paramagnetic phase
by repeatedly eliminating spins and examining the resulting configurations
— if after many renormalizations all the spins are aligned, then the system
is in the ferromagnetic phase, while if after many renormalizations the spin
orientations are random, then the system is in the paramagnetic phase.

The relationship between phases and computational complexity classes is
not simple. Functions computable with polynomially bounded resources do
not comprise a phase — there are functions that are in a non-generic phase
that cannot be computed with polynomially bounded resources, and there
are functions that can be computed with polynomially bounded resources
that are in the generic phase. The possibility of using the RG approach to
demonstrate that a given Boolean function arises from a problem that is not
in P arises from the conjecture that the functions that can be computed with
polynomially bounded resources that are in the generic phase are all close
to a phase boundary of a non-generic phase. If this conjecture holds, then
this work provides a natural framework for understanding why the P versus
NP question is so difficult: distinguishing computational complexity classes
involves finding the quantitative location of functions in the phase diagram,
a property that is not robust upon renormalization.

Based on the analogy between RG results for magnets and the qual-
itatively different behavior of the renormalization group flows for generic
Boolean functions and for nongeneric functions such as low-degree polyno-
mials and functions of composite variables, we propose the schematic phase
diagram for Boolean functions shown in Fig. 3.

If this conjecture holds, then the procedure described here leads to a spe-
cific algorithmic approach to the P versus NP question — if a given function
that is obtained as the answer to a problem in NP fails to be close enough
to a non-generic phase, then one has shown that P is not equal to NP. Sec. 5
presents a specific family of candidate functions that may be useful for imple-
menting the strategy proposed in this paper (see also [13]), but the strategy
can be implemented for any candidate function. Appendix A argues that the
construction of a function that can be computed with polynomially bounded
resources that does not satisfy Eq. (13) requires delicate balancing that leads
to nongenericity (such as the existence of a composite variable), but the ar-
gument is only speculative. Progress on this issue is the key to using the RG
approach to be able to address the P versus NP question. Appendix B shows
that almost all Boolean functions are far from all low-order polynomials and
also from all functions that can be computed with polynomially bounded
resources.

The strategy discussed in Sec. 4 for using the renormalization group
approach to show that a function cannot be computed with polynomially
bounded resources requires determining not only that it is not in a non-
generic phase but also that it is not near a phase boundary, a task that
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Fig. 3 (color online) Schematic phase diagram for Boolean functions. Within the
set of all Boolean functions of N Boolean variables as N → ∞, there is a generic
phase, and there are also many non-generic phases, two of which are functions that
can be written as polynomials of order no greater than ξ with ξ � N , and functions
of composite variables such as the arithmetic sum of all the inputs. As discussed in
Appendix B, almost all Boolean functions are generic and also far from any non-
generic phase. Though P does not correspond to a phase, Appendix A argues for
the conjecture that all functions that arise from problems that are in P are either
non-generic or else very close to a phase boundary of a non-generic phase.

appears to require resources that grow faster than exponentially with N .
This superexponential scaling means that the procedure proposed here can-
not be used to break pseudorandom number generators, a difficulty that
would arise if the procedure were a “natural proof” that could be imple-
mented with resources that scale no faster than exponentially with N [38].
However, direct numerical implementation of the procedure is not likely to
be computationally feasible.

These work leaves many unanswered questions. One important one is, of
course, whether the conjecture that all functions that can be computed with
polynomially bounded resources are close to a non-generic phase boundary
is valid. Another is whether the Kauffman net predecessor problem is in the
generic phase and far from any generic phase boundary (that is, whether a
number of renormalizations of order log(N) yields a series of functions that
all yield an output of one on a fraction of input configurations that differs
from 1/2 by an amount that decays exponentially with N). But many other
questions not aimed at understanding computational complexity classes are
also unanswered at this stage. We do not know how to estimate of the number
of functions that are in non-generic phases and therefore have not shown
that almost all functions are generic (though this is extremely reasonable
intuitively). Characterizing the relevant and irrelevant operators of the RG
would also be extremely useful and important, for it would provide a method
for, e.g., demonstrating that certain correlations between function values
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for different input configurations were irrelevant operators and hence would
disappear at the RG fixed point.

7 Conclusions

This paper presents a renormalization group approach that can be applied
to Boolean functions of N Boolean variables. It can be used to identify a
generic phase of Boolean functions and distinguish functions in this phase
from nongeneric functions such as polynomials of degree ξ with ξ � N and
functions that depends only on a composite variable such as the arithmetic
sum of the values of the individual inputs. It is shown that phases do not
correspond to computational complexity classes, but understanding the rela-
tionships between generic and non-generic phases may yield new insight into
the distinctions between computational complexity classes.
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Appendix A Characterization of the functions
that can be constructed with a polynomially
large number of operations.

In this appendix we examine the properties of functions that can be
computed with polynomially bounded resources, and we present arguments
to support the conjecture that all such functions can written in the form
Eq. (13), which is the sum of a nongeneric function plus a correction term
that is nonzero on a fraction of input configurations that is less than C2−ANB

for positive C, A, and B bounded away from zero. To motivate this conjec-
ture, we first discuss the intuitive motivation for thinking that functions that
can be computed with polynomially bounded resources are all close to non-
generic functions.

Any Boolean function can be written as the result of a computation per-
formed by a set of AND and XOR (exclusive-or) gates [46]. There is a sig-
nificant difference in computational power of a set of gates of a given size
depending on whether or not the output of the gates can be used as the input
for more than one other gate (in other words, whether or not the gates have
fan-out that is greater than or equal to one). For example, it has been proven
that computing DIVISIBILITY MOD 3 requires exponentially many gates
if the gate fan-out is one but polynomially many gates if the gate fan-out is
two or more [42, 43, 46]. Problems that are in P give rise to functions that
can be computed using a set of gates whose size scales as a polynomial of N ,
the size of the input, when the gates have fanout of two or more. Using the
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output of some gates as inputs of other gates can reduce the number of gates
required to perform a given computation from exponential to polynomial in
N only if some outputs are reused many times, 12 meaning that the same
composite quantity were to enter into many different intermediate results in
the calculation. This observation leads to the conjecture that a function that
can be computed with polynomially many gates either is close to a low-order
polynomial or else contains a dependence on particular fixed combinations of
variables that enter a large number of times and hence lead to non-generic
behavior.

To argue further why it is plausible that all functions that can be com-
puted with resources bounded by a polynomial of N satisfy Eq. (13), we
consider the process by which functions can be constructed. We first exam-
ine functions that can be computed with polynomially bounded resources
that are close to low-order polynomials, and then examine known functions
that can be computed with polynomially bounded resources that are not
approximable by low-order polynomials, arguing that their construction in-
volves delicate balancing that may give rise to nongeneric properties, one
example being the emergence of a composite variable on which the function
depends.

First we show that a starting polynomial that is the sum of polynomially
many terms whose factors are all either xi or (1 − xi) satisfies Eq. (13).
Then we show that the sum of two functions that each obey Eq. (13) also
satisfies Eq. (13), and also that the coefficient multiplying the correction term
grows sufficiently slowly that the bound remains true even after a number
of additions that grows polynomially with N . We then consider products
of such functions. The behavior is more complicated, but we argue that a
similar decomposition works because one of two things will happen: either
terms with a large number of products will be nonzero on a small fraction of
input configurations, or else special balancing of terms will have taken place,
which plausibly gives rise to nongeneric behavior.

First consider a polynomial A(x1, . . . , xN ) that is the mod-2 sum of poly-
nomially many terms that are all of the form yi1 . . . yim

, where yi is either xi

or 1− xi:

A(x1, . . . , xN ) = C0 +
N∑

η=1

Mη∑
kη=1

yi1(η,kη) . . . yiη(η,kη) . (15)

Here, C0 is a constant, η denotes the number of factors of yi in a term,
kη is the index labeling the different terms with η factors, ij(η, kη) denotes
the index of the jth factor in the term kη, and each Mη, the number of
terms with η factors, is bounded above by a polynomial of N . We will obtain
bounds on the number of configurations for which the remainder is nonzero by
considering standard addition instead of modulo-two addition, which means
that we will overcount by including configurations for which an even number
of terms in the polynomial expansion are nonzero. Each term with η factors
12 A fan-out of two is sufficient for generating the same output a large number of
times because one of the outputs could be the input of a gate that takes the AND
of that input and one, yielding two more outputs with the same value.



20

is nonzero only on a fraction 2−η of the inputs. Therefore, if we define ρA(η)
to be the fraction of inputs of A(x1, . . . , xN ) for which the sum of all the
terms with η factors is nonzero, we have

ρA(η) ≤ CA2−αη , (16)

for constant CA and α = 1
2 − ε, with ε infinitesimal. If one chooses η ∝ NB

for some B > 0, then Eq. (13) holds.
Now consider the addition of two functions F1(x1, . . . , xN ) and F2(x1, . . . , xN )

with remainder termsR1 andR∈ that are each less than 2NB

for some B > 0.
Again we use standard addition instead of modulo-two addition, and note
that because the sum RS(x1, . . . , xN ) = R1(x1, . . . , xN ) +R2(x1, . . . , xN ) is
nonzero only if one of the summands is, we have that the fraction of inputs
on which the remainder of the sum is nonzero, ρRS

, satisfies

ρRS
≤ ρR1 + ρR2 , (17)

and the sum also obeys Eq. (13). Adding polynomially many terms can in-
crease the prefactor only by an amount that grows no faster than polynomi-
ally in N , so the remainder stays exponentially small in NB .

We next consider the product of two functions that satisfy Eq. (16). We
write

A(x) = NA(x) +RA(x)
B(x) = NB(x) +RB(x) , (18)

where NA and NB are nongeneric, and RA(x) and RB(x) are both nonzero
on a fraction of inputs that is less than 2−ANB

for some positive y bounded
away from zero.

We write the product of A(x) and B(x) as

D(x) = A(x)B(x)
= (NA(x) +RA(x))(NB(x) +RB(x))
= NA(x)NB(x) +NA(x)RB(x) +RA(x)NB(x) +RA(x)RB(x) .(19)

Now NA(x)RB(x) can only be nonzero for an input configuration if RB(x) is
(this follows since a product is nonzero only if each of its factors is nonzero),
and, similarly, RA(x)RB(x) can only be nonzero for an input configura-
tion if both RA(x) and RB(x) are, so the sum of the last three terms must
be nonzero on a fraction of inputs that is less than ρRA

+ ρRB
. Therefore,

these contributions to the remainder term in the product remain exponen-
tially small in NB even after polynomially many multiplications. Therefore,
it only remains to consider the properties of the product of the nongeneric
functions NA(x)NB(x). That the product of nongeneric functions need not
be nongeneric can be seen by considering the case where the Nα(x) are low-
order polynomials (the product of O(N) low-order polynomials can be a
polynomial of order N). So for now let us assume that NA(x) and NB(x) are
polynomials of degree ξ = NB , and then write

NA(x)NB(x) = P ξ
D(x) + Rξ

D(x) , (20)
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where P ξ
D(x) is a polynomial of degree ξ and Rξ

D(x) is a remainder term that
we would like to bound.

To bound the magnitude of the remainder, let us multiply out the poly-
nomials in Eq. (20) so that they are all sums of terms that are products
of the form yi1 . . . yij

, terms that we will denote as “primitive.” Let TA be
the number of primitive terms in P ξ

A(x), and TB be the number of primitive
terms in P ξ

B(x). Note that every primitive term in the product with more
than ξ factors is nonzero on a fraction 2−ξ or less of the input configurations.

Since the total number of primitive terms in Rξ
D(x) is bounded above

by TATB , the fraction of inputs on which the sum of the terms with at
least ξ factors is nonzero is bounded above by TATB2−ξ. So long as TA and
TB are both less than exponentially large in ξ, then this remainder term is
exponentially small in ξ. The multiplication process must start with values
of TA and TB that are both bounded by a polynomial of N , but because
multiplications can be composed, we need to examine the behavior of TD,
the number of primitive terms in P ξ

D(x).
A simple upper bound for TD is obtained by ignoring all possible simpli-

fications that could reduce the total number of terms in the product:

TD ≤ TATB . (21)

This equation describes geometric growth. If M polynomials are multiplied
together, all of which have fewer than CNY terms for fixed C and Y , then
the total number of terms in the product, TM, satisfies the bound

TM ≤ (CNY )M . (22)

This bound on the number of terms in the product is much smaller than 2ξ

so long as M satisfies

M� ξ/(Y log2 N + log2 C) . (23)

A useful bound on multiplicative terms that are products of more than
ξ/(Y log2 N) factors can be obtained by exploiting the fact that the product
of two functions is nonzero for a given input only if each of the factors is.
Specifically, consider the product AB, and say that A is nonzero on a set of
MA inputs. If B is nonzero on less than a fraction σ of the inputs in this
set for some 1/2 < σ < 1, then the product AB is nonzero on fewer than
σMA inputs, and if not, then the product A(1−B) is nonzero on fewer than
(1− σ)MA inputs, and one can write AB = A + A(1−B).13

The result of M multiplications is then nonzero only on a fraction of
inputs bounded above by 2−M log2 σ. Therefore, a product of more than
13 One might worry that products of the form A1A2 . . . AM , where each Ai is
nonzero on more than half of the inputs, and M is of order N , might pose a
problem, for if one writes A1A2 . . . AM = (1 − A′

1)(1 − A′
2) . . . (1 − A′

M ), then the

number of terms with m factors is M !/(M −m)!m!, which can be as large as 2M/2

(when m = M/2). This term proliferation is not a problem if one chooses σ to be
strictly greater than 1/2 (say, 3/4), since the number of terms with a given number
of terms in the product is overwhelmed by the decrease in the fraction of inputs
for which each individual term is nonzero.
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ξ/Y log2(N) factors is nonzero on no more than a fraction 2−C̃ξ/ log2(N) of
the inputs, where C̃ is a positive constant, and the entire product can be
moved into the remainder term.

The arguments above indicate that the remainder term tends to be small
for products because the number of terms in the polynomial that are of
order ξ or less can be bounded for products of small numbers of terms,
and products of many terms are nonzero on a small enough fraction of the
input configurations that they can be considered to be part of the remainder
term. However, there are functions that can be computed with polynomially
bounded resources that do not obey Eq. (13). Two examples of functions
that can be computed efficiently that have been proven to violate Eq. (13)
are MAJORITY (which is one when more than half input variables have
been set to one and zero otherwise) [37] and DIVISIBILITY MOD p, which
is one if the sum of the input variables is divisible by an odd prime p [42, 43].
However, there are doubtless many others. The reason for considering these
simple examples is that it is instructive to consider algorithms for computing
these functions to see how they “avoid” being close to low-order polynomials.

Some pseudocode for a simple algorithm for solving DIVISIBILITY mod
3 is:

divisibility mod 3 :
start : remainder0[0] = 1, remainder1[0] = remainder2[0] = 0
for each i > 0
remainder0[i + 1] = remainder0[i] ∗ (1− xi+1)⊕ remainder2[i] ∗ xi+1

remainder1[i + 1] = remainder1[i] ∗ (1− xi+1)⊕ remainder0[i] ∗ xi+1

remainder2[i + 1] = remainder2[i] ∗ (1− xi+1)⊕ remainder1[i] ∗ xi+1

answer = remainder0[N]

The quantity remainder0[i]+remainder1[i]+remainder2[i] is unity for every
i, and the fraction of inputs for which each remainder variable is nonzero
is very close to 1/3 and does not decay exponentially with i. The fractions
do not decay or grow because the equation for each remainder for a given i
is the sum of two products. The product remainder0[i](1− xi+1) is nonzero
on half the inputs on which remainder0[i] is nonzero, and similarly for the
other term remainder2[i] ∗ xi+1. Because remainder0[i + 1] is the sum of two
terms, each of which is nonzero on almost exactly half the outputs for which
remainder0[i] is nonzero, remainder0[j] remains of order of but less than unity
for all j. It is plausible that this repeated exquisite cancellation in the algo-
rithm is necessary for the products of many terms to remain of order unity,
and underlies the non-generic behavior upon renormalization. Because con-
structing a function using polynomially many operations that cannot be writ-
ten as a low-order polynomial plus a term that is nonzero except for a small
fraction of input configurations requires a series of delicate cancellations, it
is also extremely plausible that the fraction of functions that do not sat-
isfy Eq. (13) that can be computed with polynomially bounded resources is
extremely small.

To summarize, in this appendix we discuss the restrictions on Boolean
functions of N variables that can be computed with resources that are
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bounded above by a polynomial in N . We present arguments to support
the conjecture that all functions in P can be written as the sum of a non-
generic function and a remainder term that is nonzero on a fraction of input
configurations that is bounded above by 2−Ny

for a positive value of y that
is bounded away from zero.

Appendix B: Demonstration that almost all Boolean
functions differ from functions that can be com-
puted with polynomially bounded resources on
a substantial fraction of all input configurations.

In this appendix it is shown almost all Boolean functions are far from
every function that can be computed with polynomially bounded resources.
This is done by bounding from above the number of Boolean functions that
differ from a function that can be computed with polynomially bounded
resources on a fraction ε of the input configurations, and showing that when
ε is small, it is much less than the number of Boolean functions of N variables.

The number of functions that differ from all functions that can be com-
puted with polynomially bounded resources on a fraction ε of the input con-
figurations is bounded above by the product of an upper bound to the number
of functions that can be computed with polynomially bounded resources and
an upper bound to the number of functions whose output differs from that of
a given Boolean function on a fraction ε of the input configurations. The num-
ber of functions that can be computed with polynomially bounded resources,
NP , is bounded above by NP < P1(N)P2(N), where P1(N) and P2(N) are
polynomials in N [40]. This follows by considering a Boolean circuit of AND
and OR gates, and noting that the input to each of the polynomially many
gates can be either a constant or the output of one of the other gates. This
upper bound can also be written NP < 2P

′(N).
The number of Boolean functions of N variables that differ from a refer-

ence function on a fraction of input configurations that is less than ε, NN (ε),
is

NN (ε) =
j=Ωε∑
j=0

(
Ω

j

)
, (24)

where Ω = 2N is the number of different input configurations and
(
Ω
j

)
is

the number of ways to choose j items out of Ω possibilities. We have, when
ε < 1/2,

NN (ε) =
Ωε∑
j=1

Ω!
j!(Ω − j)!

≤ (Ωε)
Ω!

(Ωε)!(Ω −Ωε)!
. (25)

When 1 � Ωε � Ω, we have

NN (ε) ∼ (Ωε)
(

Ωe

Ωε

)Ωε
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= (Ωε) (e/ε)εΩ

= 22N ε log2(e/ε) . (26)

Thus we have that the fraction of Boolean functions that differ from a
function that can be computed with polynomially bounded resources on a
fraction of the input configurations that is no greater than ε is

2P
′(N)22N ε log2(e/ε)

22N = 2P
′(N)2−2N (1−ε log2(e/ε)) , (27)

which vanishes extremely quickly as N →∞ when ε � 1.
An analogous argument demonstrates that a negligible fraction of Boolean

functions differ from polynomials of order ξ with ξ � N on a small fraction
of input configurations. All polynomials of degree ξ or less can be written
as a sum over all terms that are products of the form xi1 . . . xij

with j ≤ ξ.
There are

∑ξ
j=1 N !/[j!(N−j)!] such terms, and each coefficient can be either

1 or 0. Thus, when 1 � ξ � N , the total number of polynomials of degree
up to ξ is bounded above by ξ(Ne/ξ)ξ, and the fraction of Boolean functions
that differ from a polynomial of degree ξ or less on a fraction of the input
configurations that is no greater than epsilon is bounded above by(

2e(N/ξ)ξ
)(

2−2N (1−ε log2(e/ε))
)

, (28)

which tends to zero as a double exponential of N as N →∞ for any ε � 1.
A second non-rigorous but informative argument to see that almost all

Boolean functions do not satisfy Eq. (13) is to consider a generic Boolean
function in which each coefficient Ai1,...,iN

is chosen independently and ran-
domly to be 1 or 0 with equal probability. For such a function, one can always
find a configuration satisfying Eq. (13) by changing just about 2N/2 of the
output values so that the function has the same value for all inputs. The
question is whether one can obtain gxi1 ,...,xiM

(x′) = 0 for all choices of the
M decimated variables by changing the function for many fewer configura-
tions than that. For a given g in which M variables have been decimated, one
can find a configuration satisfying gxi1 ,...,xiM

(x′) = 0 for the 2N−M different
possible x′ by changing the output for just about 2N−M−1 different input con-
figurations. But one must arrange for gxj1 ,...,xjM

(x′) to vanish for all possible
choices of the M variables to be decimated. So the outputs for 2N−M−1 input
configurations need to be changed for each of the N !/[M !(N −M)!] different
ways to choose the decimated variables. Assuming M � N , this yields a naive
estimate that one must change the output value for 2N−M−1+M log2(Ne/M)

different input configurations, which exceeds 2N for all M � N . This argu-
ment is useful because it makes it clear why one must examine all choices
of the decimated variables to identify functions that differ from non-generic
functions on a small fraction of input configurations.
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