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Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning
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We demonstrate the use of multiple atomic-level Rydberg-atom schemes for continuous frequency detection
of radio-frequency (RF) fields. Resonant detection of RF fields by electromagnetically induced transparency and
Autler-Townes (AT) splitting in Rydberg atoms is typically limited to frequencies within the narrow bandwidth of
a Rydberg transition. By applying a second field resonant with an adjacent Rydberg transition, far-detuned fields
can be detected through a two-photon resonance AT splitting. This two-photon AT splitting method is several
orders of magnitude more sensitive than off-resonant detection using the Stark shift. We present the results of
various experimental configurations and a theoretical analysis to illustrate the effectiveness of this multiple level
scheme. These results show that this approach allows for the detection of frequencies in a continuous band
between resonances with adjacent Rydberg states.
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I. INTRODUCTION

Rydberg atoms have been increasingly investigated as
radio-frequency (RF) field sensors [1–10]. Rydberg atoms can
detect microwave fields through both a Stark shift due to
their polarizability [11–13] and Autler-Townes (AT) splitting
[14–16] from resonant transitions. Resonant interactions are
much more sensitive than the Stark effect, though they are
limited to detection of discrete frequencies. However, Ryd-
berg states can have strong couplings to many nearby states
[17]. We show that by coupling multiple Rydberg levels we
can effectively extend the frequency range of the resonant
interaction, increasing the sensitivity to microwave fields far-
detuned from a resonance transition. This paper discusses the
architecture of this multilevel Rydberg system and nuances of
tuning sensitivity to off-resonant signals using AT splitting.

The typical Rydberg atom-based RF electric (E ) field de-
tection technique relies on a four-level electromagnetically
induced transparency (EIT) scheme, as shown in Fig. 1(a).
This scheme includes a ground-state probe laser (which cou-
ples levels |1〉 and |2〉), a coupling laser that couples to a
Rydberg state (|3〉, coupled from level |2〉), and the RF field
of interest (signal field, or SIG) which couples two Rydberg
states (levels |3〉 and |4〉). The addition of the resonant RF field
(labeled as ωSIG) results in AT splitting. The AT split gives a
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measurement directly traceable to the International System of
Units (SI) of the SIG RF E -field strength [2,3,16,18].

Using standard EIT-AT techniques, E -field strength can be
routinely measured down to a few mV/cm [2,16,18,19]. With
optical homodyne [20] or RF heterodyne (a Rydberg atom-
based mixer) [21,22] techniques with EIT, E -field strengths
down to 55–700 nV/cm have been measured. While the stan-
dard resonant EIT approach is capable of weak field detection,
it is limited by the bandwidth of the EIT, on the order of
±100 MHz. While this bandwidth depends partially on the
Rydberg state lifetimes, these do not vary much for the Ryd-
berg states typically used for electrometry.

When an RF field is detuned from its resonant RF transition
frequency there are two significant effects on the observed AT
splitting of the EIT signal, which are discussed in detail in
Ref. [23]. The AT splitting as a function of SIG detuning is
shown in Fig. 2(a). For illustration, we reproduced the AT
spectra at three values of SIG detuning in Fig. 2(b). First,
the two peaks of the EIT signal become asymmetric (i.e., the
heights of the two peaks are not the same). The second effect
of SIG detuning is that the separation between the two peaks
increases with RF detuning, with a reduction in the amplitude
of one peak as it spreads further while the other peak returns to
its unperturbed frequency and height. Once the frequency of
the SIG is detuning far enough, the AT splitting can no longer
be observed.

For SIG fields with weak field strength such that AT split-
ting cannot be observed, the height of the EIT peak will still be
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FIG. 1. (a) Typical four-level EIT-AT scheme where ωp and ωc

are the optical probe and pump fields and ωSIG is the RF signal that
causes AT splitting for detection. (b) The RF field can be detuned
over a small range from the |3〉-|4〉 transition and still cause AT
splitting. (c) This range can be extended by coupling to an adjacent
resonance, |4〉-|5〉.

FIG. 2. RF detuning: (a) AT splitting as a function of RF detun-
ing and (b) EIT signal for several RF detunings. As the detuning
increases, one AT peak shifts further away and decreases in am-
plitude, while the other shifts back towards the zero field case.
Uncertainty in the AT splitting measurements are on the order of
1 MHz.

reduced. This can be used to determine the field strength [16].
The contrast (or change in EIT height) is reduced significantly
as the SIG field is detuned from resonance. While it is possible
to detect signals far off resonance, the sensitivity is much
worse than for resonant signals.

Thus, the standard four-level EIT approach is effectively
most sensitive at discrete RF frequencies, given that, for a
given Rydberg state (or principal quantum number n), an RF
field can only be measured within a limited band around the
Rydberg atomic transition frequency. This limits the practical
uses of a resonant Rydberg atom-based RF field sensor. When
the SIG RF field is far off resonance, it is possible to detect
through the AC Stark shift of the three-level EIT [12] or two-
photon transition [13]. While the Stark shift approach allows
the detection of an RF field over a wide range of frequencies,
it is much less sensitive than the resonant AT approach, as
large field levels are required to observe Stark shifts. For this
technology to progress to a deployable device, a method for
sensitive measurements over a continuous frequency range is
required.

In order to change the resonant transition frequency, a
second field can be applied to shift one of the Rydberg energy
levels, as shown in Fig. 1(b). This scheme uses an additional
RF field coupled to an adjacent Rydberg transition. The first
four levels of our five-level scheme use the same ladder
schemes described above, while the fifth (|5〉) corresponds
to the adjacent Rydberg state. A similar five-level configu-
ration was investigated previously, where interesting atomic
spectra that are not accessible with the basic four-level system
were observed [17]. In this case the additional field acts as a
dressing field [24], shifting the energy levels of states |4〉 and
|5〉. In this paper we show that the addition of the adjacent
Rydberg resonance tuning (ARRT) RF field allows for EIT-AT
detection of continuous frequencies of the SIG field. We show
that this continuous frequency detection can be achieved in
two ways: either by varying the strength or the frequency of
the ARRT field.

II. EXPERIMENTAL SETUP

In these experiments we use cesium (133Cs) placed in
a cylindrical glass vapor cell with diameter of 8 mm and
a length of 30 mm. The five-level system consists of the
133Cs 6 S1/2 ground state |1〉, the 6 P3/2 excited state |2〉, and
three Rydberg states |3〉, |4〉, |5〉. The first Rydberg state |3〉
is the 68 S1/2, coupled to |2〉 with a 509 nm coupling laser.
The other two Rydberg states |4〉 and |5〉 are varied for the
experiments to detect various SIG RF frequencies. The experi-
mental setup is depicted in Fig. 3, which consists of an 850 nm
probe laser, a 509 nm coupling laser, two RF signal generators
(SG), two horn antennas, and a photodetector connected to an
oscilloscope.

The probe laser is locked to the D2 transition 6 S1/2(F =
4) → 6 P3/2(F = 5) with a wavelength of λp = 852.35 nm
[25]. To produce an EIT signal, we apply a counterpropagat-
ing coupling laser with λc ≈ 508.98 nm and scan it across
the 6 P3/2 → 68 S1/2 Rydberg transition. We use a lock-in
amplifier to enhance the EIT signal-to-noise ratio by mod-
ulating the coupling laser amplitude with a 37 kHz square
wave with a 50% duty cycle. This removes the background
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FIG. 3. Experimental setup of the five-level EIT scheme. SG:
signal generator; DM: dichroic mirror.

and isolates the EIT signal. RF sources are used to couple
to the Rydberg states |3〉, |4〉, and |5〉. To generate these RF
fields, the output of two signal generators (SG) are connected
to two different horn antennas (referred to as Horn 1 and Horn
2). Horn 1 and Horn 2 were placed 23 and 21 cm from the
laser beam locations in the vapor cell, respectively. Horn 1
produces the SIG field coupling Rydberg states |3〉 and |4〉.
Horn 2 produces the ARRT field used to couple Rydberg
states |4〉 and |5〉. In these experiments, the optical beams
and the RF electric fields are colinearly polarized, in that the
E -field vectors are all pointing in the same direction. In our
case, the E -field vectors are pointing up from the optics table,
perpendicular to the plane that contains all of the propagation
vectors.

III. EXPERIMENTAL RESULTS

Continuous frequency detection for the SIG field (which
couples states |3〉 and |4〉) can be achieved either by varying
the Rabi frequency of the ARRT field or detuning the ARRT
field from resonance with the |4〉 → |5〉 transition. In this
section we investigate both approaches.

A. Detuning the frequency of the ARRT field

When the ARRT field is off, the measurements of AT-
splitting versus the SIG detuning (�SIG) are shown in
Fig. 2(a), for a given Rabi frequency. The asymmetric am-
plitudes of the peaks illustrate that, without the ARRT field,
the AT peaks are difficult to resolve when ωSIG is within
±50 MHz of the transition frequency for the 68 S1/2 ↔
67 P3/2 states.

However, by applying an ARRT field to shift the Rydberg
state, the frequency range for which a SIG field can be de-
tected dramatically increases, as illustrated in Fig. 4. Here we
plot several �SIG curves [similar to the one given in Fig. 2(a)]
for different values of the ARRT field detuning (�ARRT).
In these data, |4〉 ↔ |5〉 corresponds to 67 P3/2–65 D5/2 with
frequency ω45 = 23.89 GHz. In fact, by varying �ARRT, it is
possible to detect a signal over a continuous frequency that
spans from one principal quantum number n (for |3〉 ↔ |4〉)
to another by simply changing �ARRT. This is shown in Fig. 5
where we show continuous frequency detection from 11.25
to 13.9 GHz by measuring an AT splitting either directly

FIG. 4. SIG detuning �SIG for various values of �ARRT. Each
parabola represents a different value of �ARRT, while the AT splitting
was measured as �SIG was swept. Each one follows the same func-
tion as the zero-detuning case in Fig. 2(a), where the AT splitting
is a minimum on resonance. This shows that there is an apparent
resonance condition that is shifted by applying the ARRT field. A
description of the numerical model used to generate the simulated
results (solid lines) is given in Sec. IV.

or enabled by an ARRT field. Keeping �ARRT constant and
relatively low, the optimal detection of a particular �SIG

occurs for �ARRT = ±�SIG, as shown in Fig. 6. In these
results we see that if we use |3〉 = 68 S1/2, |4〉 = 68 P3/2, and
|5〉 = 66 D5/2, an increase in �ARRT corresponds to a linear
increase in the detectable frequency detuning for SIG. When
we switch to |4〉 = 67 P3/2 and |5〉 = 65 D5/2, a decrease in
�ARRT corresponds to a linear decrease in the detectable
frequency detuning for SIG. These results were obtained by
measuring the minimum AT splitting as the ARRT field de-
tuning was varied for various SIG field detunings. This is

FIG. 5. Measurements of the AT splitting by a SIG field from
both direct resonances (diamonds) and with an ARRT field (squares
and circles). The blue circles are AT splittings enabled by applying
an ARRT field near the 68 P3/2–66 D5/2 transition to shift the 68P3/2

state, and the red squares were made using an ARRT field near the
67 P3/2–65 D5/2 transition to shift the 67 P3/2 state. This shows that
the application of an appropriate adjacent resonance field can enable
resonant detection over a continuous frequency range spanning sev-
eral Rydberg states.
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FIG. 6. ARRT detunings that give symmetric AT splitting versus
SIG detuning. The lines are linear fits to the measured data. The
68 P3/2 is higher in energy than the 68 S1/2 state, so there is a linear
relationship in the two-photon detuning, while the 67 P3/2 is lower
in than the 68 S1/2 state, so the two-photon detuning has an inverse
relationship. Uncertainty in these measurements is determined by the
dependence of the AT splitting on the RF frequencies, which near
resonance is on the order of ∼5 MHz.

analogous to finding the minimum AT splitting in Fig. 2(a),
which corresponds to the resonant frequency. Here the “res-
onant” frequency changes with the application of the ARRT
field. Within a |�SIG| < 200 MHz, the splitting enabled by
the ARRT field was not resolvable because the SIG field was
strong enough to cause a large AT splitting of the |3〉 → |4〉
transition. This approach can be used to measure continuous
frequencies for the SIG field over several Rydberg states. This
is shown in Fig. 5.

B. Power tuning of the ARRT field

The two-photon response can also be achieved by varying
the Rabi frequency of the ARRT field, �ARRT. In this case
we leave the frequency of the ARRT field resonant with the
tuning transition (�ARRT = 0), and vary the power delivered
to the ARRT field horn antenna in order to maximize the
EIT response for a given �SIG. To measure this effect, we
work with weak SIG strengths such that they do not cause
AT splitting, but do reduce the height of the EIT peak. Fig-
ure 7 shows the reduction in EIT height (where a positive
value reflects a decrease in the EIT height) versus �ARRT,
for nine different �SIG. As the SIG field is detuned away
from resonance, the ARRT field strength must be increased
in order to see an optimal two-photon coupling between the
three Rydberg levels. Figure 8 shows that the optimal ARRT
field strength varies linearly with �SIG.

We can also vary both field strength and frequency of the
ARRT field to maximize sensitivity to SIG field. Figure 9
shows how the ARRT field Rabi frequency affects the optimal
ARRT field detuning �ARRT. For weak �ARRT the optimal
�ARRT varies linearly with �SIG, especially far from the on-
resonance condition for the SIG field, as shown in the previous
section. However, for a strong �ARRT the optimal �ARRT is

FIG. 7. Fractional reduction in EIT amplitude (change in EIT
amplitude over the unperturbed amplitude) versus ARRT field Rabi
frequency �ARRT and SIG field detunings �SIG. The maximum EIT
amplitude reduction for a given �SIG occurs at a larger �ARRT as the
detuning increases.

shifted lower and becomes increasingly nonlinear near the
�SIG = 0 resonance.

C. Uncertainties

A discussion of the contributions to the uncertainties of
the Autler-Townes splitting measurement can be found in
[16] and [26]. Measurements of the AT splitting in this paper
have an uncertainty of ∼1 %, arising from the uncertainty in
peak fitting and in the frequency scale. There can be large
uncertainty arising from the perturbation of the RF field due to
the dielectric vapor cell, which affects the determination of the
field strength from the AT measurement. In these experiments,
there is uncertainty in the Rabi frequencies of the ARRT and
the SIG due to the different standing wave patterns inside
the vapor cell. This is one significant source of disagreement

FIG. 8. The ARRT field Rabi frequency �ARRT for maximum
sensitivity increases linearly with SIG field detunings �SIG.
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FIG. 9. ARRT field detuning �ARRT is varied to maximize re-
sponse to various SIG field detunings �SIG, for two ARRT field
strengths. For a weak ARRT field, optimal �ARRT varies linearly with
the detuning of the SIG field. For a strong ARRT field, optimal �ARRT

is reduced and becomes nonlinear. The asymmetry is likely due to an
AC stark shift caused by the strong ARRT field.

between the models and experiment. Further work will ana-
lyze uncertainty contributions for this ARRT method of field
strength detection, in comparison to the contributions for the
standard AT method.

IV. THEORETICAL MODELING

We present a theoretical model to depict the observed
continuous frequency detection shown in the experimental
results. Note that, for the Rydberg states used in these exper-
iments, the frequency of SIG field can simultaneously couple
to two sets of states, 68 S1/2–67 P3/2 and 67 S1/2–67 P3/2. This
is due to the fact that the difference between the transition
frequencies of these two sets of states is 198 MHz (see
Fig. 10) and these transitions have similar dipole moments (d).
The radial parts of d for the two states are d = 4396.3 e ao

for 68 S1/2–67 P3/2 and d = 4500.9 e ao for 67 S1/2–67 P3/2,
where e is the elementary charge (in units of C) and a0 is the
Bohr radius (in units of m). Given that the SIG field couples to
both these states, Rabi frequencies for the two transitions are

FIG. 10. Six-level scheme used to model the experimental data.

related by the ratio of these two dipole moments and given by

�RF46 = 1.02 �RF34 = 1.02 �SIG. (1)

To account for this potential simultaneous coupling, we
model the six-level scheme shown in Fig. 10. The model used
here is similar to the one presented in [17,27], where the
main difference is the atomic species used. In the model for
the experimental results of the paper, we use 133Cs, while in
Refs. [17,27] 85Rb is used. For this six-level 133Cs model we
follow a similar process to the one given in [17,27] and we
start by noting that the power of the probe beam measured
on the detector (the EIT signal, i.e., the probe transmission
through the vapor cell) is given by [28]

P = P0 exp

(
−2πL Im[χ ]

λp

)
= P0 exp (−αL), (2)

where P0 is the power of the probe beam at the input of the
cell, L is the length of the cell, λp is the wavelength of the
probe laser, χ is the susceptibility of the medium seen by
the probe laser, and α = 2π Im[χ ]/λp is Beer’s absorption
coefficient for the probe laser. The susceptibility for the probe
laser is related to the density matrix component (ρ21) by [28]

χ = 2N0℘12

Epε0
ρ21D = 2N0

ε0h̄

(d e a0)2

�p
ρ21D , (3)

where d = 2.02 [25] is the normalized transition-dipole mo-
ment for the probe laser and �p is the Rabi frequency for the
probe laser in units of rad/s. The subscript D on ρ21 indicates
a Doppler averaged value. N0 is the total density of atoms in
the cell and is given by

N0 = p

kBT
, (4)

where kB is the Boltzmann constant, T is temperature in
Kelvin, and the pressure p (in units of Pa) is given by [25]

p = 109.717− 3999
T (5)

In Eq. (3), ℘12 is the transition-dipole moment for the |1〉-|2〉
transition, ε0 is the vacuum permittivity, and Ep is the
amplitude of the probe laser E field.

The density matrix component (ρ21) is obtained from the
master equation [28]

ρ̇ = ∂ρ

∂t
= − i

h̄
[H, ρ] + L, (6)

where H is the Hamiltonian of the atomic system under con-
sideration and L is the Lindblad operator that accounts for the
decay processes in the atom.

For the six-level system shown in Fig. 10, the Hamiltonian
can be expressed as

H = h̄

2

⎡
⎢⎢⎢⎢⎢⎣

0 �p 0 0 0 0
�p A �c 0 0 0
0 �c B �SIG34 0 0
0 0 �SIG34 C �ARRT �SIG46

0 0 0 �ARRT D 0
0 0 0 �SIG46 0 E

⎤
⎥⎥⎥⎥⎥⎦

,

(7)

032824-5



MATTHEW T. SIMONS et al. PHYSICAL REVIEW A 104, 032824 (2021)

where �p, �c, and �SIG are the Rabi frequencies of the
probe laser, coupling laser, and ARRT field coupled states,
respectively. Also,

A = 2�p,

B = −2(�p + �c),
C = −2(�p + �c + �SIG34),
D = −2(�p + �c + �SIG34 + �ARRT),
E = −2(�p + �c + �SIG34 + �SIG46),

(8)

where �p, �c, and �ARRT are the detunings of the probe laser,
coupling laser, and the ARRT field, respectively, defined as

�p,c,ARRT = ωp,c,ARRT − ω12,23,45, (9)

where ω12,23,45 are the on-resonance angular frequencies
of transitions |2〉-|3〉 and |4〉-|5〉 for the probe, coupling,
and ARRT fields, respectively, and ωp,c,ARRT are the angu-
lar frequencies of the probe, coupling, and ARRT fields,

respectively. The SIG field detuning is defined as

�SIG34 = �SIG = ωSIG − ω34 (10)

for the |3〉-|4〉 transition, and detuning of the additional |4〉-|6〉
transition is defined as

�SIG46 = ωSIG − ω46

= 2π × [12.979 GHz − 12.781 GHz] + �SIG. (11)

In our experiments, �p = 0 rad/s and �c is scanned, while
�SIG and �ARRT are varied. The optical Rabi frequencies are
�p/2π = 9.48 MHz and �c/2π = 0.564 MHz for the probe
and coupling lasers, respectively. The signal RF field Rabi
frequency is generally held fixed at �SIG/2π = 100 MHz
or thereabouts, while the ARRT field Rabi frequency �T is
varied.

For the six-level system, the L matrix is given by

L =

⎡
⎢⎢⎢⎢⎢⎣


2ρ22 −γ12ρ12 −γ13ρ13 −γ14ρ14 −γ15ρ15 −γ16ρ16

−γ21ρ21 
3ρ33 − 
2ρ22 −γ23ρ23 −γ24ρ24 −γ25ρ25 −γ26ρ26

−γ31ρ31 −γ32ρ32 −
3ρ33 −γ34ρ34 −γ35ρ35 −γ36ρ36

−γ41ρ41 −γ42ρ42 −γ43ρ43 
3ρ33 − 
4ρ44 −γ45ρ45 −γ46ρ46

−γ51ρ51 −γ52ρ52 −γ53ρ53 −γ45ρ45 
4ρ44 − 
5ρ55 −γ56ρ56

−γ61ρ61 −γ62ρ62 −γ63ρ63 −γ65ρ65 −γ56ρ56 
4ρ44 − 
6ρ66

⎤
⎥⎥⎥⎥⎥⎦

, (12)

where γi j = (
i + 
 j )/2 and 
i, j are the transition decay
rates. Since the purpose of the present study is to explore
the intrinsic limitations of Rydberg-EIT field sensing in vapor
cells, no collision terms or dephasing terms are added. While
Rydberg-atom collisions, Penning ionization, and ion electric
fields can, in principle, cause dephasing, such effects can, for
instance, be alleviated by reducing the beam intensities, low-
ering the vapor pressure, or limiting the atom-field interaction
time. In this analysis we set, 
1 = 0, 
2 = 2π × (6 MHz),

3 = 2π × (3 kHz), 
4,5,6 = 2π × (2 kHz). Note, 
2 is for
the D2 line in 133Cs [25], and 
3, 
4,5,6, are typical Rydberg
decay rates.

We numerically solve these equations to find the steady-
state solution for ρ21 for various values of �SIG, �ARRT, �SIG,
and �ARRT. This is done by forming a matrix with the sys-
tem of equations for ρ̇i j = 0. The null space of the resulting
system matrix is the steady-state solution. The steady-state
solution for ρ21 is then Doppler averaged [28],

ρ21D = 1√
π u

∫ 3u

−3u
ρ21(�′

p,�
′
c) e

−v2

u2 dv, (13)

where u = √
2kBT/m and m is the mass of the atom. We use

the case where the probe and coupling laser are counterprop-
agating. Thus, the frequency seen by the atom moving toward
the probe beam is upshifted by 2πv/λp (where v is the veloc-
ity of the atoms), while the frequency of the coupling beam
seen by the same atom is downshifted by 2πv/λc. The probe
and coupling beam detuning is modified by the following:

�′
p = �p − 2π

λp
v and �′

c = �c + 2π

λc
v. (14)

Figure 11 shows a comparison of numerically generated
results from the theoretical model and experimental data. A

duplication of the 68 S1/2 → 67 P3/2 state transition measure-
ments from Fig. 5, this figure shows that the model reproduces
the general effect of having the ARRT field on for off-resonant
detection of SIG. Similarly, Fig. 4 compares the model with
measurements of AT splitting over a wide range of SIG detun-
ings for a set of ARRT detunings, with good agreement of the
model to the experimental measurements. Small differences
between the model and experimental results in this figure may
be due to variations in the SIG or ARRT Rabi frequencies
over the full range of SIG and ARRT frequencies. We also
compare the measurements reported in Fig. 9 to the model in

FIG. 11. Comparison of simulations (black lines) to experimen-
tal data (red and blue dots) in Fig. 5, from the SIG transition
68 S1/2–67 P3/2 using an ARRT field near 67 P3/2–65 D5/2. The AT
splittings are predicted well by theory.
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FIG. 12. Repeat of Fig. 9 with more �T measurements and com-
pared to the model calculations. The experimental measurements
show an asymmetry with the sign of �SIG, suggestive of a fre-
quency shifting that the model does not capture, whereas the model
does demonstrate the divergent trend as the SIG approaches the
on-resonant condition (where the ARRT field is no longer beneficial).

Fig. 12 and again see that the model recreates the measured
trends. However, where an asymmetry was measured in the
experiments (likely due to an AC stark shift caused by the
tuning field) the model does not reproduce this effect.

A key benefit of having a theoretical model that reproduces
experimental results of this kind is the ability to quickly study
a wider parameter space than is feasible purely with experi-
mental measurements. For example, we take the model results
of Fig. 12 and calculate a contrast parameter for the change in
EIT height given by

C = |TRF − T0|
T0

, (15)

where T0 is the probe laser transmittance [P/P0 from Eq. (2)]
for �p = �c = 0 rad/s with no RF fields (�SIG = �T =
0 rad/s) and TRF is the same probe laser transmittance but with

FIG. 13. Maximum EIT height change (from Fig. 12) reported as
contrast [Eq. (15)] for a set of SIG and ARRT Rabi frequencies (�SIG

and �ARRT, respectively) over a wide range of SIG detunings (�SIG).
Increased contrast relates to an increase in sensitivity to the detuned
SIG field.

FIG. 14. Numerically modeled contrast gain factor [Eq. (16)] for
a set of ARRT field Rabi frequencies (�T ) over a wide range of SIG
field detunings (�SIG) showing increased sensitivity gain for strong
ARRT fields and highly detuned SIG fields.

SIG and ARRT fields turned on. The sensitivity of a measure-
ment of SIG is directly related to this contrast parameter such
that high EIT contrast relates to a high sensitivity. Figure 13
gives the modeled calculations of contrast for the set of ARRT
Rabi frequencies over a ±800 MHz range of SIG detunings.
We note that the model considers only the states defined in
Fig. 10, so SIG detunings beyond this range are not well pre-
dicted by the model. It is clear from Fig. 13 that increasing the
power (i.e., the Rabi frequency) of the ARRT field results in
significant increases in contrast (or measurement sensitivity)
for SIG fields that are highly detuned from resonance.

We can quantify the improvement obtained in the measure-
ment by the incorporation of this ARRT field by calculating
the contrast gain factor,

G = Ctuner

C0
, (16)

or the ratio of calculated contrast values with and without an
ARRT field (no ARRT field is modeled by the orange curve
in Figs. 12 and 13 where �T /2π = 0 MHz). These contrast
gains calculated by our model are given in Fig. 14 for the same
set of �ARRT and SIG detunings. With a strong ARRT field,
the EIT height change, or the contrast, is increased by as much
as four times for highly detuned SIG fields. However, this also
shows that there is not much gain for �SIG < ±100 MHz. At
those detunings, the SIG field is close enough to resonance
that the strong ARRT field does not improve the contrast.

V. CONCLUSION

In this paper, we demonstrate a five-level atomic scheme
that allows for the resonant detection of an RF signal by
Rydberg EIT over a continuous frequency range. The main
Rydberg transition frequency is tuned by the presence of an
adjacent Rydberg resonance tuning field. In this five-level
scheme, we show continuous frequency detection can be ob-
tained by either varying the frequency or the power level of the
ARRT field. Notably, this technique allows for the detection
of a signal RF field over a frequency range that covers from
one Rydberg state with principal quantum number n to the
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next n + 1 state. The data in this paper show that the Autler-
Townes tuning of Rydberg resonances allows for complete
spectral coverage; the dressed states may be shifted by an

amount corresponding to a change of the principal quantum
number by 1 without significant degradation of the electric
field sensitivity.
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