PHYSICAL REVIEW B 71, 115316(2005

Theory of microwave-induced oscillations in the magnetoconductivity
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We develop a theory of magneto-oscillations in the photoconductivity of a two-dimensional electron gas
observed in recent experiments. The effect is governed by a change of the electron distribution function
induced by the microwave radiation. We analyze a nonlinearity with respect to both the dc field and the
microwave power, as well as the temperature dependence determined by the inelastic relaxation rate.
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I. INTRODUCTION the OPC governed by this mechanism, including nonlinear
effects. We will demonstrate that the conductivity at a mini-
Recent experiments have discoveréiuat the resistivity mum becomes negative for a large microwave power and
of a high-mobility two-dimensional electron gé8DEG) in  that a positive sign is restored for a strong dc bias, as it was
GaAs/AlGaAs heterostructures subjected to microwave ragssymed in Ref. 8.
diation of frequencyw exhibits magneto-oscillations gov- The paper is organized as follows: First, in Sec. Il we
erned by the ratia/ w., wherew; is the cyclotron frequency. formulate a general approach to the problem. In Sec. Il we
Subsequent wofk” has shown that for samples with a very cajculate the nonequilibrium distribution function for over-
high mobility and for high radiation power the minima of the lapping Landau level§LLs). In Sec. IV we consider the
oscillations evolve into zero-resistance staéRS). OPC in the linear regime with respect to the dc field. In Sec.
These spectacular observations have attracted much theg-we analyze the ZRS and calculate the spontaneous electric
retical interest. As was shown in Ref. 8, the ZRS can bejeld in the domains. In Sec. VI we turn to separated LLs.
understood as a direct consequence of the oscillatory phot&ection VII deals with the inelastic relaxation due to
conductivity (OPO, provided that the latter may become glectron-electron scattering. Finally, in Sec. VIII we briefly
negative. A negative value of the OPC signifies an instabilitygiscuss the magneto-oscillations in the Hall photoresistivity.
leading to the formation of spontaneous-current domaingn Sec. IX we summarize our results and compare them with

showing zero value of the observable resistance. Thereforghe experimental data. A brief account of the results of this
the identification of the microscopic mechanism of the OPCpaper was presented in Ref. 13.

appears to be the key question in the interpretation of the
datal~’

A mechanism of the OPC proposed in Ref. 9 is based on Il. GENERAL FORMALISM
the effect of microwave radiation on electron scattering by
impurities in a strong magnetic fiel[@ee also Ref. 10 for an We consider a 2DEGmassm, densityn,, Fermi velocity
earlier theory and Ref. 11 for a systematic theoAn alter-  vg) subjected to a transverse magnetic fidkl(mc/e) w.. We
native mechanism of the OPC was recently proposed in Refssume that the field is classically strongzn, > 1, wherer,
12. In contrast to Refs. 9-11, this mechanism is governed bigs the transport relaxation time Bt=0. The photoconductiv-
a radiation-induced change of the electron distribution funcity oy, determines the longitudinal current flowing in re-
tion. Because of the oscillations of the density of statesponse to a dc electric fielf, j '8dc:0'pl’€€(21c: in the pres-
(DOS), v(e), related to the Landau quantization, the correc-ence of a microwave electric field, coswt. The more
tion to the distribution function acquires an oscillatory struc-frequently measuréd*®’ longitudinal resistivity, pp,, is
ture as well. This generates a contribution to the dc conduagiven byppthfyaph, wherep,,=eB/nc is the Hall resis-
tivity which oscillates with varyingw/w.. A distinctive tivity, affected only weakly by the radiation.
feature of the contribution of Ref. 12 is that it is proportional ~ We start with the formula for the dc conductivity per spin:
to the inelastic relaxation time,. A comparison of the re-
sults of Refs. 11 and 12 shows that the latter contribution
dominates if7,> 7, (where 7, is the quantum, or single- aph=J deoyde)[- d.f(e)], (1)
particle, relaxation time due to impurity scattering/hich is
the case for the experimentally relevant emperatures.

The consideration of Ref. 12 is restricted to the regimewhere f(¢) is the electron distribution function, ang,{(e)
which is linear in both the ac power and the dc electric field.determines the contribution of electrons with enetgyp the
The purpose of this paper is to develop a complete theory adissipative transport. In the leading approximattbf?
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eZV(S)UFZZ Tt—rlB(g) (directed along thex axis) the spatial diffusion is translated
’ (2)  into the diffusion ine-space, with a diffusion coefficient
(e€40°Dg(e) and the DOS(¢),

Stud f} = v (&) 3,  v(e)2E5D(e) 4, (e)]

oadle) = 2 wi + Tt_r‘zB(S) '

where 7, g is the transport scattering time in a quantizing
magnetic field, r, g(e) =7 1o/ v(e), and vo=m/27 is the

DOS per spin at zer8 (we usefi=1). We note that Eq(2) 5 050
has a Drude form with the DOS(¢) and the transport time = eac 7}(8)(98[7/2(«‘3)551‘(8)]- (8)
0

7y g(e) dependent of energy due to the Landau quantization.
For a classically strong magnetic field).r,>1, the  Equation(8) can also be obtained from E(f) by taking the
above expression reduces to limit w—»lo and replacing the period-average of the ac field
~ squaredzE&2, by &3..
oadle) = og (), S qSubstiztutingyE(;;(G) and (8) in the kinetic equatior(),
where o3.= v/ 2w, is the dc Drude conductivity per we get
spin in strongB and we introduced the dimensionless DOS,

D
We)=vle)l v 2793 5(e + w)[f(e £ 0) - ()]
We neglect here the effect of the microwaves on the im- 20°1y"x
purity collision integral, which yields a subleading contribu- o0 f(e) = (&)
tion to the phoconductivity, as discussed in Sec. IV. The +5§C ~d° aSGZ(S)an(S)]:—T, 9)
dominant effect is due to a nontrivial energy dependence of vov(e) Tin

the nonequilibrium distribution functiofi(e). The latter is \ynere the inelastic processes are included in the relaxation
found as a solution of the stationary kinetic equation for thg;me approximation and-(e) is the Fermi distribution. A
zero angular harmonic of the distribution functio): detailed discussion of the inelastic relaxation and a calcula-

St,{f} + Styc{f} = - Stlf}. @) il/(l)ln of the inelastic relaxation timeg,, are relegated to Sec.
Here the left-hand side represents the effect of the micro- Equation(9) suggests convenient dimensionless units for
waves (St,) and of the dc field(Sty) in the presence of the strength of the ac and dc fields
impurities while the right-hand side accounts for the inelastic

relaxation. P = m( engF)z wg+ (108
The first term on the left-hand side describes the absorp- o\ 0 ) (0?-0d)?
tion and emission of microwave quanta; the rate of these
transitions was calculated in Ref. 12, yielding o ﬁ<egdch)2<1>z ob
Stm{f} = E_i ezv'Z:Tt_r,:I-B(8 + w)[f(s +w) - f(g)] o Tir We We
40”7 2wt w)?+ (e + w) + 7 5(e) With these notations, Eq9) reads
+{o— - w}. ®  p 0,0
® ~ dc®c 2
We will assume thalw+ w¢|> 75, thus excluding a narrow 4 % et o)lf(et ) -fle)]+ 47T27,(8)&EFJ (£)7,f(e)]
vicinity of the cyclotron resonance. This allows us to neglect
the e-dependent terms in the denominator, which reduces Eq.  ~= f(e) - fr(e). 11
() to the form Note thatP, and Qg are proportional tar, and are infinite
oP ~ in the absence of the inelastic relaxation processes.
Stify =& 2 2Heto)lf(et o) = f(e)],  (6) The left-hand side of the kinetic equatiétl), as well as
@V + Egs. (1) and (3) for the photoconductivity, can also be ex-
where the ac Drude conductivity per spin is given by tracted frqm the quantur_n Boltzmann equation of Ref. 11, as
) we show in the Appendix. Below, we use E@$), (3), and
D_§ Evg 7) (12) to analyze the photoconductivity in the both limiting
Yo~ T dr(w* w)?’ cases of overlapping and separated LLs.
Furthermore, we assume, in accordance with the experi- 1ll. NONEQUILIBRIUM DISTRIBUTION FUNCTION
ments, a linear polarization of the microwaves. For a circular INDUCED BY MICROWAVE RADIATION

polarization, one should retain only one term on the right-

hand side of Eq(7), which, away from the cyclotron reso- We consider first the case of overlapping LLs, with the

nance, does not affect the results in any essential way. ~ POS 9iven by
The second term on the left-hand side of E4). repre- B 2 -
sents the effect of the dc electric field. The impurity scatter- p=1-26cos——, &= exp(— )<L (12
c cTq

ing in a quantizing magnetic field leads to the spatial diffu-
sion with a diffusion coeﬁicienDB(s)=v,2:/2w§7'tr,3(s). In Here 7, is the zeroB single-particle relaxation time, which is
view of conservation of the total energy-e£yx in a dc field  much shorter than the transport time in high-mobility struc-
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FIG. 1. (Color onlineg Schematic behavior of the oscillatory
density of states/(e) and radiation induced oscillations in the dis-
tribution functionf(e) for sin27w/ w;) > 0.

tures, 7y< 7, (because of the smooth character of a random

potential of remote donoysThe existence of a small param-
eter § simplifies solution of the kinetic equatigil). To first
order in 8, we look for a solution in the form

f=fo+ fosct 0(82)1 fosc= 5Rd:f1(8)ei(2m/wc)]- (13

We assume that the temperatimeeasured in energy units,
kg=1) is sufficiently high,T> w., implying a scale separa-
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the experimentthat T is much larger than the Dingle tem-
perature,T>1/2m7,. Under this condition, the temperature
smearing vyields a dominant damping factor of the
Shubnikov-de Haas oscillation¥/sinhX with X=27°T/ w..
The terms of orde® in Eq. (1) are then exponentially sup-
pressed,

2
5J de cos ™
w

—0,fr o Sexp- 2mTlwe) < &,

C

and can be neglected. The leadimgdependent contribution
to oy, comes from thes® term generated by the product of
dsfosde)xdcos(2me/w;) and the oscillatory part
—-268cos(2mel w) of ¥(e). This term does survive the energy
averaging, fde cos (2me/ wy)d,fr=1/2. We thus find

27w 27w

P. sin +4Q4c

We Wc

Toh— 1 4267 1-
Tdc

(15

. Tw
1+7P, s — + Qq¢

We

Equation(15) is our central result. It describes the photocon-
ductivity in the regime of overlapping LLs, including all
nonlinear(in £, and &y effects. Let us analyze it in more
detail. In the linear-response regini&;.— 0) and for a not

tion between the smooth energy dependence of function®o strong microwave field, Eq15) yields a correction to

fo,1(¢) on a scale of the order af and the fast oscillations

the dark dc conductivityrg.= o5.(1+258%), which is linear in

with a periodw..** We also assume that the electric fields arethe microwave power:

not too strong[P,(w/T)?<1 and Quw./T)?<1], so that
the smooth parfy(e) is close to the Fermi distributiofi(e)
at a bath temperatur€; otherwise, the temperature of the
electron gas is further increased due to heatye obtairt®

27w 27w

P sin +4Q4

5&&_1} . 2me e g
2w de

fosde) = ©
c

1+7P, sif 2 + Qg

We

(14)

Thus, the oscillations of the DO&e) induce an oscillatory
contributionf,c{¢) to the distribution function, as illustrated
in Fig. 1.

One might naively think that the small correcti¢t¥) to
the distribution function will only weakly affect the conduc-

tivity. This is not the case, however. The reason is that, du%

to the fast oscillations irf,g, the derivatived,f,s. may be
large. As a result, a small variation of the distribution func-
tion (14) can strongly affect the conductivity, Eql). In
particular, when the regions of an inverted populatiofi(i&)
correspond to the maxima in(e) (as in Fig. 2, the linear-

- 2
Jon= Jde - _ y5op T2 gjn T2 (16)
Odc W¢ W¢

in agreement with Ref. 12. It is enlightening to compare Eq.
(16) with the contribution of the effect of the ac field on the
impurity scattering~! The analytic result, Eq. 6 and 11 of
Ref. 11, in the notation of Eq10) is

ol
o, T T | 2T ., TW

—u=—1215273w<—sm + sir? —)
Odc Tin W¢ We W¢

17

This result has a similar frequency dependence aqHjy;
however, its amplitude is much smaller g{> 7, i.e., the
mechanism of Refs. 9-11 appears to be irrelevant. Physi-
cally, the effect of the ac field on the distribution function is
ominant because it is accumulated during a diffusive pro-
cess of duratiorr;,, whereas Refs. 9-11 consider only one
scattering event. Apart from the magnitude, the two contri-
butions are qualitatively different in their temperature and
polarization dependence. Specifically, the contribution re-
lated to the change of the distribution function is strongly

response conductivity may become negative, as we show b?e'mperature-depende(due to theT dependence of,,, see

low.

IV. OSCILLATORY PHOTOCONDUCTIVITY

To calculate the photoconductivity, we substitute Edf)
for the distribution function into Eq.1). Performing the en-
ergy integration in Eq(1), we assumdin conformity with

Sec. VI and does not depend on the direction of the linear
polarization of the microwave field. On the other hand, the
effect of microwaves on the impurity collision integral yields

a T-independent contribution which depends essentially on
the relative orientation of the field€, and £y [Eq. (17)
represents the result averaged over the polarization direc-
tion].
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ST TRET: 12 o/o FIG. 3. Current-voltage characteristifgimensionless current
Tx= (0l 73 €4 vs dimensionless fieldy.= 0%?] at the points of
FIG. 2. Photoresistivitynormalized to the dark Drude value minima marked by the circles in Fig. 1. The arrows show the dc
for overlapping Landau levels ve/w at fixed w7y=27. The  fig|d E;c in spontaneously formed domains.
curves correspond to different levels of microwave pow/éj”
={0.24,0.8,2.4 Nonlinear |-V characteristics at the marked

minima are shown in Fig. 3. 5;;0: ’;&(ﬁym{(é‘?)z_ 11 1/2
V2w eR\ 7y &,
With increasing microwave power, the photoconductivity (@ + w?) |H2
saturates at the value =\ - (& )Z[H}
@ S P a)c)2
Iph_ 1 _geT® 4 T® 2 7O 12
Ode =1-85 g cot ;' Posirt e >1. (19 X 7—];_ Re(452? sin ZZw - sir? ?) . (21
C C Cc

Note that although the correction is proportional #o<1, .

the factor 8r(w/ we)cot{ mw/ wy) is large in the vicinity of the ~ With £, being the threshold value of the ac figld at which the
cyclotron resonance harmonies=ko, (k=1,2,..), and al-  ZRS develops an&.=ve/w. the cyclotron radius. Equation
lows the photoinduced correction to exceed in magnitude th&21) relates the electric field formed in the domainseasur-
dark conductivityoy.. In particular, oy, around minima be- able by local prob® with the excess power of microwave
comes negative aP,>7P,>0, with the threshold value radiation. It is worth noticing that the last expression £g¢

given according to Eq(15) by does not explicitly contain the rate of the inelastic processes.
-1
P = (452ﬂ ain 27° _girp ﬂ) _ (19) VI. SEPARATED LANDAU LEVELS
@ g g g

i o We now turn to the regime of stror) w.7,/ 7> 1, where
The evolution of thé3 dependence of the photoresistiVify  the LLs get separated. The DOS is then giveithin the

with increq&_:ing microwave power is illustrated in F_ig. 2. self-consistent Born approximatipby a sequence of semi-
More specifically, the curves in Fig. 2 correspond to differentgircles of width T:2(2wc/7-r7-q)1’2:

values of the dimensionless parameter

_ & mip vg 8P
T hc Ty 0°Shw?’

where P=c|£,|>S/87 is the microwave power over the We use Eqs(1) and(11) to evaluate the OPC a4, —0 to
sample ared, c is the speed of light, and we restored thefirst order inP?,, and estimate the correction of the second

~ 2(0 /
(20 V(e) = W_FZE Re\I? - (e —Nwe— /2)%. (22

Py = Py(we=0)

Planck constant for convenience. order. The condition> o, allows us to separate the slow
dependence oa on the scale off and fast oscillations with
V. ZERO-RESISTANCE STATES the perioday in the integral(1) by averaging over the period

Let us now fixw/ . such thatP’ >0, and consider the of the oscillations. After integrating the resulting slow-
dependence of,, on the dc fieldSy. at a sufficiently strong  Varying functions we obtain
microwave powerP,>7P . corresponding to the negative

linear-response photoconductivity. As follows from E&5), Iph _ &), - “’Pw<[7,(8 + ) = e - ©)]972()),
in the limit of large&y. the conductivity is close to the Drude 050 4

value and thus positiver,,=(1-68% 05> 0. Therefore g, ’ . - 5
changes sign at a certaig valdg of the dc field(see Fig. 5% * waEk,l 2 (e +ko)P(e +10)3,7(e)), + O(P,).
which is determined by the conditio@qc= (P,—P)IP,. (23
The negative-conductivity state &§.<E is unstable with

respect to the formation of domains with a spontaneous eleddere the angular brackets denote averaging eveithin the
tric field of the magnitudé..  Using Eqs(10) and(19), we  period w,, anda are numerical coefficients. The result for
obtain separated LLs, Eq22), reads
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' ! ' VII. INELASTIC RELAXATION DUE TO ELECTRON-
10 b ELECTRON COLLISIONS

Finally, we calculate the inelastic relaxation timg. Of
particular importance is it3 dependence which in turn de-

%_8 s L termines that obry,. At not too highT, the dominant mecha-
\& nism of inelastic scattering is due to electron-electfer)
Q

collisions. It is worth emphasizing that thee scattering
does not yield relaxation of the total energy of the 2DEG and
0 \S \/ as such cannot establish a steady-state dc photoconductivity.

That is to say the smearing éf(¢) in Eq. (13), which is a

: ! \ measure of the degree of heating, is governed by electron-
as 12 o,/ 0 phonon scattering. However, tee scattering afl > w, does
lead to relaxation of the oscillatory terfg, Eq. (14), and
thus determines th€ behavior of the oscillatory contribution

FIG. 4. Photoresistivitynormalized to the dark Drude value
for separated Landau levels ws./w at fixed wry=16m. The
curves correspond to different levels of microwave power

O'ph.
0) Quantitatively, the effect of electron-electron interaction
P, =10.01,0.03,0.0p

is taken into account by replacing the right-hand side of Eq.

(9) by =St {f}, where the collision integral §ff} is given

Ton_ 160}, 00, by

ob. 37T T2
Stee{f}:fds'f dEAE,e,&’)
o — Nw, P,
Jpolez) 2]}
n r r X[- f(s)f(h)(8+)f(3’)f(h)(gi)
+10(e)f(e,) f (e f(eD)], (27)
d(x) = 3 Re{arccosslxl - 1)—1+—Mv"lxl(2 -IXI)]. and f"(e)=1-f(e), e,=e+E, e/ =¢'—E. The function
Am 3 A(E,e,&") describes the dependence of the matrix element

(24) of the screened Coulomb interaction on the transferred en-

ergy E and the energies of colliding particles. In what fol-

The photoresistivity for the case of separated LLs, @4), lows we use the linearized form of gt

is shown in Fig. 4 for several valugg, of the microwave

power. Notice that a correction to E@4) of second order in _

P, is still small even at microwave power exceeding the A. Overlapping Landau levels

threshold value For overlapping LLs, we puf=1 in accord with the ac-
curacy of Eq.(15). Then the kernel in Eq27) depends on

7?;~ 'Y wawg, (25 the transferred energl only and is given by the general

formulat®

sincewP, /T ~T/w<1. This means that it suffices to keep 5 P

the linear-inP, term only even for the microwave power A(E) - 2% —q2|U|2(Re(D))2. (28)

P,>P., at which the linear-response resistance becomes m ) (2m)

negative. Here the factor of 2 accounts for spif)(E, q) is the angle-
As in the case of overlapping LLs, a negative value of the y PII)(E. o) | g

linear-response conductivity signals an instability leading toaveraged particle-hole propagator,
the formation of domains with the fieldy, at which k2,

oor(Ead=0. It turns out, however, that for separated LLs the U(E,q) = q+ <1 +IED)) (29
kinetic equation in the form of Eq9) yields zero(rather

than expected positiyeconductivity in the limit of strong the dynamically screened Coulomb potential, and
Eq4et” This happens because elastic impurity scattering be=4m€?y, the inverse screening length.

tween LLs, inclined in a strong dc field, is not included in  The propagatofD)(E,q) has the(disorder-independent

Eq.(9). The inter-LL transitions become efficient in dc fields Fermi-liquid form for ultraballistic momenta,q>q;

as strong agsee Eq.(5.5) of Ref. 1]] =(we/D)Y?, whereD:R§/27tr is the diffusion coefficient in a
classically strong magnetic field,
* T 12 w,
oo™ <—t> . (26) (D)= (qvE-E)™,  q>q=(0JdD)?  (30)
4 eR

With lowering q it crosses over into the quasiclassical
which actually gives the strength of the field in domains forparticle-hole propagator in a smooth random potertiazel-
the case of separated LLs. listic diffuson”)19:20
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- JA(qRy) , f s __E E E+e
D)= : , <q;, (31 Tee = dEA”(E)-| coth— —tanh
< > ngo _ i(E _ nwc) + Dq2+ n2/7'tr q ql ( ) ee . 2 oT oT
whereJ,(x) is the Bessel function. _ T2 + g2 G Kve @7
Let us calculate the kern@(E) for E<T within the (ex- Ameg wc(wery) M

perimentally relevanttemperature range,

we < T < oy wgmy)Y2. (32) Note that7_2 in Eq. (37) depends o3 through the I(_)garith-
mic factor only and crosses over into the conventional zero-

The integration domain in E¢28) naturally divides into two B result 7.2=(wT?/4ep)in(xvg/T) when T exceeds
parts:q>q; andq<gq;. In view of Eq.(32) the propagator  w.(w.n,)"2
(30) for ultraballistic momenta > q, does not depend onthe  Let us now turn to the contribution of the regiope q;.
transferred energlg < T, specifically,(D)=1/qug, while the  Evaluating the outscattering terfaimilar to the first line of
screening is effectively statid)(E,q)=U(0,q). It follows Eqg.(37), with A”(E) replaced byA<(E), Egs.(34) and(36)],
that the contributiorA”(E) of =g, to the integral28) has  we find (75) ™1~ (w.7,)Y3T?/ e, which can exceed the large-

the form g contribution(37). However, the relaxation time approxima-
tion is no longer valid folg<q,. Indeed, the main contribu-

A (E) = 1 n =< (33) tion to (r5)7t (_:10/21es from the energy transfelEscIosg to _

2mep Oy Nwe, An(E)~ B,™", see Eq.34). Such processes are ineffi-

cient as far as the relaxation éf.is concerned, since the
gnergy transfer is almost commensurate with the period of
the oscillations in the distribution function. In other words,
the outscattering term is almost compensated by the in-
A<E) =S AZ(E). (34) scattering on§,<so thad=(E)==,A; (E) is .effe.ctively re-
N placed by=,ArA; (E). As a result, the contribution of region

) o ) of g=q to the relaxation rate is dominated Qy-q; and is

When calculating the contribution of a single pegk the given by Eq.(37) without the logarithmic factor, and thus
following approximations are justified: in E¢31), the prod- can be neglected.
uct oflthe Bessel function¥{(qR,) for the relevant momenta | tact, the situation is similar to the momentum relax-
q>R;" can be replaced by 2 cbg,/mqR. with ¢,=0R:  ation due to small-angle scattering off a smooth random po-
+m(2n+1)/4; the termn®/ 7, in Eq. (31) can be neglected at tential, The momentum relaxation timg and the outscatter-
E=T in view of Eq.(32); also, the first term in the denomi- ing (or single-particlg relaxation timer, in that case differ
nator of Eq.(29) can be omitted fog=q;<«. Introducing by the factor(1-cosg), which accounts for a reduced con-
the dimensionless parametets,(E)=|E/w.—n[<1/2, B  tribution to the resistivity of small-angle scattering wiih
= 272w, IN?> 1, andy,(E) = B~*A,(E) we express the con- <1:
tribution of thenth peak forA,<1 ag!

By contrast, the contribution af<q; to Eq.(28) is strongly
E-dependent and is found as a sum over peaks coming fro
differentn in Eq. (31),

2/3 % 5 -1
X T, d¢ ¢ 1
A;(E) = —5 dx d1=2 f—wzksn—x ,
by X+ o r;rl} ™0 | 5 MZKeSIN D)X (1 _ cosg
X6 VX 21-1
X 4 cod(apx) - 2 co2(a,X) : whereW(q) is the Fourier transform of the correlation func-

tion of the random potential. A similar result for the relax-
(39 ation of the oscillatory part of the distribution functions is

After averaging over the fast oscillations withx, where  Obtained from Eq(27). We linearize Eq(27) with the dis-

a,=nBY% m, the integration yields tribution function in the formwe assumd > w)
2/3 . o-1/3
A (E) = 1 )esyn , A< B, e (36) f=fr+o(e)d,fr, (39)
Amlep | 3/87AZ, 1> A,> B,

wherec=I'(7/6)/2%3(3m)2I"(2/3) = 0.18. We now use Eqgs. where ¢(s)=¢(c+w,). This ansatz is suggested by Ef4)

(27) and (33)—(36) to calculate the relaxation ra15t-§11 of the  and will be confirmed by the calculation below. We substi-
oscillatory component of the distribution functidis{¢). As  tute Eq.(38) in Eq. (27) and use the conditiom> w. which

we are going to show, it is dominated by the large-allows us to separate the slow dependenceé=pa’ on the
momentum transfergy>q,. The contribution of this large- scale ofT and fast oscillations with the period. by aver-
momentum region is easily evaluated: sidic&E) is energy- aging over the period of the oscillations. UsiAgE)=A(E
independent, it is sufficient to take into account the+w.) [see Eqs(33), (34), and(36)], we obtain the following
outscattering term only. We thus return to the right-hand sidéntegrals over the slow variables which all produce the same
of Eq. (9) with the inelastic relaxation rate;! replaced b§?  result,
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- f de’ f dE[ (&) fr(e ) TP (el) + fr(e) fP () Fr(e))],T(e)
= J de’ J dEL fr(e)f() P (e]) + 11 (2) (2" Fr(e])]0,F1(e.)
=- f de’ f dE[f1(e) P (e)F1(e]) + (&) Fr(e) Fr(e)]d, frle")

= f ds’ J AE (&) TP (e.) tr(e") + (@) Fre) 1) ()10, Fr(s))

T + g2
=T T ) (e). (39)
2
|
The collision integral thus reads At T<w (but still T>w.), the e-dependence im;, be-
2T 420 comes more important. Indeed, solving K@) to the linear
— St {f} = It +et ity order in&2 (and at€4.=0), we find the following oscillatory
2 de contribution to the distribution function
X(AB)¢(e) = p(e +E) + (e') = p(e" = E) ]y g, D
(40)  Tosde) = Tnle, DEL - 2 o t 0)[frle £ 0) ~ Fr(o)].
0 +
where the angular brackets denote averaging eveand E (43)

within the periodw.. For a harmonic modulation of the dis-
tribution function, ¢(g) cco9d2me/ w:+6), as in Eq.(13),
and usingA(E)=A(-E), we obtain

f - fT

Skl = Tin = f s—w Tn(e Dlfr(e =) = frle +w)].  (44)

Equation(1) then reproduces Eq16) for the photoconduc-
tivity, with 7, (enteringP,,) given by

212 2

1= M(A(E)[l - co%27E/ wy) ])e. (41 For T> w this expression reduces back to E4)2), while in
the opposite lIMIfT < w it yields

Because of the factor 1-d@&rE/w;) the contribution of
small momentd34) and (36) to the relaxation rate is small - :J d_ST (e,T) = ﬂT 0.,T) (45)
compared to that ofj=q;. In the latter case, due to the n 20 ™ 20 "
energy-independent kern&(E), Eq. (33), the in-scattering
part is zero on average, ant%l coincides with the out- Thus, theT 2 scaling of the photoresistivity &> w trans-

scattering raté37). forms into theT™* behavior forT < w.
The inelastic relaxation time;, as obtained abovgEgs.
(37) and (41)] depends on energy.?® This makes the prob- B. Separated Landau levels

lem somewhat more complicated than the model considered

in Sec. Il with a phenomenological;independent parameter ~ We turn now to the case of separated LLs. Let us assume
- However, characteristic energies are T [see Eq(38)],  again thafT is not too high,

so that thee-dependence in Eq€37) and (41) does not

change theT2 scaling of =, but only yields a numerical we < T < T (7 /1) "2 (46)
factor. In particular, repeating the analysis of E9). in the

linear-in-P,, regime with thes-dependent,,, we find thats, ~ The dominant contribution, similarly to the case of overlap-

entering Eq(103 is effectively replaced by ping LLs, is given by large transferred momenta
f > (T'/Dg)*?, whereDg=R2/27, g is the diffusion coefficient
— ety in a quantizing magnetic fieldsee Sec. )l However, the
der(e,T)(=d.f1) =7,0,T) | de—————= 1aq 9 9 o ' !
f o7in(&:T)(= defr) = 7inl )J “1+(e/mT)? situation for a strongly oscillating DOS, E(®2), is different

_ ' in that it is no longer sufficient to deal solely with the out-

= 0.822,(0.T). (42 scattering processes even for largehat is the whole colli-
Therefore, atT>w the linear photoresistivity, Eq(16),  sion integral27) should be taken into account. The kernel in
scales ag 2 Eqg. (27) may be rewritten as
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2 d’q 5 0 sureddpy, is indeed a contribution to the Hall resistivipyHy.
AE,e,e")=—— f(z )2|U| {13 | N These observations cannot be explained within either the
™ vorle) m mechanism related to the effect of the microwaves on the
(47) distribution function(Ref. 12 and this workor the one re-
lated to the effect on the elastic collision integi&tefs.
9-11), if one assumes, as usual, that the electron dengity
Hga, = mwo(que) " (e)T(e’). (48) constant. Ifn, was constant, the leading odd#heorrection
' s’} to the Hall conductivityo!! =cen/B should be smaller
The procedure leading to EGL0) is applicable in the case of than o, by a factor 1.7, which is of order 10 under
separated LLs as well. As a result, the inelastic collision termhe experimental conditions. Therefore, the obsersg,
on the right-hand side of E¢9) should be replaced by although very small in comparison with the baig, appears
RV to be two order of magnitude Iarger than wh_at one would
Flg 777 expect from the theory of the oscillatory contributiondg,

where the functiordl for largeq> (I'/ Dg)*? read$*

- S‘in{f} = ~ n 7_1/2 o K X . 27 . ..
Amerv(e) wery- de neglecting the oscillations af..v” A possible origin of the
~ ~ e~ observed oscillatory,, may be a weak variation aof, with
X(W(e)ule + EYu(e"Ju(e’ ~ ) ol w.. The observatioft of a variation of the period of the
X[p(e) —@(e +E) + @(e') — (e’ —E)])sr g Shubnikov-de Haas oscillationdg,, > cogcn./eB), appears

(49) to support the idea of the microwave-induced oscillations of
the electron density. The issue warrants further study.
In other words, Eq(9) becomes an integral equation for the
periodic functiong(e) characterizing oscillations of the dis- IX. CONCLUSION
tribution function,

To summarize, we have presented a theory of magneto-

Alv(e + 0) = Ue - 0)] oscillations in the photoconductivity of a 2DEG. The para-
= (e + EYie)ie’ —E) metric_ally Iarge_st contribution to_the effe_ct _is governed_ by
the microwave-induced change in the distribution function.

X[e(e) = (e +E) + ¢(e') — @& =E)]),r g, We have analyzed the nonlinearity with respect to both the

(50) microwave and dc fields. The result takes an especially
simple form in the regime of overlapping LLs, E4.5). We
where A is a smooth function oé, have shown that the magnitude of the effect is governed by
the inelastic relaxation timé44), (41), and (51), and in-
. creases a3 2 or T™! (depending on the relation betwe&n
wcfﬁlz and w) with lowering temperature. For a sufficiently strong
microwave power the linear-in-dc-field photoconductivity
becomes negative leading to formation of domains with zero
resistivity. We have calculated the threshold power at which
this zero-resistance state is formed, ELP), and the spon-
taneous dc field in the domains, EGJ).
L w0 T2+ (slm)? KUFTé/Z Our results are in overall agreement with the experimental
T N~ 1z (51)  findings233°The observed dependence of the photoresis-
F ¢l tivity at maxima compares well with the predictdd? be-
One sees that tHe ande dependence of;, in the regime of  havior. Typical parametere/2mw=50-100 GHz,74=10 ps
separated LLs is the same as for overlapping [Egs.(37)  Yield w7,/27=0.5-1(overlapping LL$, and the experimen-
and(41)]. Therefore the temperature scaling of the linear-in-tal data indeed closely resemble Fig. 2. Hor 1 K and e¢
P, photoresistivity, Eq(24), is the same as found in Sec. ~100 K we find7,'~10 mK, much less thamal~1 K, as
VIl A. In particular, o, oy scales ag 2 for T> w. assumed in our theory. For the microwave power
~1 mW and the sample aré&~ 1 cn?, Eq. (20) yields the
dimensionless powéPff)~0.005—O.](the smaller value cor-
responds tow/27=100 GHz, the larger one taw/2w
Finally, let us briefly discuss the issue of the microwave=50 GH2, where we used;, =10 mK andvg=2-10 cm/s.
induced w/ w-oscillations of the Hall resistivityp)t'y (anti-  These values oﬂDf) agree with characteristic values for
symmetric part ofp,, i.e., p';y:—pyx) detected in recent separated LLSFig. 4) but are noticeably less than the pre-
experimentg® The experimentally observed oscillations of diction for overlapping LLSFig. 2). The discrepancy can be
pxy demonstrate the following properties. First, they have theattributed(at least partlyto the fact that the value af; used
same period and the opposite phase as compared to the @8- the above estimate, which was extracted from the
cillations of the dissipative resistivity,,. Second, the ampli- Shubnikov—de Haas experiments, is in fact masked by inho-
tude of the oscillations i,y is roughly the same as ip,,. mogeneous broadening and thus is shorter than the actual
Third, the radiation-induced contributiofp,, is odd with  value. Indeedyz, found from the(experimental damping of
respect to the magnetic fieB, which implies that the mea- the oscillations inpy, (which are local and thus not affected

A ZWSFSE)(TB -t KUFTéIZ
= n
wvo(m2T? + £2)

Analytical solution of Eq.(50) does not seem feasible.
However, up to a factor of order unity,we can rewrite the
exact collision integral49) in the relaxation-time approxi-
mation, thus returning to E¢9) with

VIIl. OSCILLATORY HALL RESISTIVITY
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by inhomogeneous broadenjraccording to Eq(15) is sev-
eral times Ionger. With this value af; the threshold micro-
wave powerP , Eq. (19), needed for the emergence of the
zero-resistance states, correspond® tiess than 1 mW, in
conformity with the experiment&. Finally, for Pw—P;
~7P.,atT~1 K (whenr,/7,~1), andw,/27=50 GHz the
estimated dc electric field in the domains, E2), is found

to be £,,~1 V/cm. This is in agreement with the experi-

mental data of Ref. 7 where the voltage drop between an

internal and an external contaseparated by 20@m) gen-

PHYSICAL REVIEW B 71, 115316(2005
g =1L 2allwry),

andL{" is the Laguerre polynomial. The combinatifmh'|?

has the meaning of the probability for an electron to com-
plete the cyclotron orbit aftdr revolutions. Here we follow
the notations of Ref. 11; in the main text of the present paper
the factor\ is denoted as &

The kinetic equation$3.46) of Ref. 11 are written in the

time representation for the distribution functibi,t’; ¢,R),

erated by the radiation in the absence of the drive currenf’here ¢ is the angle on the cyclotron orbit arfd is the
was of the order of 5 mV fom,/2m=20 GHz. Assuming position of its guiding center. This function is related to the

that the size of the domain is of the order of the system Sizec’onventio.nal distribution in the energy-time representation
this yields&,.~0.25 V/cm. One sees that this value indeedPY the Wigner transform

compares well with our theoretical estimafg,~1 V/cm,
especially taking into account the? dependence of. fol-
lowing from Eq.(21).

Recently, a number of publications appeared that ex-

tended our theorymain results of which were presented in
Ref. 13 in a variety of contexts: propagation of surface-
acoustic wave$}3°photoconductivity of laterally-modulated
structures® photoconductivity forB above the cyclotron
resonancé’ local compressibility of irradiated sampl&s.
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APPENDIX: DERIVATION OF THE BASIC EQUATIONS
FROM THE QUANTUM BOLTZMANN EQUATION

tained as the inverse Wigner transform of E2j46h of Ref.

11 and will be written explicitly below.

Under the conditior{Al), the dissipative electric current
at the pointr is obtained from Eq(A3) and Eq.(3.45b of
Ref. 11:

i(d =2 o d_(P d_s f .
The purpose of this Appendix is to demonstrate how the 1 (D =2ep| o -i(#) | o) f(L.e;.rg)

semiclassical transport theory of Ref. (gke Sec. Il of this
reference is reduced to Egs(1), (3), and (11) when the

0

i2me 1l

)

wherepg is the Fermi momentunt=r —R.ei(¢) - (1) is the
guiding center coordinate ardft) describes the motion of an

+2Re> Ny exp(

effect of electric fields on the impurity collision process can - _18;(10!rg> )
be neglected and only the distribution function is affected. =1 @e

The conditions under which the effect of the fields on the
collision integral is weak are that the dc field is much smaller
thanE, and the strength of the ac field satisfies< 1, where
E, and P are defined in Egs(5.5 and (6.2) of Ref. 11,

respectively. In notation of our Eq10) these conditions

We

(A5)

read? electron in the external fielE(t):
P <7 l7y. Al .
o Qde< Tin Tq (A1) - we eE(t)
Under the conditionsAl) we neglect the effect of the exter- () = 5t2+ wg m ' (A6)

nal field on the density of states, which amounts to putting
h;=1 in Eq. (3.42 of Ref. 11. The resulting DOS is time

independent:
)} (A2)

where the coherence factdrF—exp—7/ w.7y),

i={cose,sing}, € is the antisymmetric tensog,,=—¢,=1.

In view of Eq. (A1) one can neglect the effect of the
electric fields on the interference processes in the collision
integral (3.46h of Ref. 11, which amounts to putting the
form-factorsh,=h,=1 in Eq.(3.49. Then Eq.(3.46D in the
time representation acquires a simple form

i2mle

1+2Re> Ny, exp(

1=1

v(e) = Vol

c
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dependent part dfto the collision integral. Fow 7, > 1 it is

St{fhy =- Lt )f(t,t’) sufficient to considerf to be time, angular, and coordinate
Tir independent. EquatiofA8) reduces to

1< ~o 27l ; *

ol A'g'{[M'“) -t )} Stullloa= 2 1(z) + 2 ReS Mg
tri=1 c ' Tir Tr =1
1 . | ’ r ’ ’ 2 27l . 2imle

+ =2 Ng) [M(t") - L) et == | ¢, x4 N[ E5) = NGig,) |ex f(e) [,
Tir1=1 W ¢ ¢

(A7) 2
where N(a) = D) - &t - ), (A9)
L(t,t') = ({pel£(t) - L) ]e = IRVR} - i(g) +i4,)? and the bar stands for the time averaging. In the constant

_ i - electric fieldN(8t)=(8t)?p2(5,0)?/2, whereas for the micro-
and M(t) is the result of action of the operatdz(t,t wave field Z(t)=Re(Z,&%) and N(é’t):pf: REL.E (1

-2/ w;) on unit)_/. Performing the Wigner transformation of —gM)]/2. Substituting these expressions in E&Q), taking
Eq. (A7) we obtain ¢ from Eqg. (A6), and using Eq(A2), we arrive at the left-

1 - i i hand side of Eq(9).
Stim{f}s,t =~ _L t+ _(9£,t - _(95

- The zero angular harmonic of the distribution function
tr

does not contribute to the electric curréAb) directly. The

2 “ | relevant angular dependent correctiodf(¢), with
xf(t,e;o,R) + . Re>; Mg, Jdesf(@)=0, can be found perturbatively from EqgA4)
oo and (A8):
x{[M.(t + 'Eas) - L(t + IE&S't - 'Easﬂ 0cd, (@) = Pery I [ AL (Ve (@)]
. - 27ile
2il | '
><exp< IWS)f(t—l,S;QD,R>}. (A8) x[1+2Re§1)\g,exp< o )]@f(s).
Wc Wc

Equations(A4) and (A8) are valid for an arbitrary time (A10)
dependent distribution function. We now notice from Eg. Substituting the solution of E§A10) in Eq. (A5) and apply-
(A4) that the most divergent terms in the distribution func-ing Eq. (A6) in the limit of the dc field, we obtain Eq1)
tion are due to the contribution of the angular and time in-with oyJ{e) given by Eq.(3).
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