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microwave power, as well as the temperature dependence determined by the inelastic relaxation rate.
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I. INTRODUCTION

Recent experiments have discovered1 that the resistivity
of a high-mobility two-dimensional electron gass2DEGd in
GaAs/AlGaAs heterostructures subjected to microwave ra-
diation of frequencyv exhibits magneto-oscillations gov-
erned by the ratiov /vc, wherevc is the cyclotron frequency.
Subsequent work2–7 has shown that for samples with a very
high mobility and for high radiation power the minima of the
oscillations evolve into zero-resistance statessZRSd.

These spectacular observations have attracted much theo-
retical interest. As was shown in Ref. 8, the ZRS can be
understood as a direct consequence of the oscillatory photo-
conductivity sOPCd, provided that the latter may become
negative. A negative value of the OPC signifies an instability
leading to the formation of spontaneous-current domains
showing zero value of the observable resistance. Therefore,
the identification of the microscopic mechanism of the OPC
appears to be the key question in the interpretation of the
data.1–7

A mechanism of the OPC proposed in Ref. 9 is based on
the effect of microwave radiation on electron scattering by
impurities in a strong magnetic fieldssee also Ref. 10 for an
earlier theory and Ref. 11 for a systematic theoryd. An alter-
native mechanism of the OPC was recently proposed in Ref.
12. In contrast to Refs. 9–11, this mechanism is governed by
a radiation-induced change of the electron distribution func-
tion. Because of the oscillations of the density of states
sDOSd, ns«d, related to the Landau quantization, the correc-
tion to the distribution function acquires an oscillatory struc-
ture as well. This generates a contribution to the dc conduc-
tivity which oscillates with varyingv /vc. A distinctive
feature of the contribution of Ref. 12 is that it is proportional
to the inelastic relaxation timetin. A comparison of the re-
sults of Refs. 11 and 12 shows that the latter contribution
dominates iftin@tq swhere tq is the quantum, or single-
particle, relaxation time due to impurity scatteringd, which is
the case for the experimentally relevant emperatures.

The consideration of Ref. 12 is restricted to the regime
which is linear in both the ac power and the dc electric field.
The purpose of this paper is to develop a complete theory of

the OPC governed by this mechanism, including nonlinear
effects. We will demonstrate that the conductivity at a mini-
mum becomes negative for a large microwave power and
that a positive sign is restored for a strong dc bias, as it was
assumed in Ref. 8.

The paper is organized as follows: First, in Sec. II we
formulate a general approach to the problem. In Sec. III we
calculate the nonequilibrium distribution function for over-
lapping Landau levelssLLsd. In Sec. IV we consider the
OPC in the linear regime with respect to the dc field. In Sec.
V we analyze the ZRS and calculate the spontaneous electric
field in the domains. In Sec. VI we turn to separated LLs.
Section VII deals with the inelastic relaxation due to
electron-electron scattering. Finally, in Sec. VIII we briefly
discuss the magneto-oscillations in the Hall photoresistivity.
In Sec. IX we summarize our results and compare them with
the experimental data. A brief account of the results of this
paper was presented in Ref. 13.

II. GENERAL FORMALISM

We consider a 2DEGsmassm, densityne, Fermi velocity
vFd subjected to a transverse magnetic fieldB=smc/edvc. We
assume that the field is classically strong,vcttr@1, wherettr
is the transport relaxation time atB=0. The photoconductiv-
ity sph determines the longitudinal current flowing in re-
sponse to a dc electric fieldEdc, j ·Edc=sphEdc

2 , in the pres-
ence of a microwave electric fieldEv cosvt. The more
frequently measured1–4,6,7 longitudinal resistivity, rph, is
given by rph.rxy

2 sph, whererxy.eB/nec is the Hall resis-
tivity, affected only weakly by the radiation.

We start with the formula for the dc conductivity per spin:

sph =E d«sdcs«df− ]«fs«dg, s1d

where fs«d is the electron distribution function, andsdcs«d
determines the contribution of electrons with energy« to the
dissipative transport. In the leading approximation,11,12
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sdcs«d =
e2ns«dvF

2

2

ttr,B
−1 s«d

vc
2 + ttr,B

−2 s«d
, s2d

where ttr,B is the transport scattering time in a quantizing
magnetic field, ttr,Bs«d=ttrn0/ns«d, and n0=m/2p is the
DOS per spin at zeroB swe use"=1d. We note that Eq.s2d
has a Drude form with the DOSns«d and the transport time
ttr,Bs«d dependent of energy due to the Landau quantization.

For a classically strong magnetic field,vcttr@1, the
above expression reduces to

sdcs«d = sdc
D ñ2s«d, s3d

wheresdc
D =e2n0vF

2 /2vc
2ttr is the dc Drude conductivity per

spin in strongB and we introduced the dimensionless DOS,
ñs«d=ns«d /n0.

We neglect here the effect of the microwaves on the im-
purity collision integral, which yields a subleading contribu-
tion to the phoconductivity, as discussed in Sec. IV. The
dominant effect is due to a nontrivial energy dependence of
the nonequilibrium distribution functionfs«d. The latter is
found as a solution of the stationary kinetic equation for the
zero angular harmonic of the distribution functionfs«d:

Stvhfj + Stdchfj = − Stinhfj. s4d

Here the left-hand side represents the effect of the micro-
waves sStvd and of the dc fieldsStdcd in the presence of
impurities while the right-hand side accounts for the inelastic
relaxation.

The first term on the left-hand side describes the absorp-
tion and emission of microwave quanta; the rate of these
transitions was calculated in Ref. 12, yielding

Stvhfj =
Ev

2

4v2o
±

e2vF
2ttr,B

−1 s« + vdffs« + vd − fs«dg
2sv ± vcd2 + ttr,B

−2 s« + vd + ttr,B
−2 s«d

+ hv → − vj. s5d

We will assume thatuv±vcu@ttr,B
−1 , thus excluding a narrow

vicinity of the cyclotron resonance. This allows us to neglect
the«-dependent terms in the denominator, which reduces Eq.
s5d to the form

Stvhfj = Ev
2 sv

D

2v2n0
o
±

ñs« ± vdffs« ± vd − fs«dg, s6d

where the ac Drude conductivity per spin is given by

sv
D = o

±

e2n0vF
2

4ttrsv ± vcd2 . s7d

Furthermore, we assume, in accordance with the experi-
ments, a linear polarization of the microwaves. For a circular
polarization, one should retain only one term on the right-
hand side of Eq.s7d, which, away from the cyclotron reso-
nance, does not affect the results in any essential way.

The second term on the left-hand side of Eq.s4d repre-
sents the effect of the dc electric field. The impurity scatter-
ing in a quantizing magnetic field leads to the spatial diffu-
sion with a diffusion coefficientDBs«d=vF

2 /2vc
2ttr,Bs«d. In

view of conservation of the total energy«+eEdcx in a dc field

sdirected along thex axisd the spatial diffusion is translated
into the diffusion in «-space, with a diffusion coefficient
seEdcd2DBs«d and the DOSns«d,

Stdchfj = n−1s«d]«fns«de2Edc
2 DBs«d]«fs«dg

= «dc
2 sdc

D

n0ñs«d
]«fñ2s«d]«fs«dg. s8d

Equations8d can also be obtained from Eq.s6d by taking the
limit v→0 and replacing the period-average of the ac field
squared,12Ev

2, by Edc
2 .

Substituting Eqs.s6d and s8d in the kinetic equations4d,
we get

Ev
2 sv

D

2v2n0
o
±

ñs« ± vdffs« ± vd − fs«dg

+ Edc
2 sdc

D

n0ñs«d
]«fñ2s«d]«fs«dg =

fs«d − fTs«d
tin

, s9d

where the inelastic processes are included in the relaxation
time approximation andfTs«d is the Fermi distribution. A
detailed discussion of the inelastic relaxation and a calcula-
tion of the inelastic relaxation timetin are relegated to Sec.
VII.

Equations9d suggests convenient dimensionless units for
the strength of the ac and dc fields

Pv =
tin

ttr
SeEvvF

v
D2 vc

2 + v2

sv2 − vc
2d2 , s10ad

Qdc =
2tin

ttr
SeEdcvF

vc
D2S p

vc
D2

. s10bd

With these notations, Eq.s9d reads

Pv

4 o
±

ñs« ± vdffs« ± vd − fs«dg +
Qdcvc

2

4p2ñs«d
]«fñ2s«d]«fs«dg

= fs«d − fTs«d. s11d

Note thatPv andQdc are proportional totin and are infinite
in the absence of the inelastic relaxation processes.

The left-hand side of the kinetic equations11d, as well as
Eqs. s1d and s3d for the photoconductivity, can also be ex-
tracted from the quantum Boltzmann equation of Ref. 11, as
we show in the Appendix. Below, we use Eqs.s1d, s3d, and
s11d to analyze the photoconductivity in the both limiting
cases of overlapping and separated LLs.

III. NONEQUILIBRIUM DISTRIBUTION FUNCTION
INDUCED BY MICROWAVE RADIATION

We consider first the case of overlapping LLs, with the
DOS given by

ñ = 1 − 2d cos
2p«

vc
, d = expS−

p

vctq
D ! 1. s12d

Heretq is the zero-B single-particle relaxation time, which is
much shorter than the transport time in high-mobility struc-
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tures,tq!ttr sbecause of the smooth character of a random
potential of remote donorsd. The existence of a small param-
eterd simplifies solution of the kinetic equations11d. To first
order ind, we look for a solution in the form

f = f0 + fosc+ Osd2d, fosc; d Reff1s«deis2p«/vcdg. s13d

We assume that the temperaturesmeasured in energy units,
kB=1d is sufficiently high,T@vc, implying a scale separa-
tion between the smooth energy dependence of functions
f0,1s«d on a scale of the order ofT and the fast oscillations
with a periodvc.

14 We also assume that the electric fields are
not too strongfPvsv /Td2!1 and Qdcsvc/Td2!1g, so that
the smooth partf0s«d is close to the Fermi distributionfTs«d
at a bath temperatureT; otherwise, the temperature of the
electron gas is further increased due to heating.15 We obtain16

foscs«d = d
vc

2p

] fT

] «
sin

2p«

vc

Pv

2pv

vc
sin

2pv

vc
+ 4Qdc

1 +Pv sin2 pv

vc
+ Qdc

.

s14d

Thus, the oscillations of the DOSns«d induce an oscillatory
contributionfoscs«d to the distribution function, as illustrated
in Fig. 1.

One might naively think that the small corrections14d to
the distribution function will only weakly affect the conduc-
tivity. This is not the case, however. The reason is that, due
to the fast oscillations infosc, the derivative]«fosc may be
large. As a result, a small variation of the distribution func-
tion s14d can strongly affect the conductivity, Eq.s1d. In
particular, when the regions of an inverted population infs«d
correspond to the maxima inns«d sas in Fig. 1d, the linear-
response conductivity may become negative, as we show be-
low.

IV. OSCILLATORY PHOTOCONDUCTIVITY

To calculate the photoconductivity, we substitute Eq.s14d
for the distribution function into Eq.s1d. Performing the en-
ergy integration in Eq.s1d, we assumesin conformity with

the experimentd that T is much larger than the Dingle tem-
perature,T@1/2ptq. Under this condition, the temperature
smearing yields a dominant damping factor of the
Shubnikov-de Haas oscillations,X/sinhX with X=2p2T/vc.
The terms of orderd in Eq. s1d are then exponentially sup-
pressed,

dE d« cos
2p«

vc
]«fT ~ d exps− 2p2T/vcd ! d2,

and can be neglected. The leadingv-dependent contribution
to sph comes from thed2 term generated by the product of
]«foscs«d~d coss2p« /vcd and the oscillatory part
−2d coss2p« /vcd of ñs«d. This term does survive the energy
averaging, −ed« cos2 s2p« /vcd]«fT.1/2. We thus find

sph

sdc
D = 1 + 2d231 −

Pv

2pv

vc
sin

2pv

vc
+ 4Qdc

1 +Pv sin2 pv

vc
+ Qdc

4 . s15d

Equations15d is our central result. It describes the photocon-
ductivity in the regime of overlapping LLs, including all
nonlinearsin Ev andEdcd effects. Let us analyze it in more
detail. In the linear-response regimesEdc→0d and for a not
too strong microwave field, Eq.s15d yields a correction to
the dark dc conductivitysdc=sdc

D s1+2d2d, which is linear in
the microwave power:

sph − sdc

sdc
= − 4d2Pv

pv

vc
sin

2pv

vc
, s16d

in agreement with Ref. 12. It is enlightening to compare Eq.
s16d with the contribution of the effect of the ac field on the
impurity scattering.9–11 The analytic result, Eq. 6 and 11 of
Ref. 11, in the notation of Eq.s10d is

sph
f11g − sdc

sdc
= − 12

tq

tin
d2PvSpv

vc
sin

2pv

vc
+ sin2 pv

vc
D .

s17d

This result has a similar frequency dependence as Eq.s16d;
however, its amplitude is much smaller attin@tq, i.e., the
mechanism of Refs. 9–11 appears to be irrelevant. Physi-
cally, the effect of the ac field on the distribution function is
dominant because it is accumulated during a diffusive pro-
cess of durationtin, whereas Refs. 9–11 consider only one
scattering event. Apart from the magnitude, the two contri-
butions are qualitatively different in their temperature and
polarization dependence. Specifically, the contribution re-
lated to the change of the distribution function is strongly
temperature-dependentsdue to theT dependence oftin, see
Sec. VIId and does not depend on the direction of the linear
polarization of the microwave field. On the other hand, the
effect of microwaves on the impurity collision integral yields
a T-independent contribution which depends essentially on
the relative orientation of the fieldsEv and Edc fEq. s17d
represents the result averaged over the polarization direc-
tiong.

FIG. 1. sColor onlined Schematic behavior of the oscillatory
density of statesns«d and radiation induced oscillations in the dis-
tribution function fs«d for sins2pv /vcd.0.

THEORY OF MICROWAVE-INDUCED OSCILLATIONS IN… PHYSICAL REVIEW B 71, 115316s2005d

115316-3



With increasing microwave power, the photoconductivity
saturates at the value

sph

sdc
= 1 − 8d2pv

vc
cot

pv

vc
, Pv sin2 pv

vc
@ 1. s18d

Note that although the correction is proportional tod2!1,
the factor 8psv /vcdcotspv /vcd is large in the vicinity of the
cyclotron resonance harmonicsv=kvc sk=1,2, . . .d, and al-
lows the photoinduced correction to exceed in magnitude the
dark conductivitysdc. In particular,sph around minima be-
comes negative atPv.Pv

* .0, with the threshold value
given according to Eq.s15d by

Pv
* = S4d2pv

vc
sin

2pv

vc
− sin2 pv

vc
D−1

. s19d

The evolution of theB dependence of the photoresistivityrph
with increasing microwave power is illustrated in Fig. 2.
More specifically, the curves in Fig. 2 correspond to different
values of the dimensionless parameter

Pv
s0d ; Pvsvc = 0d =

e2

"c

tin

ttr

vF
2

v2S

8pP

"v2 , s20d

where P=cuEvu2S/8p is the microwave power over the
sample areaS, c is the speed of light, and we restored the
Planck constant for convenience.

V. ZERO-RESISTANCE STATES

Let us now fixv /vc such thatPv
* .0, and consider the

dependence ofsph on the dc fieldEdc at a sufficiently strong
microwave powerPv.Pv

* , corresponding to the negative
linear-response photoconductivity. As follows from Eq.s15d,
in the limit of largeEdc the conductivity is close to the Drude
value and thus positive,sph=s1−6d2dsdc

D .0. Therefore,sph

changes sign at a certain valueEdc
* of the dc fieldssee Fig. 3d,

which is determined by the conditionQdc=sPv−Pv
* d /Pv

* .
The negative-conductivity state atEdc,Edc

* is unstable with
respect to the formation of domains with a spontaneous elec-
tric field of the magnitudeEdc

* . 8 Using Eqs.s10d ands19d, we
obtain

Edc
* =

1
Î2p

vc

eRc
S ttr

tin
D1/2FSEv

Ev
* D2

− 1G1/2

= ÎEv
2 − sEv

* d2F vc
4sv2 + vc

2d
2v2sv2 − vc

2d2G1/2

3
1

p
ReS4d2pv

vc
sin

2pv

vc
− sin2 pv

vc
D1/2

, s21d

with Ev
* being the threshold value of the ac field at which the

ZRS develops andRc=vF /vc the cyclotron radius. Equation
s21d relates the electric field formed in the domainssmeasur-
able by local probe7d with the excess power of microwave
radiation. It is worth noticing that the last expression forEdc

*

does not explicitly contain the rate of the inelastic processes.

VI. SEPARATED LANDAU LEVELS

We now turn to the regime of strongB, vctq/p@1, where
the LLs get separated. The DOS is then givenswithin the
self-consistent Born approximationd by a sequence of semi-
circles of width 2G=2s2vc/ptqd1/2:

ñs«d =
2vc

pG2o
n

ReÎG2 − s« − nvc − vc/2d2. s22d

We use Eqs.s1d and s11d to evaluate the OPC atQdc→0 to
first order inPv and estimate the correction of the second
order. The conditionT@vc allows us to separate the slow
dependence on« on the scale ofT and fast oscillations with
the periodvc in the integrals1d by averaging over the period
of the oscillations. After integrating the resulting slow-
varying functions we obtain

sph

sdc
D = kñ2s«dl« −

vPv

4
kfñs« + vd − ñs« − vdg]«ñ2s«dl«

+ vPv
2ok,l

ak,lkñs« + kvdñs« + lvd]«ñ2s«dl« + OsPv
3d.

s23d

Here the angular brackets denote averaging over« within the
periodvc, andak,l are numerical coefficients. The result for
separated LLs, Eq.s22d, reads

FIG. 2. Photoresistivitysnormalized to the dark Drude valued
for overlapping Landau levels vsvc/v at fixed vtq=2p. The
curves correspond to different levels of microwave powerPv

s0d

=h0.24,0.8,2.4j. Nonlinear I-V characteristics at the marked
minima are shown in Fig. 3.

FIG. 3. Current-voltage characteristicsfdimensionless current

j̃ x=ssph/sdc
D dẼdc vs dimensionless fieldẼdc=Qdc

1/2g at the points of
minima marked by the circles in Fig. 1. The arrows show the dc

field Ẽdc
* in spontaneously formed domains.
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sph

sdc
D =

16vc

3p2GH1 −Pv

vvc

G2

3Fo
n

FSv − nvc

G
D + OSvcPv

G
DGJ ,

Fsxd =
3x

4p
ReFarccossuxu − 1d −

1 + uxu
3

Îuxus2 − uxudG .

s24d

The photoresistivity for the case of separated LLs, Eq.s24d,
is shown in Fig. 4 for several valuesPv of the microwave
power. Notice that a correction to Eq.s24d of second order in
Pv is still small even at microwave power exceeding the
threshold value

Pv
* , G2/vvc, s25d

sincevcPv
* /G,G /v!1. This means that it suffices to keep

the linear-in-Pv term only even for the microwave power
Pv.Pv

* at which the linear-response resistance becomes
negative.

As in the case of overlapping LLs, a negative value of the
linear-response conductivity signals an instability leading to
the formation of domains with the fieldEdc

* at which
sphsEdcd=0. It turns out, however, that for separated LLs the
kinetic equation in the form of Eq.s9d yields zerosrather
than expected positived conductivity in the limit of strong
Edc.

17 This happens because elastic impurity scattering be-
tween LLs, inclined in a strong dc field, is not included in
Eq. s9d. The inter-LL transitions become efficient in dc fields
as strong asfsee Eq.s5.5d of Ref. 11g

Edc
* , S ttr

tq
D1/2 vc

eRc
, s26d

which actually gives the strength of the field in domains for
the case of separated LLs.

VII. INELASTIC RELAXATION DUE TO ELECTRON-
ELECTRON COLLISIONS

Finally, we calculate the inelastic relaxation timetin. Of
particular importance is itsT dependence which in turn de-
termines that ofsph. At not too highT, the dominant mecha-
nism of inelastic scattering is due to electron-electronse-ed
collisions. It is worth emphasizing that thee-e scattering
does not yield relaxation of the total energy of the 2DEG and
as such cannot establish a steady-state dc photoconductivity.
That is to say the smearing off0s«d in Eq. s13d, which is a
measure of the degree of heating, is governed by electron-
phonon scattering. However, thee-e scattering atT@vc does
lead to relaxation of the oscillatory termfosc, Eq. s14d, and
thus determines theT behavior of the oscillatory contribution
to sph.

Quantitatively, the effect of electron-electron interaction
is taken into account by replacing the right-hand side of Eq.
s9d by −Steehfj, where the collision integral Steehfj is given
by

Steehfj =E d«8E dEAsE,«,«8d

3f− fs«df shds«+dfs«8df shds«−8d

+ f shds«dfs«+df shds«8dfs«−8dg, s27d

and f shds«d;1− fs«d, «+=«+E, «−8=«8−E. The function
AsE,« ,«8d describes the dependence of the matrix element
of the screened Coulomb interaction on the transferred en-
ergy E and the energies of colliding particles. In what fol-
lows we use the linearized form of Stee.

A. Overlapping Landau levels

For overlapping LLs, we putñ=1 in accord with the ac-
curacy of Eq.s15d. Then the kernel in Eq.s27d depends on
the transferred energyE only and is given by the general
formula18

AsEd =
2n0

p
E d2q

s2pd2uUu2sRekDld2. s28d

Here the factor of 2 accounts for spin,kDlsE,qd is the angle-
averaged particle-hole propagator,

UsE,qd =
k/2n0

q + ks1 + iEkDld
s29d

the dynamically screened Coulomb potential, andk
=4pe2n0 the inverse screening length.

The propagatorkDlsE,qd has thesdisorder-independentd
Fermi-liquid form for ultraballistic momenta,q@q1
=svc/Dd1/2, whereD=Rc

2/2ttr is the diffusion coefficient in a
classically strong magnetic field,

kDl = sq2vF
2 − E2d−1/2, q @ q1 = svc/Dd1/2. s30d

With lowering q it crosses over into the quasiclassical
particle-hole propagator in a smooth random potentials“bal-
listic diffuson”d19,20

FIG. 4. Photoresistivitysnormalized to the dark Drude valued
for separated Landau levels vsvc/v at fixed vtq=16p. The
curves correspond to different levels of microwave power
Pv

s0d=h0.01,0.03,0.05j.
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kDl = o
n=0

`
Jn

2sqRcd
− isE − nvcd + Dq2 + n2/ttr

, q ! q1, s31d

whereJnsxd is the Bessel function.
Let us calculate the kernelAsEd for E&T within the sex-

perimentally relevantd temperature range,

vc ! T ! vcsvcttrd1/2. s32d

The integration domain in Eq.s28d naturally divides into two
parts:q.q1 andq,q1. In view of Eq. s32d the propagator
s30d for ultraballistic momentaq@q1 does not depend on the
transferred energyE&T; specifically,kDl.1/qvF, while the
screening is effectively static,UsE,qd.Us0,qd. It follows
that the contributionA.sEd of q*q1 to the integrals28d has
the form

A.sEd =
1

2p«F
ln

k

q1
. s33d

By contrast, the contribution ofq&q1 to Eq.s28d is strongly
E-dependent and is found as a sum over peaks coming from
different n in Eq. s31d,

A,sEd = o
n

An
,sEd. s34d

When calculating the contribution of a single peakAn
,, the

following approximations are justified: in Eq.s31d, the prod-
uct of the Bessel functionsJn

2sqRcd for the relevant momenta
q@Rc

−1 can be replaced by 2 cos2 wn/pqRc with wn=qRc
+ps2n+1d /4; the termn2/ttr in Eq. s31d can be neglected at
E&T in view of Eq. s32d; also, the first term in the denomi-
nator of Eq.s29d can be omitted forq&q1!k. Introducing
the dimensionless parametersDnsEd= uE/vc−nuø1/2, bn

=2p2vcttr /n
2@1, andgnsEd=bn

1/3DnsEd we express the con-
tribution of thenth peak forDn!1 as21

An
,sEd =

bn
2/3

4p3«F
E

0

`

dx
x5

x4 + gn
2

3F x6

4 cos4sanxd
+ S1 −

gnx

2 cos2sanxdD
2G−1

.

s35d

After averaging over the fast oscillations withanx, where
an=nbn

1/3/p, the integration yields

An
,sEd =

1

4p2«F
Hcbn

2/3, Dn ! bn
−1/3

3/8pDn
2, 1 @ Dn @ bn

−1/3 , s36d

wherec=Gs7/6d /21/3s3pd1/2Gs2/3d.0.18. We now use Eqs.
s27d and s33d–s36d to calculate the relaxation ratetin

−1 of the
oscillatory component of the distribution function,foscs«d. As
we are going to show, it is dominated by the large-
momentum transfers,q@q1. The contribution of this large-
momentum region is easily evaluated: sinceA.sEd is energy-
independent, it is sufficient to take into account the
outscattering term only. We thus return to the right-hand side
of Eq. s9d with the inelastic relaxation ratetin

−1 replaced by22

tee
−1 =E

−`

`

dEA.sEd
E

2
Scoth

E

2T
− tanh

E + «

2T
D

=
p2T2 + «2

4p«F
ln

kvF

vcsvcttrd1/2. s37d

Note thattee
−1 in Eq. s37d depends onB through the logarith-

mic factor only and crosses over into the conventional zero-
B result tee

−1=spT2/4«FdlnskvF /Td when T exceeds
vcsvcttrd1/2.

Let us now turn to the contribution of the regionq&q1.
Evaluating the outscattering termfsimilar to the first line of
Eq. s37d, with A.sEd replaced byA,sEd, Eqs.s34d ands36dg,
we find stee

,d−1,svcttrd1/3T2/«F, which can exceed the large-
q contributions37d. However, the relaxation time approxima-
tion is no longer valid forq,q1. Indeed, the main contribu-
tion to stee

,d−1 comes from the energy transfersE close to
nvc, DnsEd,bn

−1/3, see Eq.s34d. Such processes are ineffi-
cient as far as the relaxation offosc is concerned, since the
energy transfer is almost commensurate with the period of
the oscillations in the distribution function. In other words,
the outscattering term is almost compensated by the in-
scattering one, so thatA,sEd=onAn

,sEd is effectively re-
placed byonDn

2An
,sEd. As a result, the contribution of region

of q&q1 to the relaxation rate is dominated byq,q1 and is
given by Eq.s37d without the logarithmic factor, and thus
can be neglected.

In fact, the situation is similar to the momentum relax-
ation due to small-angle scattering off a smooth random po-
tential. The momentum relaxation timettr and the outscatter-
ing sor single-particled relaxation timetq in that case differ
by the factors1−cosfd, which accounts for a reduced con-
tribution to the resistivity of small-angle scattering withf
!1:

Htq
−1

ttr
−1J = 2pn0E df

2p
Ws2kF sin

f

2
d 3 H1

s1 − cosfd
,

whereWsqd is the Fourier transform of the correlation func-
tion of the random potential. A similar result for the relax-
ation of the oscillatory part of the distribution functions is
obtained from Eq.s27d. We linearize Eq.s27d with the dis-
tribution function in the formswe assumeT@vd

f = fT + ws«d]«fT, s38d

wherews«d=ws«+vcd. This ansatz is suggested by Eq.s14d
and will be confirmed by the calculation below. We substi-
tute Eq.s38d in Eq. s27d and use the conditionT@vc which
allows us to separate the slow dependence onE, «8 on the
scale ofT and fast oscillations with the periodvc by aver-
aging over the period of the oscillations. UsingAsEd=AsE
+vcd fsee Eqs.s33d, s34d, ands36dg, we obtain the following
integrals over the slow variables which all produce the same
result,
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−E d«8E dEffT
shds«+dfTs«8dfT

shds«−8d + fTs«+dfT
shds«8dfTs«−8dg]«fTs«d

=E d«8E dEffTs«dfTs«8dfT
shds«−8d + fT

shds«dfT
shds«8dfTs«−8dg]«fTs«+d

= −E d«8E dEffTs«dfT
shds«+dfT

shds«−8d + fT
shds«dfTs«+dfTs«−8dg]«8fTs«8d

=E d«8E dEffTs«dfT
shds«+dfTs«8d + fT

shds«dfTs«+dfT
shds«8dg]«8fTs«−8d

=
p2T2 + «2

2
]«fTs«d. s39d

The collision integral thus reads

− Stinhfj =
p2T2 + «2

2

] fT

] «

3kAsEdfws«d − ws« + Ed + ws«8d − ws«8 − Edgl«8,E,

s40d

where the angular brackets denote averaging over«8 andE
within the periodvc. For a harmonic modulation of the dis-
tribution function, ws«d~coss2p« /vc+ud, as in Eq. s13d,
and usingAsEd=As−Ed, we obtain

− Stinhfj =
f − fT

tin
,

tin
−1 =

p2T2 + «2

2
kAsEdf1 − coss2pE/vcdglE. s41d

Because of the factor 1−coss2pE/vcd the contribution of
small momentas34d and s36d to the relaxation rate is small
compared to that ofq*q1. In the latter case, due to the
energy-independent kernelAsEd, Eq. s33d, the in-scattering
part is zero on average, andtin

−1 coincides with the out-
scattering rates37d.

The inelastic relaxation timetin as obtained abovefEqs.
s37d and s41dg depends on energy«.23 This makes the prob-
lem somewhat more complicated than the model considered
in Sec. II with a phenomenological,«-independent parameter
tin. However, characteristic energies are«,T fsee Eq.s38dg,
so that the«-dependence in Eqs.s37d and s41d does not
change theT−2 scaling of tin but only yields a numerical
factor. In particular, repeating the analysis of Eq.s9d in the
linear-in-Pv regime with the«-dependenttin, we find thattin
entering Eq.s10ad is effectively replaced by

E d«tins«,Tds− ]«fTd = tins0,TdE d«
− ]«fT

1 + s«/pTd2

. 0.822tins0,Td. s42d

Therefore, atT@v the linear photoresistivity, Eq.s16d,
scales asT−2.

At T!v sbut still T@vcd, the «-dependence intin be-
comes more important. Indeed, solving Eq.s9d to the linear
order inEv

2 sand atEdc=0d, we find the following oscillatory
contribution to the distribution function

foscs«d = tins«,TdEv
2 sv

D

2v2n0
o
±

ñs« ± vdffTs« ± vd − fTs«dg.

s43d

Equations1d then reproduces Eq.s16d for the photoconduc-
tivity, with tin senteringPvd given by

tin =E d«

2v
tins«,TdffTs« − vd − fTs« + vdg. s44d

For T@v this expression reduces back to Eq.s42d, while in
the opposite limitT!v it yields

tin =E d«

2v
tins«,Td =

p2T

2v
tins0,Td. s45d

Thus, theT−2 scaling of the photoresistivity atT@v trans-
forms into theT−1 behavior forT!v.

B. Separated Landau levels

We turn now to the case of separated LLs. Let us assume
again thatT is not too high,

vc ! T ! Gsttr/tqd1/2. s46d

The dominant contribution, similarly to the case of overlap-
ping LLs, is given by large transferred momentaq
@ sG /DBd1/2, whereDB=Rc

2/2ttr,B is the diffusion coefficient
in a quantizing magnetic fieldssee Sec. IId. However, the
situation for a strongly oscillating DOS, Eq.s22d, is different
in that it is no longer sufficient to deal solely with the out-
scattering processes even for largeq; that is the whole colli-
sion integrals27d should be taken into account. The kernel in
Eq. s27d may be rewritten as
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AsE,«,«8d =
2

p3n0ñs«d
E d2q

s2pd2uUu2P«,«+E
q P«8,«8−E

q ,

s47d

where the functionP for largeq@ sG /DBd1/2 reads24

P«,«8
q = pn0sqvFd−1ñs«dñs«8d. s48d

The procedure leading to Eq.s40d is applicable in the case of
separated LLs as well. As a result, the inelastic collision term
on the right-hand side of Eq.s9d should be replaced by

− Stinhfj =
p2T2 + «2

4p«Fñs«d
ln

kvFtq
1/2

vcttr
1/2

] fT

] «

3kñs«dñs« + Edñs«8dñs«8 − Ed

3fws«d − ws« + Ed + ws«8d − ws«8 − Edgl«8,E.

s49d

In other words, Eq.s9d becomes an integral equation for the
periodic functionws«d characterizing oscillations of the dis-
tribution function,

Afñs« + vd − ñs« − vdg

= kñs« + Edñs«8dñs«8 − Ed

3fws«d − ws« + Ed + ws«8d − ws«8 − Edgl«8,E,

s50d

whereA is a smooth function of«,

A =
2p«FEv

2sv
D

vn0sp2T2 + «2d
ln−1 kvFtq

1/2

vcttr
1/2 .

Analytical solution of Eq.s50d does not seem feasible.
However, up to a factor of order unity,25 we can rewrite the
exact collision integrals49d in the relaxation-time approxi-
mation, thus returning to Eq.s9d with

tin
−1 ,

vc

G

T2 + s«/pd2

«F
ln

kvFtq
1/2

vcttr
1/2 . s51d

One sees that theT and« dependence oftin in the regime of
separated LLs is the same as for overlapping LLsfEqs.s37d
ands41dg. Therefore the temperature scaling of the linear-in-
Pv photoresistivity, Eq.s24d, is the same as found in Sec.
VII A. In particular, sph−sdc scales asT−2 for T@v.

VIII. OSCILLATORY HALL RESISTIVITY

Finally, let us briefly discuss the issue of the microwave
induced v /vc-oscillations of the Hall resistivityrxy

H santi-
symmetric part ofrxy, i.e., rxy

H =−ryx
H d detected in recent

experiments.26 The experimentally observed oscillations of
rxy demonstrate the following properties. First, they have the
same period and the opposite phase as compared to the os-
cillations of the dissipative resistivityrxx. Second, the ampli-
tude of the oscillations inrxy is roughly the same as inrxx.
Third, the radiation-induced contributiondrxy is odd with
respect to the magnetic fieldB, which implies that the mea-

sureddrxy is indeed a contribution to the Hall resistivityrxy
H .

These observations cannot be explained within either the
mechanism related to the effect of the microwaves on the
distribution functionsRef. 12 and this workd or the one re-
lated to the effect on the elastic collision integralsRefs.
9–11d, if one assumes, as usual, that the electron densityne is
constant. Ifne was constant, the leading odd-in-B correction
dsyx

H to the Hall conductivitysyx
H =cene/B should be smaller

than dsxx by a factor 1/vcttr, which is of order 10−2 under
the experimental conditions. Therefore, the observeddrxy

H ,
although very small in comparison with the barerxy, appears
to be two order of magnitude larger than what one would
expect from the theory of the oscillatory contribution torxy
neglecting the oscillations ofne.

27 A possible origin of the
observed oscillatoryrxy may be a weak variation ofne with
v /vc. The observation28 of a variation of the period of the
Shubnikov-de Haas oscillations,dsxx~cosscne/eBd, appears
to support the idea of the microwave-induced oscillations of
the electron density. The issue warrants further study.

IX. CONCLUSION

To summarize, we have presented a theory of magneto-
oscillations in the photoconductivity of a 2DEG. The para-
metrically largest contribution to the effect is governed by
the microwave-induced change in the distribution function.
We have analyzed the nonlinearity with respect to both the
microwave and dc fields. The result takes an especially
simple form in the regime of overlapping LLs, Eq.s15d. We
have shown that the magnitude of the effect is governed by
the inelastic relaxation times44d, s41d, and s51d, and in-
creases asT−2 or T−1 sdepending on the relation betweenT
and vd with lowering temperature. For a sufficiently strong
microwave power the linear-in-dc-field photoconductivity
becomes negative leading to formation of domains with zero
resistivity. We have calculated the threshold power at which
this zero-resistance state is formed, Eq.s19d, and the spon-
taneous dc field in the domains, Eq.s21d.

Our results are in overall agreement with the experimental
findings.2,3,30 The observedT dependence of the photoresis-
tivity at maxima compares well with the predictedT−2 be-
havior. Typical parametersv /2p.50–100 GHz,tq.10 ps
yield vtq/2p.0.5–1soverlapping LLsd, and the experimen-
tal data indeed closely resemble Fig. 2. ForT,1 K andeF
,100 K we findtin

−1,10 mK, much less thantq
−1,1 K, as

assumed in our theory. For the microwave powerP
,1 mW and the sample areaS,1 cm2, Eq. s20d yields the
dimensionless powerPv

s0d,0.005–0.1sthe smaller value cor-
responds tov /2p=100 GHz, the larger one tov /2p
=50 GHzd, where we usedttr=10 mK andvF=2·107 cm/s.
These values ofPv

s0d agree with characteristic values for
separated LLssFig. 4d but are noticeably less than the pre-
diction for overlapping LLssFig. 2d. The discrepancy can be
attributedsat least partlyd to the fact that the value oftq used
in the above estimate, which was extracted from the
Shubnikov–de Haas experiments, is in fact masked by inho-
mogeneous broadening and thus is shorter than the actual
value. Indeed,tq found from thesexperimentald damping of
the oscillations inrph swhich are local and thus not affected
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by inhomogeneous broadeningd according to Eq.s15d is sev-
eral times longer. With this value oftq the threshold micro-
wave powerPv

* , Eq. s19d, needed for the emergence of the
zero-resistance states, corresponds toP less than 1 mW, in
conformity with the experiments.33 Finally, for Pv−Pv

*

,Pv
* , at T,1 K swhenttr /tin,1d, andvc/2p=50 GHz the

estimated dc electric field in the domains, Eq.s21d, is found
to be Edc

* ,1 V/cm. This is in agreement with the experi-
mental data of Ref. 7 where the voltage drop between an
internal and an external contactsseparated by 200mmd gen-
erated by the radiation in the absence of the drive current
was of the order of 5 mV forvc/2p.20 GHz. Assuming
that the size of the domain is of the order of the system size,
this yieldsEdc

* ,0.25 V/cm. One sees that this value indeed
compares well with our theoretical estimateEdc

* ,1 V/cm,
especially taking into account thevc

2 dependence ofEdc
* fol-

lowing from Eq.s21d.
Recently, a number of publications appeared that ex-

tended our theorysmain results of which were presented in
Ref. 13d in a variety of contexts: propagation of surface-
acoustic waves,34,35photoconductivity of laterally-modulated
structures,36 photoconductivity forB above the cyclotron
resonance,37 local compressibility of irradiated samples.38

ACKNOWLEDGMENTS

We thank R.R. Du, K. von Klitzing, R.G. Mani, J.H.
Smet, and M.A. Zudov for information about the experi-
ments, and I.V. Gornyi for numerous stimulating discussions.
This work was supported by the SPP “Quanten-Hall-
Systeme” of the DFG, by NSF Grants Nos. DMR02-37296,
DMR 02-13282, and EIA02-10376, by AFOSR Grant No.
F49620-01-1-0457, and by the RFBR.

APPENDIX: DERIVATION OF THE BASIC EQUATIONS
FROM THE QUANTUM BOLTZMANN EQUATION

The purpose of this Appendix is to demonstrate how the
semiclassical transport theory of Ref. 11ssee Sec. III of this
referenced is reduced to Eqs.s1d, s3d, and s11d when the
effect of electric fields on the impurity collision process can
be neglected and only the distribution function is affected.
The conditions under which the effect of the fields on the
collision integral is weak are that the dc field is much smaller
thanE0 and the strength of the ac field satisfiesP!1, where
E0 and P are defined in Eqs.s5.5d and s6.2d of Ref. 11,
respectively. In notation of our Eq.s10d these conditions
read29

Pv, Qdc ! tin/tq. sA1d

Under the conditionssA1d we neglect the effect of the exter-
nal field on the density of states, which amounts to putting
h1=1 in Eq. s3.42d of Ref. 11. The resulting DOS is time
independent:

ns«d = n0F1 + 2 Reo
l=1

`

llgl expS i2pl«

vc
DG , sA2d

where the coherence factorl=−exps−p /vctqd,

gl = l−1 Ll−1
1 s2pl/vctqd,

andLl
m is the Laguerre polynomial. The combinationugll

lu2
has the meaning of the probability for an electron to com-
plete the cyclotron orbit afterl revolutions. Here we follow
the notations of Ref. 11; in the main text of the present paper
the factorl is denoted as −d.

The kinetic equationss3.46d of Ref. 11 are written in the
time representation for the distribution functionfst ,t8 ;w ,Rd,
where f is the angle on the cyclotron orbit andR is the
position of its guiding center. This function is related to the
conventional distribution in the energy-time representation
by the Wigner transform

fst,t8d =E d«

2p
e−i«st−t8dfS t + t8

2
,«D . sA3d

The inverse Wigner transform of both sides of Eq.s3.46ad of
Ref. 11 yields the canonical form of the Boltzmann equation
for the distribution function

s]t + vc]wdfst,«;w,Rd = Stimhfj«,t + Stinhfj«,t. sA4d

A time-independent version Stinhfj«,t of the inelastic term is
considered in Sec. VII and will not be discussed further in
this Appendix. The impurity collision term Stimhfj«,t is ob-
tained as the inverse Wigner transform of Eq.s3.46bd of Ref.
11 and will be written explicitly below.

Under the conditionsA1d, the dissipative electric current
at the pointr is obtained from Eq.sA3d and Eq.s3.45bd of
Ref. 11:

j sddsr ,td = 2epFE
0

2p dw

2p
isfdE d«

2p
H fst,«;w,r gd

+ 2 Reo
l=1

`

llgl expS i2p«

vc
D fSt −

pl

vc
,«;w,r gDJ ,

sA5d

wherepF is the Fermi momentum,r g=r −Rcêiswd−zstd is the
guiding center coordinate andzstd describes the motion of an
electron in the external fieldEstd:

]tzstd = S ]t − vcê

]t
2 + vc

2 DeEstd
m

, sA6d

i =hcosw ,sinwj, ê is the antisymmetric tensor,exy=−eyx=1.
In view of Eq. sA1d one can neglect the effect of the

electric fields on the interference processes in the collision
integral s3.46bd of Ref. 11, which amounts to putting the
form-factorsh1=h2=1 in Eq.s3.49d. Then Eq.s3.46bd in the
time representation acquires a simple form
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Stimhfjt,t8 = −
L̂st,t8d

ttr
fst,t8d

+
1

ttr
o
l=1

`

llglHfMlstd − L̂st,t8dgfSt −
2pl

vc
,t8DJ

+
1

ttr
o
l=1

`

llglHfMlst8d − L̂st,t8dgfSt,t8 −
2pl

vc
DJ ,

sA7d

where

L̂st,t8d = shpFfzstd − zst8dgê − iRc¹Rj · iswd + i]wd2

and Mlstd is the result of action of the operatorL̂st ,t
−2pl /vcd on unity. Performing the Wigner transformation of
Eq. sA7d we obtain

Stimhfj«,t = −
1

ttr
L̂St +

i

2
]«,t −

i

2
]«D

3fst,«;w,Rd +
2

ttr
Reo

l=1

`

llgl

3HFMlSt +
i

2
]«D − L̂St +

i

2
]«,t −

i

2
]«DG

3expS2ipl«

vc
D fSt −

pl

vc
,«;w,RDJ . sA8d

EquationssA4d and sA8d are valid for an arbitrary time
dependent distribution function. We now notice from Eq.
sA4d that the most divergent terms in the distribution func-
tion are due to the contribution of the angular and time in-

dependent part off to the collision integral. Forvcttr@1 it is
sufficient to considerf to be time, angular, and coordinate
independent. EquationsA8d reduces to

Stimhfj«,t = −
Nsi]«d

ttr
fs«d +

2

ttr
Reo

l=1

`

llgl

3HFNS2pl

vc
D − Nsi]«dGexpS2ipl«

vc
D fs«dJ ,

Nsdtd ;
pF

2

2
fzstd − zst − dtdg2, sA9d

and the bar stands for the time averaging. In the constant
electric fieldNsdtd=sdtd2pF

2s]tzd2/2, whereas for the micro-
wave field zstd=Reszveivtd and Nsdtd=pF

2 Refzvzv
* s1

−eivdtdg /2. Substituting these expressions in Eq.sA9d, taking
z from Eq. sA6d, and using Eq.sA2d, we arrive at the left-
hand side of Eq.s9d.

The zero angular harmonic of the distribution function
does not contribute to the electric currentsA5d directly. The
relevant angular dependent correctiondfswd, with
edwdfswd=0, can be found perturbatively from Eqs.sA4d
and sA8d:

vc]wdfswd = pFttr
−1]wf]tzstdêiswdg

3F1 + 2 Reo
l=1

`

llgl expS2pil«

vc
DG]«fs«d.

sA10d

Substituting the solution of Eq.sA10d in Eq. sA5d and apply-
ing Eq. sA6d in the limit of the dc field, we obtain Eq.s1d
with sdcs«d given by Eq.s3d.
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