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ABSTRACT

• Quantum dot is a basis for many nano-technological appli-
cations. Electronic and magnetic (spin) properties of few-
electron systems are of a particular interest;

• Traditionally considered e
− spin relaxation channels in a

quantum dot are intrinsic: associated with a) hyperfine cou-
pling to nuclei and b) spin-orbit coupling in the dot;

• We explore an alternative spin-flip process that is due to elec-
tron exchange between dot and an electrode. We present a
quantitative description of this spin-flip mechanism and the
resulting current in a double dot system. We find values for
the relaxation times that may bemuch shorter than those due
to intrinsic mechanisms, and thus dominate the relaxation;

1 Introduction

1.1 Spin relaxation in quantum dots

◮ GaAs

• HF – Hyperfine coupling
to nuclear spins

• SO – Spin-orbit inter-
action (Rashba etc.)

• Intrinsic spin-flip times T1

(Hanson et al. [1], Zutić et
al. [2])

10 − 100 ns (B = 0)
100 µs − 200 ms (B 6= 0)

can be quite long!

◮ Si

• HF and SOmechanisms are suppressed
- relaxation times up to 1 second!

• Relevant experiment: double dots

N.Shaji et al. . [3]

◮ Blockade region – measure of spin re-
laxation

◮ Peaks – resonant spin exchange with
leads

◮ Influence of leads in blockaded region?

1.2 Pauli spin blockade in double quantum dots

◮ Spin blockade - blocking of the charge current through the sys-
tem due to arrangement of spin-dependent levels in the dot.
[4, 5, 3, 6] Double dots in spin blockade regime can be used
to experimentally measure spin relaxation time (Johnson’05 [7])
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(a) Consequent transport Right →
Left through a double dot. Initial
state has one electron (with arbi-
trary spin) on the Left island.
Single electron steps:

• R Lead→ R Dot

• R Dot → L Dot (can be blocked)

• L Dot → L Lead (recovery of initial
state)

(b) Energy level representation of
transport through the dot.
Intermediate Singlet: current flows
(1, 0) → (1, 1)S ; (2, 0)S → (1, 0)
Intermediate Triplet:
(1, 0) → (1, 1)T → . . . is blocked
(1, 1)T 9 (2, 0)T (energy)
(1, 1)T 9 (2, 0)S (spin)

◮ Once current is blocked - it will take spin-flip ((1,1) triplet-singlet relax-
ation) time to unblock it [8]

2 Model and equations

2.1 Spin relaxation due to leads

◮ We assume that the intrinsic relaxation times are slow and the main
spin-flip process is due to electron exchange with the leads :
spin up leaves the dot and spin down enters back

H = Hdot + Hleads + V
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Rate equations from density matrix

◮ Density matrix equation ˙̃ρi = −
X

f (out)

Γfiρ0i +
X

f (in)

Γifρ0f

◮ Transition rates between electron states (leads × dot) : | i 〉 = | ei 〉 × |doti 〉

Γfi = 2πδ(ǫi − ǫf )
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◮ Environment (leads) relax much faster than dot states:

define transition rates between dot states: γfi = Trei,ef
Γfi ρ0
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(a) First order: one-step processes (1, 1)S,T ↔ (1, 0)

γ̄1 = ΓRf(∆) , γ1 = ΓR [1 − f(∆)]

(b) Second order: two jumps (1, 1)S,T ↔ (1, 1)S,T
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, and f(ξk) - Fermi function.

Similar to co-tunneling, [9, 10]

2.2 Rate equations

• Minimal number of states:

| ↑ 0 〉 ↑L P↑0
| ↓ 0 〉 ↓L P↓0
|S 〉 1√

2
(↑R↓L − ↓R↑L) PS

|T0 〉
1√
2
(↑R↓L + ↓R↑L) PT0

|T+ 〉 ↑R↑L PT+

|T− 〉 ↓R↓L PT
−

Pi - probability to find the
dot in state i
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2
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−
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−
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3 Results

3.1 Eigenmodes - spin/charge relaxaton

◮ Consider Left-Right dot in contact with Right lead and
Γ = 0 (no escape to Left dot);
No magnetic field: introduce P0 = P↑0 = P↓0 and PT1

= PT+
= PT

−

Remove probability P0 (unoccupied right dot) and diagonalize equations

◮ Eigenmodes of double dot system dynamics:

Ṗη(t) + ΓηPη(t) = Jη , η = 1, 2, 3 :

P1 = PT0
− PT1

, Γ1 = Γs, J1 = 0 (spin);
P2 = 3PS − (PT0

+ 2PT1
), Γ2 = Γs, J2 = 0 (spin);

P3 = PS + (PT0
+ 2PT1

), Γ3 = Γc, J3 = 2γ̄1 (charge).

Γs = γ1 + 2γ2 - spin relaxation

Γc = ΓR[1 + f(∆)] - charge relaxation rate

◮ Note: electron exchange between single dot and a lead is described by
P2 = P↑ − P↓ (with rate Γs) and P3 = P↑ + P↓ (with rate Γc).

3.2 Spin blockade current

◮ Current : escape (1, 1)S ; (2, 0)S

I(t) = eΓPS(t) ⇒ Stationary: I = e
f(∆)

1 + f(∆)

2 Γs Γ

4 Γs + Γ(3 + Γs/Γc)

This expression describes the entire profile of the current in spin block-
ade, both peak (resonant exchange with the lead) and blockade valley. In
these two limits I-expression also simplifies to

Γs ≫ Γ : I =
1

2
eΓ

f(∆)

1 + f(∆)
, (peak)

Γs ≪ Γ : I =
1

3
eΓs, (valley, f(∆) ≈ 1)

The valley dominated by algebraic tail: Γs = ΓR[1−f(∆)]+2γ2(∆) where

γ2 = Γ2
R

T

∆2

~

2π

3.3 Current profiles : examples
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Current through a double dot system in the spin blockaded regime. The dotted
(dashed) lines show asymptotes due to first (second) order processes that dom-
inate peak(valley). Panel (d) shows a fit to measured current (circles) along a
line-cut of the spin blockade peak reported in [3].

3.4 Spin relaxation times from experiment

(thanks to C.B.Simmons et al. [3])

◮ Peaks - direct exchange
with leads, γ1

◮ Tail - suppressed cur-

rent, 2γ2 ≫ γ1
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◮ Second peak - hole transport cycle:
(2, 1) → (1, 1)(T→)S → (2, 0)S → (2, 1)
with relaxation between (1, 1)T,S states occuring via left lead and inter-
mediate state (2, 1)

◮ Extracted values :
T ≈ 130 mK
Γ0 ≈ 109 1/s → τ0 ∼ 0.2 ns

◮ Blockade :
spin-flip time
τs ∼ 2 µs

Conclusions

◮ We presented a simple theory for spin relaxation via leads

◮ It explains the current profile in spin-blockade experiment on Si :
peaks and valley

◮ Electron exchange with the leads may dominate intrinsic mechanisms
(HF and SO) of spin relaxation in dots

◮ Triplet-Singlet relaxation rate (for a given experimental geome-
try/coupling to the leads ΓR):

peaks τs0 ∼ 0.2 ns
blockade τs ∼ 2 µs.
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